SAMPLE CONTENT

MHT-RET 202I
 TRIUMPH
 PHINSIES

 BASED ON STD. XII SYLLABIS 2020-21

WIITITLLE CHHIILE HIESTIUNS 4754 NELIS

In butterflies like morpho butterfly, interference and diffraction of light produce varying colours on the wings instead of pigmentation.

Taréet Publications ${ }^{\oplus}$ Pvt. Ltd.

MHT-CET TRIUMPH PHYSICS ニüusiois

Based on New Syllabus

Salient Features

> ε Includes chapters of Std. XII as per latest textbook ó $\quad 2020$.
> E Exhaustive subtopic wise coverage of $\mathrm{M}^{\boldsymbol{r}}$ ए.
> © 4754 MCQs including questions fro I various cc petitive exams.
> © Notes, Shortcuts, Mindbenders, Formulc rrovided i each chapter.
> © Includes MCQs from JEE (Main) ($8^{\text {th }}$ April, s..... .) , NEET (UG), NEET (Odisha), MHT-
> CET ($6^{\text {th }}$ May, Afternoon) $20^{\cdot} \quad{ }^{1}$ JEE (Main) ($7^{\text {th }}$ January, shift 1$) 2020$.
> © Includes MCQs frc JEE (Lair NF T T and MHT-CET upto 2018.
> e Various competitive ex. ina. . . stions updated till the latest year.
> - Evaluation test, \quad JVI. ${ }^{1}$ at t end of each chapter.
> σ Inclusion of ' 1 physic: of' to engage students in scientific enquiry.

Scan the ac. cent Q. code or visit www.targetpublications.org/tp1628 to download Hint... oleva questions and Evaluation Test in PDF format.

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd.
No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

"Don't follow your dreams; chase them!'"- a quote by Richard Dumbrill is perhaps the most pertinent for one who is aiming to crack entrance examinations held after std. XII. We are aware of an aggressive competition a student appearing for such career defining examinations experiences and hence wanted to create books that develop the necessary knowledge, tools and skills required to excel in these examinations.
For the syllabus of MHT-CET 2020, 80% of the weightage is given to the syllabus for XII ${ }^{\text {th }}$ standard wh. only 20% is given to the syllabus for $\mathrm{XI}^{\text {th }}$ standard (with inclusion of only selected chapters). Since there is 1, , clarity on the syllabus for MHT-CET 2021 till the time when this book was going to be printed and takin - the fact into consideration that the entire syllabus for std. XII ${ }^{\text {th }}$ Science has always been an integral part $0 \quad 1 \mathrm{MH}$. CET syllabus, this book includes all the topics of std. XII ${ }^{\text {th }}$ Physics.

We believe that although the syllabus for Std. XII and MHT-CET is aligned, the outlook to s^{+}. he su ect should be altered based on the nature of the examination. To score in MHT-CET, a student as to a not J. st good with the concepts but also quick to complete the test successfully. Such in snuity in \sim de loped through sincere learning and dedicated practice.

Having thorough knowledge of theory, derivations and their applications is a pro ${ }^{-\cdots}$ uisitc ${ }^{\circ}$ r beginning with MCQs on a given chapter in Physics. Students must know formulae, conversio fack unil ad dimensions of physical quantities involved in the chapter. Physics is conveyed using thematı therefore, students should study essential mathematical concepts such as trigonometric functic identities, derivatives and integration rigorously. They should befriend ideas of tangent, slope, ar un the rve and nature of various plots and their equations to resolve graphical intricacy of Physics. It hould b, 'eept $1 n$ mind that every single line of text has potential of generating several MCQs.
As a first step to MCQ solving, students should start v h elementarv quc....ns. Once a momentum is gained, complex MCQs with higher level of difficulty should e practised. lestions from previous years as well as from other similar competitive exams should be solved, obtain an in ght about plausible questions.

The competitive exams challenge understanding of stua out subject by combining concepts from different chapters in a single question. To figure these questions out, cognitive understanding of subject is required. Therefore, students should put in erau rt to practise such questions.
Promptness being virtue in these - ms, s de ssh ld wear time saving short tricks and alternate methods upon their sleeves and should be able app. hem v. ih accuracy and precision as required.
Such a holistic preparation is the ${ }^{\cdot}{ }^{+} \mathrm{O} \mathrm{su}$ sed in the examination!
To quote Dr. A.P.J. Abdul Kal m, "It . u w. to to shine like a sun, first burn like a sun."
Our Triumph Physics hook. s been lesigned to achieve the above objectives. Commencing from basic MCQs the book proc us dev competence to solve complex MCQs. It offers ample practice of recent questions from varin comp tive t mination. While offering standard solutions in the form of concise hints, it also provides, noı, ts and .iterna.e Methods. Each chapter ends with an Evaluation test to allow selfassessment.

Feature a boc resented on the next page will explicate more about the same!
We he eth so. henefits the learner as we have envisioned.
The jour1 v to reate a complete book is strewn with triumphs, failures and near misses. If you think we've
r. niss... something or want to applaud us for our triumphs, we'd love to hear from you.
Please rite to us on: mail@targetpublications.org
A hr affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

From,
Publisher
Edition: First

Formulae

1. Angular velocity:
i. $\quad \omega=\frac{\mathrm{v}}{\mathrm{r}}$
ii. $\quad \omega=\frac{\theta}{\mathrm{t}}$
iii. $\quad \omega=2 \pi n$
iv. $\quad \omega=\frac{2 \pi}{\mathrm{~T}}$
2. Angular displacement:
i. $\quad \theta=\omega t$
ii. $\quad \theta=\frac{2 \pi \mathrm{t}}{\mathrm{T}}$
iii. $\quad \theta=2 \pi n t$

Notes

Notes provides compilation of comprehensive points which elaborate textual concepts or cover missing fragments of concept essential for the complete understanding of the concept.
This is our attempt to offer gist of

Notes

2. Since specific hew $-=\frac{\Delta \mathrm{Q}}{\mathrm{m} \Delta \mathrm{T}}$
i. In isotherm expansion, ΔT being zero, specific at is ∞.
ii. For ulabatic change, ΔQ being zero, specific heat is zero.

Mindbenders

1. Kirchhoff's laws rplic 1~ r DC as well as AC circuits. Thi y can acc ately used for DC circuits and $\lrcorner w$ equenc, $A C C$ uits. In case of AC thous summ. on of current should be done in vector fo - or usin. instantaneous value for the AC onen. of the circuit.

Mindbenders

Mindbenders presents thought provoking snippets of concepts.
This is our attempt to enable the students perceive underlying depth and implications of concept.

Shortcuts

-. .cuts comprises important theoretical or formula based short tricks considering their utility in solving MCQ.
This is our attempt to highlight content that would come handy while solving questions.

Shortcuts

1. For a particle executing S.H.M:
i. From mean position in order to travel half of amplitude, time required is given by, $\mathrm{t}=\frac{\mathrm{T}}{12}$
ii. From extreme position, in order to travel half of amplitude, time required is given by, $t=\frac{T}{6} \mathrm{~S}$

Classical Thinking

3.1 Introduction

1. A gas is not an ideal gas
(A) in which there is impurity.
(B) which does not obey Boyle's law and Charles' law.
(C) whose molecules are not point masses.
(D) whose molecules interact each other.

Classical Thinking

Classical Thinking section encompas: straight forward questions includir., knowledge based questions.
This is our attempt to revise chr ster 1. its basic form and warm up the idents to deal with complex MCO

Critical Thinking

Critical Thinking section encompasses challenging questions which test understanding, rational thinking and application skills of the students.
This is our attempt to take the students from beginner to proficient level in smooth steps.

Critical Thinking

6.2 Progressive W e

1. A travellin wav nass through a point of observatior At thi. point, the time interval -n suc ssive cr sts is 0.2 s , then,
(A) wavelet $\iota_{\tau} \quad \checkmark \mathrm{m}$.
(B) frequ icy is 5 Hz .
(C) veloc of propagation is $5 \mathrm{~m} / \mathrm{s}$
) wav ength is 0.2 m .

Competitive Thinking

7.2 Nature of Light

1. According to corpus ar theor of light which is NOT the property of lig,

MHT CET 2019]
(A) The velo cy ligh ..r is greater than in glass.
(B) $\mathrm{Lig}^{\prime}, \mathrm{tra}, ~$ ' s in stra.sht linus.
(C) 11 velocit, of light does not change after refle, n.
(ر) vel ty of light changes after reflection.

Competitive Thinking

Competitive Thinking section encompasses questions from various competitive examinations like MHT CET, JEE, AIPMT/NEET-UG, etc. This is our attempt to give the students practice of competitive questions and advance them to acquire knack essential to solve such questions.

S stopic wise segregation

Every section is segregated sub-topic wise.
This is our attempt to cater to individualistic pace and preferences of studying a chapter in the students and enable easy assimilation of questions based on the specific concept.

Subtopics

9.1 Introduction
9.2 Kirchhoff's Laws of Electrical Network
9.3 Wheatstone Bridge
9.4 Potentiometer
9.5 Galvanometer

Miscellaneous

93. A wire of cross-sectional area A forms 3 sides of a square and is free to turn about axis XX^{\prime}. If the structure is deflected by θ from vertical when current I is passed through it, in a magnetic field B acting vertically upward and density of wire is ρ, the value of B is given by

(A) $\frac{2 \mathrm{~A} \rho \mathrm{~g}}{\mathrm{I}} \cot \theta$
(B) $\frac{2 \mathrm{~A} \rho \mathrm{~g}}{\mathrm{I}} \tan \theta$
(C) $\frac{\mathrm{A} \rho \mathrm{g}}{\mathrm{I}} \sin \theta$
(D) $\frac{\mathrm{A} \rho \mathrm{g}}{2 \mathrm{I}} \cos \theta$

Evaluation test

Evaluation Test

Evaluation Test covers questions from chapter for self-evaluation purp \circ.
This is our attempt to provia the students with a practice test and r_{r}, them assess their range of cpe tior, of the chapter.

The ratio of areas within the electron orbits for the first excited state to the ground state for hydrogen atom is
(A) $16: 1$
(B) $18: 1$
(C) $4: 1$
(D) $2: 1$

The physic. f.....

Loud speakers help us to listen to wonderful music. What mechanism in them makes them produce the sound?

The physics of

The physics of illustrates real life applications or examples related to the concept discussed.
This is our attempt to link learning to the life and make the students conscious of how Physics has touched entire spectrum of life.

CONTENTS

Chapter No.	Chapter Name	Page No.
1	Rotational Dynamics	1
2	Mechanical Properties of Fluids	52
3	Kinetic Theory of Gases and Radiation	80
4	Thermodynamics	1.
5	Oscillations	133
6	Superposition of Waves	10
7	Wave Optics	202
8	Electrostatics	233
9	Current Electricity	275
10	Magnetic Fields due to Electric Cr ent	299
11	Magnetic Materials	332
12	Electromagnetic Induction	347
13	AC Circuits	370
14	Dual Nature of Radia on ar in tter	387
15	Structure of Ator anc uclei	408
16	Semicondevic	432

Disclaimer

This ref ace book is transformative work based on XII ${ }^{\text {th }}$ std. textbook Physics; First edition: 2020 published by the Maharashtra State Bureau of - Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
© reserved with the Publisher for all the contents created by our Authors.
No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Textbook

Chapter No.

01 Rotational Dynamics

Subtopics

1.1 Introduction

1.2 Characteristics of Circular Motion
1.3 Applications of Uniform Circular Motion
1.4 Vertical Circular Motion
1.5 Moment of Inertia as an Analogous Quantity for Mass
1.6 Radius of Gyration
1.7 Theorem of Parallel Axes and Theorem of Perpendicular Axes
1.8 Angular Momentum or Moment of Linear Mom tum
1.9 Expression for Torque in Terms of Moment of L rtia
1.10 Conservation of Angular Momentum

1.11 Rolling Motion

Formulae

1. Angular velocity:
i. $\quad \omega=\frac{\mathrm{v}}{\mathrm{r}}$
i1. $\quad \omega=\frac{\mathrm{J}}{\mathrm{t}}$
iii. $\quad \omega=2 \pi n$
a $\quad \frac{2 \pi}{\mathrm{~T}}$
2. Angular a. laceme.
i. $\theta=\omega$
ii. $\quad \theta=\frac{2 \pi \mathrm{t}}{\mathrm{T}}$
θ 2T
3. Ang - celeration:
$\alpha \quad \frac{\omega_{2}-\omega_{1}}{\mathrm{t}}$
ii. $\quad \alpha=\frac{2 \pi}{t}\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)$

inear velocity:

i. $\quad v=r \omega$
ii. $\quad \mathrm{v}=2 \pi \mathrm{nr}$
5. Centripetal acceleration or radial acceleration: $a=\frac{v^{2}}{r}=\omega^{2} r$
6. Tangential acceleration: $\overrightarrow{a_{T}}=\vec{\alpha} \times \vec{r}$

7. Centripetal force:
i. $\quad F_{C P}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
iii. $\quad F_{C P}=m r 4 \pi^{2} n^{2}$
ii. $\quad F_{\mathrm{CP}}=m r \omega^{2}$
iv. $\quad F_{C P}=\frac{4 \pi^{2} \mathrm{mr}}{\mathrm{T}^{2}}$
8. Centrifugal force: $\mathrm{F}_{\mathrm{CF}}=-\mathrm{F}_{\mathrm{CP}}$
9. Inclination of banked road: $\theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{rg}}\right)$
10. On unbanked road:
i. Maximum velocity of vehicle to avoid skidding on a curve unbanked road: $\mathrm{v}_{\text {max }}=\sqrt{\mu \mathrm{rg}}$
ii. Angle of leaning: $\theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{rg}}\right)$
11. On banked road:
i. Upper speed limit: $\mathrm{v}_{\text {max }}=\sqrt{\mathrm{rg}\left[\frac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right]}$
ii. Lower speed limit: $\mathrm{V}_{\min }=\sqrt{\mathrm{rg}\left[\frac{\tan \theta-\mu_{\mathrm{s}}}{1+\mu_{\mathrm{s}} \tan \theta}\right]}$
iii. $\quad \mathrm{v}_{\max }=\sqrt{\mathrm{rg} \tan \theta}$ (in absence of friction)
12. Height of inclined road: $\mathrm{h}=l \sin \theta$
13. Conical Pendulum:
i. Angular velocity of the bob of conical pendulum,
$\omega=\sqrt{\frac{g}{L \cos \theta}}$
ii. Period of conical pendulum
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L} \cos \theta}{\mathrm{~g}}}$

14. For mass tied to string:

i. Minimum velocity at lowest point to complete V.C.M: $\mathrm{v}_{\mathrm{L}}=\sqrt{5 \mathrm{rg}}$
ii. Minimum velocity at highest point to complete V.C.M: $\mathrm{v}_{\mathrm{H}}=\sqrt{\mathrm{rg}}$
iii. Minimum velocity at midway point to complete in V.C.M: $\mathrm{v}_{\mathrm{M}}=\sqrt{3 \mathrm{rg}}$
iv. Tension at highest point in V.C.M:
$\mathrm{T}_{\mathrm{H}}=\frac{\mathrm{mv}_{\mathrm{H}}^{2}}{\mathrm{r}}-\mathrm{mg}$
v. Tension at midway point in V.C.M:
$\mathrm{T}_{\mathrm{M}}=\frac{\mathrm{mv}_{\mathrm{m}}^{2}}{\mathrm{r}}$
vi. Tension at lowest point in V.C.M:

$$
\mathrm{T}_{\mathrm{L}}=\frac{\mathrm{mv}_{\mathrm{L}}^{2}}{\mathrm{r}}+\mathrm{mg}
$$

vii. Difference between tension at lowe, oost anu uppermost point:
$\mathrm{T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{H}}=6 \mathrm{mg}$
15. Moment of Inertia: $I=\sum_{i=1}^{n} m_{i} r_{i}^{2}=\int d m r^{2}$
16. Radius of gyration: $K=\sqrt{\frac{I}{M}}$
17. Kinetic energy:
i. K. $\mathrm{E}_{\text {rotational }}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \mathrm{I}(2 \pi \mathrm{n})^{2}$
ii. K. $\mathrm{E}_{\text {translational }}=\frac{1}{2} \mathrm{Mv}^{2}$
iii. $\quad K . E_{\text {rolling }}=\frac{1}{2}\left[\mathrm{Mv}^{2}+\mathrm{I} \omega^{2}\right]=\frac{1}{2} M v^{2}\left[1+\frac{\mathrm{K}^{2}}{\mathrm{k}}\right]$
18. From principle of $\frac{r}{}$ ralel $\quad e^{\prime} \quad I_{0}=+\mathrm{Mh}^{2}$
19. From principle of p, \quad vicu.
$\mathrm{I}_{\mathrm{Z}}=\mathrm{I}_{\mathrm{X}}+\mathrm{I}_{\mathrm{Y}}$
20. Angular moms tum \quad, body. $\mathrm{L}=\mathrm{I} \omega=\mathrm{I}(2 \pi \mathrm{n})$
21. From princip of con rvation of angular momer
i. $\quad \mathrm{I}_{1} \omega_{1} \quad \mathrm{I}_{2} \omega_{2} \quad$ ii. $\quad \mathrm{I}_{1} \mathrm{n}_{1}=\mathrm{I}_{2} \mathrm{n}_{2}$ Torc e acting n a body:
i. $\quad \tau=\mathrm{I} \nu=\frac{\mathrm{I}}{\mathrm{dt}}$ $\tau=\frac{\nu}{\mathrm{dt}}=2 \pi \mathrm{I}\left(\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{t}}\right)$
23. Velocity of rolling body: $v=\sqrt{\frac{2 g h}{1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}}}$
24. Acceleration of rolling body: $a=\frac{g \sin \theta}{1+\frac{K^{2}}{R^{2}}}$

Table 1: Analogy of tr nslatı al man and rotational motion

Linear or Tr	slath al motion	S.I. Unit	Rotational motion		S.I. Unit
Displacement	-	m	Angular Displacement	θ	rad
Sp d	V	ms^{-1}	Angular Speed	ω	$\mathrm{rad} \mathrm{s}^{-1}$
Velucit	$\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}$	ms^{-1}	Angular velocity	$\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}$	$\mathrm{rad} \mathrm{s}^{-1}$
cce ation	$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}$	ms^{-2}	Angular acceleration	$\alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}$	$\mathrm{rad} \mathrm{s}^{-2}$
M ,s	m	kg	M.I.	$\mathrm{I}=\mathrm{mr}^{2}$	kg m ${ }^{2}$
Force	$\mathrm{F}=\frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{ma}$	N	Torque or couple	$\tau=\mathrm{I} \alpha=\frac{\mathrm{dL}}{\mathrm{dt}}$	Nm
Momentum	$\mathrm{P}=\mathrm{mv}$	kgms^{-1}	Angular momentum	$\mathrm{L}=\mathrm{I} \omega$	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$
Work	$\mathrm{W}=\mathrm{Fs}$	J	Work	$\mathrm{W}=\tau \theta$	J
Kinetic energy	$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$	J	Rotational Energy	$\mathrm{E}_{\text {Rot }}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \mathrm{LI}$	J
Power	$\mathrm{P}=\mathrm{Fv}$ or $\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{v}}$	W	Power	$\mathrm{P}=\tau \omega$ or $\vec{\tau} \cdot \vec{\omega}$	W

Table 2: Moment of inertia of different bodies

No.	Shape of regular body	Axis of rotation	Moment of Inertia
i.	Rod of mass M and length L (thin rod)	Centre of rod and perpendicular to length.	$\frac{\mathrm{ML}^{2}}{12}$
		One end and perpendicular to length.	$\frac{\mathrm{ML}^{2}}{3}$
ii.	Circular ring of mass M and radius R	Line passing through its centre and perpendicular to its plane.	MR^{2}
		Any diameter.	1,2
		Any tangent in the plane of the ring.	
		Any tangent perpendicular to the plane of the ring.	2 M
iii.	Circular disc of mass M and radius R	Through centre, perpendicular to plane of disc.	$\overline{2}_{2}^{M R}$
		Any diameter.	$\frac{1}{4} \mathrm{MR}^{2}$
		Tangent in the plane of the disc.	$\frac{5}{4} \mathrm{MR}^{2}$
		Tangent perpendicular , ie of	$\frac{3}{2} \mathrm{MR}^{2}$
iv.	Solid sphere of mass M and radius R	Any diameter.	$\frac{2}{5} \mathrm{MR}^{2}$
		Any tangent.	$\frac{7}{5} \mathrm{MR}^{2}$
v.	Hollow sphere of mass M and radius R	Any diar ma	$\frac{2}{3} \mathrm{MR}^{2}$
vi.	Solid cylinder of mass M, radius R and length L	A \& pa . g thr agh its centre and parallel to its leng.	$\frac{1}{2} \mathrm{MR}^{2}$
		1. ug. $_{1}$-ntre perpendicular to length.	$\mathrm{M}\left(\frac{\mathrm{R}^{2}}{4}+\frac{\mathrm{L}^{2}}{12}\right)$
vii.	Hollow cylind mass M, radius R	passing through its centre and parallel to its gth	MR ${ }^{2}$
viii.	Annular als or thic walled - low cy der	Ax. passing through its centre and perpendicular to its plane	$\mathrm{I}=\frac{1}{2} \mathrm{M}\left(\mathrm{r}_{2}^{2}+\mathrm{r}_{1}^{2}\right)$
ix.	Uniform s, \quad metric ner. 1 she.	Any diameter	$I=\frac{2}{5} M \frac{\left(r_{2}^{5}-r_{1}^{5}\right)}{\left(r_{2}^{3}-r_{1}^{3}\right)}$
y.	$\overline{\mathrm{Jn}} \mathrm{Jrm}$ plate or res nge ar parallelepiped	Axis passing through its centre of the side and perpendicular to its plane	$\mathrm{I}=\frac{1}{12} \mathrm{M}\left(\mathrm{~L}^{2}+\mathrm{b}^{2}\right)$

aole 3: able representing the graphs of different parameters of rotational motion

Sr.	Graph of	Formula	Graph
1.	K.E.rotational $\mathrm{V} / \mathrm{s} \omega$ where, $\omega=$ angular velocity	$K . E_{\cdot r o t}=\frac{1}{2} \mathrm{I} \omega^{2}$ i.e.K.E.rot $\propto \omega^{2}$ if I is constant	

2.	I v/s K where, $\mathrm{K}=$ radius of gyration	$\mathrm{I}=\mathrm{MK}^{2}$ i.e. $\mathrm{I} \propto \mathrm{K}^{2}$	
3.	Lv/s ω where, $\mathrm{L}=$ angular momentum	$\mathrm{L}=\mathrm{I} \omega$ i.e. $\mathrm{L} \propto \omega$	
4.	K.E.rotational $\mathrm{v} / \mathrm{s} \mathrm{L}$	$\text { K.E.rot }=\frac{L^{2}}{2 \mathrm{I}}$ i.e. K.E. rot $\propto L^{2}$ if I is constant	$X_{-}-\underbrace{\substack{\mathrm{E}_{\mathrm{r}} \mathrm{Y} \\ 1}}_{\rightarrow \mathrm{L}} \mathrm{X}$
5.	$\log ($ K.E.rot) $\mathrm{v} / \mathrm{s} \log (\mathrm{L})$	$\text { K.E.rot }=\frac{L^{2}}{2 \mathrm{I}}$ i.e. $\log ($ K.E.rot $)=2 \log (\mathrm{~L})-\log ($	
6.	$\log (\mathrm{I}) \mathrm{v} / \mathrm{s} \log (\mathrm{K})$	$\begin{aligned} & I=M K^{2} \\ & \text { i.e. } \log (\mathrm{I})=\log (\mathrm{M}) \quad \quad \log (\mathrm{K}) \end{aligned}$	

Table 4: Kinetic energy distribution , `le t tiffer trolling bodies

Body	\mathbf{R}^{2}	1. slational $\left.\mathrm{K}_{\mathrm{T}}\right)=\frac{1}{2} m v^{2}$	$\begin{aligned} & \text { Rotational }\left(K_{R}\right) \\ & \quad=\frac{1}{2} m v^{2} \frac{K^{2}}{R^{2}} \end{aligned}$	$\begin{aligned} & \text { Rolling }\left(K_{\text {Roll }}\right) \\ = & \frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right) \end{aligned}$
Ring and Cylindrical		$\frac{1}{2} \mathrm{mv}^{2}$	$\frac{1}{2} \mathrm{mv}^{2}$	$m v^{2}$
Disc and solid \ inder	$\overline{2}$	$\frac{1}{2} \mathrm{mv}^{2}$	$\frac{1}{4} \mathrm{mv}^{2}$	$\frac{3}{4} \mathrm{mv}^{2}$
Solid sr'	$\frac{2}{5}$	$\frac{1}{2} \mathrm{mv}^{2}$	$\frac{1}{5} \mathrm{mv}^{2}$	$\frac{7}{10} \mathrm{mv}^{2}$
. ollow sp are	$\frac{2}{3}$	$\frac{1}{2} \mathrm{mv}^{2}$	$\frac{1}{3} \mathrm{mv}^{2}$	$\frac{5}{6} \mathrm{mv}^{2}$

". we 5. \quad elocity, Acceleration and Time of descent for Different Bodies

Body	Velocity $\mathbf{v}=\sqrt{\frac{\mathbf{2 g h}}{\mathbf{1}+\frac{\mathbf{K}^{2}}{\mathbf{R}^{2}}}}$	Acceleration a $=\frac{\mathbf{g s i n} \theta}{\left(\mathbf{1}+\frac{\mathbf{K}^{2}}{\mathbf{R}^{2}}\right)}$	Time of descent t
Ring or Hollow cylinder	$\sqrt{\mathrm{gh}}$	$\frac{\mathbf{1}}{\sin \theta} \sqrt{\frac{\mathbf{2 h}}{\mathbf{g}}\left(\mathbf{1}+\frac{\mathbf{K}^{2}}{\mathbf{R}^{2}}\right)}$	
Disc or solid cylinder	$\sqrt{\frac{4 \mathrm{gh}}{3}}$	$\frac{1}{2} \mathrm{~g} \sin \theta$	$\frac{1}{\sin \theta} \sqrt{\frac{4 \mathrm{~h}}{\mathrm{~g}}}$

Solid sphere	$\sqrt{\frac{10}{7} \mathrm{gh}}$	$\frac{5}{7} \mathrm{~g} \sin \theta$	$\frac{1}{\sin \theta} \sqrt{\frac{14}{5} \frac{\mathrm{~h}}{\mathrm{~g}}}$
Hollow sphere	$\sqrt{\frac{6}{5} \mathrm{gh}}$	$\frac{3}{5} \mathrm{~g} \sin \theta$	$\frac{1}{\sin \theta} \sqrt{\frac{10}{3} \frac{\mathrm{~h}}{\mathrm{~g}}}$

Table 6: Rolling, Sliding and Falling bodies

Notes

1. In U.C.M., angular velocity $(\vec{\omega})$ is only constant vector but angular acceleration $(\vec{\alpha})$ and angular displacement $(\vec{\theta})$ are variable vectors.
2. The value of ω of earth about i axi is $7 \times 10^{-5} \mathrm{rad} / \mathrm{s}$ or $360^{\circ} \mathrm{per}$ day.
3. Circular motion is a two-dimensior. 'mom in which the linear velocity $a \cdot \ldots . \quad r a c$. 'eration vectors lie in the plan? of the c cle sut the angular velocity and vular cceleration vectors are perpr tlar thr slane of the circle.
4. An observe on th. noving particle experiences only the ntrifug, force, but an observer stationrry 1.3 respect to the centre can ex rien or oasure only the centripetal f ce.
5. Whe ver particle is in a U.C.M. or non C.In., centripetal and centrifugal forces act sir iltaneously. They are both equal and o osite but do not cancel each other.
u. Centripetal force and Centrifugal force are not action-reaction forces as action-reaction forces act on different bodies.
6. Since the centripetal force acting on a particle in circular motion acts perpendicular to its displacement (and also its velocity), the work done by it is always zero.
7. The radius of he cur 1 path is the distance from the cent, of curven. path to the centre of gravity ? bou. It is to be considered when the c itre of \quad vvity of body is at a height from the s face of r id or surface of spherical body.
8. Whener ir is taking a horizontal turn, the norr ! reaction is at the inner wheel.
9. Whil taking a turn, when car overturns, its in r wheels leave the ground first.
10. For a vehicle negotiating a turn along a circular path, if its speed is very high, then the vehicle starts skidding outwards. This causes the radius of the circle to increase resulting in the decrease in the centripetal force.
$\left[\because F_{c p} \propto \frac{1}{r}\right]$
11. If a body moves in a cylindrical well (well of death) the velocity required will be minimum safest velocity and in this case the weight of the body will be balanced by component of normal reaction and the minimum safest velocity is given by the formula $\sqrt{\mu \mathrm{rg}}$.
12. If a body is kept at rest at the highest point of convex road and pushed along the surface to perform circular motion, the body will fall after travelling a vertical distance of $\frac{\mathrm{r}}{3}$ from the highest point where r is the radius of the circular path.
13. Since the centripetal force is not zero for a particle in circular motion, the torque acting is zero i.e., $\vec{\tau}=0$ (as the force is central) Hence the angular momentum is constant i.e. $\overrightarrow{\mathrm{L}}=$ constant .
14. If a particle performing circular motion comes to rest momentarily, i.e. $\mathrm{v}=0$, then it will move along the radius towards the centre and if its radial acceleration is zero, i.e. $a_{r}=0$, then the body will move along the tangent drawn at that point.
15. For non uniform circular motion
$\vec{a}=\vec{\alpha} \times \vec{r}+\vec{\omega} \times \vec{v}$
16. When a bucket full of water is rotated in a vertical circle, water will not spill only if velocity of bucket at the highest point is $\geq \sqrt{\mathrm{gr}}$.
17. If velocity imparted to body at the lowest position is equal to $\sqrt{2 \mathrm{rg}}$, then it will oscillate in a semicircle.
18. If bodies of same shape but different masses and radii are allowed to roll down an inclined plane, then they will reach the bottom with the same speed and at the same time.
19. If ice on poles starts melting, then both moment of inertia and length of the day (T) will increase,
because $\mathrm{I} \omega=\mathrm{I} \times \frac{2 \pi}{\mathrm{~T}}=$ constant .
20. Moment of inertia of the body will be minimum along the axis passing through its centre of mass.
21. M.I. of cube is minimum about its diago
22. For same mass and dimen $n s, n$ me of inertia of a hollow body is more in n. sent of inertia of solid body.
23. For a given L, lesser to mor it o, nertia, more is the rotational k ic energ.
24. Angular velocity fan con ant due to applied torque. I is bu ncea some frictional torque. Whe - applit torq is removed, fan comes t rest \llcorner ause of frictional torque.
25. Angular mc ontum n, same direction as that of C or veu ${ }^{\circ} \mathrm{v}$.

M^{*} dbe ıuers

1 . Tywneel is a rotating mechanical device that is us 1 to store rotational energy. Flywheels, on ? ount of a significant moment of inertia, resist changes in rotational speed. The amount of energy stored in a flywheel is proportional to the square of its rotational speed. Energy is transferred to a flywheel by applying torque to it, thereby increasing its rotational speed and hence its stored energy. Conversely, a flywheel releases stored energy by applying torque to a mechanical load, thereby decreasing its rotational speed.
2. In a reciprocating engine, the dead centre is the position of a piston in which it is farthest from, or nearest to, the crankshaft.
In general, the dead centre is any position of a crank where the applied force is straight along its axis, meaning no turning force can be applied. A few examples of crank d_{1} or machines are bicycles, tricycles, various ty . of machine presses, gasoline engines, diesel engines, steam locomotives and oth si m engines. Crank-driven machines r^{1} on t_{1}. energy stored in a flywheel to ove ${ }_{1}$ me the dead centre. A steam locomo ${ }^{+}$, \quad n e. nple in which the connecting rod are - an red uch that the dead centre 'r each v^{\prime}. der c curs out of phase with the othe ne $\left(\mathrm{O}_{1} \quad n\right) \mathrm{c}$ nders.
3. If the Earth ' 'rnly ${ }^{\prime}$ ' rotating, then duration of da decre es. Acuording to law of conservation angular. mentum,
$\mathrm{I} \omega=\mathrm{c} \quad$ or $-2 \pi=\mathrm{constant}$
. $\quad \mathrm{T} \propto \quad$ Here T presents the length of the day. When he ear 1 contracts, the distribution of mass colnu near to the axis of rotation. So I decr ies. Consequently, T decreases i.e. the dura ${ }^{1} \mathrm{n}$ of the day will be decreased.
4. swimmer executing a somersault takes the help of principle of conservation of angular momentum to increase his spin motion.
According to principle of conservation of angular momentum, $\mathrm{I} \omega=$ constant or $\omega \propto \frac{1}{\mathrm{I}}$.
Thus, angular velocity increases when moment of inertia decreases. To decrease the moment of inertia, he folds her arms and brings the stretched leg close to the other leg. Thus, angular velocity increases and hence the spin becomes faster

Shortcuts

1. In U.C.M., if central angle or angular displacement is given, then simply apply $\mathrm{dv}=2 \mathrm{v} \sin \frac{\theta}{2}$ to determine change in velocity.
2. There are two types of acceleration; a_{r} (radial) and a_{t} (tangential) acceleration.
Formula for $a_{r}=\omega^{2} r$ and $a_{t}=\frac{d v}{d t}$ or $r \alpha$
3. To find out number of revolutions, always apply the formula,
Number of revolutions $=\frac{\theta}{2 \pi}=\frac{\omega t}{2 \pi}=\frac{2 \pi n t}{2 \pi}=n t$
4. The minimum safe velocity for not overturning is $\mathrm{v}=\sqrt{\frac{\mathrm{gdr}}{2 h}}$
5. While rounding a curve on a level road, centripetal force required by the vehicle is provided by force of friction between the tyres and the road.

$$
\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{F}=\mu \mathrm{R}=\mu \mathrm{mg}
$$

6. The maximum velocity with which a vehicle can go without toppling, is given by
$v=\sqrt{\mathrm{rg} \frac{\mathrm{d}}{2 \mathrm{~h}}}=\sqrt{\mathrm{rg} \tan \theta}$
where, $\tan \theta=\frac{\mathrm{d}}{2 \mathrm{~h}}$
$d=$ distance between the wheels
$h=$ height of centre of gravity from the road
$\mathrm{g}=$ acceleration due to gravity
7. Skidding of an object placed on a rotating platform:
The maximum angular velocity of rotation of the platform so that object will not skid on it is
$\omega_{\max }=\sqrt{(\mu \mathrm{g} / \mathrm{r})}$
8. If earth suddenly contracts to $\left(\frac{1}{L_{1}}\right)^{\text {th }}$ of $\quad r \quad$ sent size without changes in its mass, $\left.l_{1}\right\urcorner$ duracoun of new day $=\frac{24}{n^{2}}$ hours.
9. If an inclined pla .. ${ }^{1} \mathrm{~s}$ int. .cular loop of radius r , then h. ght fre wh, a body must start from r st to mplete ne loop is given by $h=\frac{5}{2} r$

H ace r - $d e p u$ adent of mass of the body.
1u. Whe a sm 1 l body of mass m slides down from $\therefore t_{1}$ \& a smooth hemispherical surface of ra। is R, then height at which the body loses the ntact with surface, $h=\frac{2 R}{3}$
11. The angle of banking (θ) is given by, $\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}=\frac{\mathrm{h}}{\sqrt{l^{2}-\mathrm{h}^{2}}}$
where h is height of the outer edge above the inner edge and l is length of the road.
12. On the same basis, a cyclist has to bend through an angle θ from his vertical position while rounding a curve of radius r with velocity v such that $\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}$
If θ is very very small, then
$\tan \theta=\sin \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}$
$\frac{\mathrm{v}^{2}}{\mathrm{rg}}=\frac{\mathrm{h}}{\mathrm{l}}$
where h is height of the or rr eu fro the inner edge and l is the di anc oet een the tracks or width of th -1 .
13. Always remember the fo s ulae for velocity of the body at the sp , \llcorner tom a at the middle of a circle with , distinc ases:
i. path is convex
ii. path conca

Rem nber in th the cases, formula will be differ
i. $\frac{\mathrm{mv}^{2}}{\mathrm{r}} \mathrm{mg}-\mathrm{N}$ where N is normal reaction.

1. $\mathrm{m}^{\mathrm{r}}-\mathrm{N}-\mathrm{mg}$

Remember if in the question, it is given that body falls from a certain point then at that point $\mathrm{N}=0$.
14. In horizontal circle, tension will be equal to centripetal force i.e. $T=\frac{\mathrm{mv}^{2}}{r}$
i. The minimum velocity of projection at the lowest point of vertical circle so that the string slacken at the highest point, is given by $\mathrm{V}_{\mathrm{L}}=\sqrt{5 \mathrm{gr}}$
ii. velocity at the highest point is $\mathrm{v}_{\mathrm{H}}=\sqrt{\mathrm{gr}}$
15. When
i. $\quad \mathrm{v}_{\mathrm{L}}=\sqrt{2 \mathrm{gr}}$, the body moves in a vertical semicircle about the lowest point L ,
ii. $\quad \mathrm{v}_{\mathrm{L}}<\sqrt{2 \mathrm{gr}}$, then the body oscillates in a circular arc smaller than the semicircle.
iii. For a motor cyclist to loop a vertical loop, $\mathrm{v}_{\mathrm{L}}>\sqrt{5 \mathrm{gr}}$ and $\mathrm{v}_{\mathrm{H}}>\sqrt{\mathrm{gr}}$
16. The distance travelled by the particle performing uniform circular motion in t seconds is given by the formula, $d=\frac{2 \pi r}{T} t$.
17. If a rod falls, apply the formula,
$\frac{1}{2} \mathrm{I} \omega^{2}=m g \times\left(\frac{\mathrm{L}}{2}\right)$ where L is the length of the rod because when the rod falls, centre of mass travels a vertical distance of $\frac{L}{2}$ and I will be equal to $\frac{\mathrm{mL}^{2}}{3}$.
18. If there is a change in mass or distribution of mass for example, for a piece of wax falling on rotating rod, apply the formula, $\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$.
19. Whenever the body falls from an inclined plane, apply $\mathrm{mgh}=\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} \mathrm{mv}^{2}$ and always remember, acceleration of a rolling body is given by $\frac{g \sin \theta}{\left(1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}\right)}$. Therefore, body for which $\left(\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}\right)$ is smallest, will fall first.
20. The condition for a body to roll down the inclined plane without slipping:
$\mu \geq\left[\frac{\mathrm{K}^{2}}{\mathrm{~K}^{2}+\mathrm{R}^{2}}\right] \tan \theta$
where $\mu=$ coefficient of limiting ictic $\quad \mathfrak{l})$
21. A body cannot roll dow ${ }^{\text {r }}$ inch. f plane when the friction is absen
For this situation, the re ${ }_{1}$. ve val is of μ for
 are:
$\mu_{\mathrm{ring}}>\mu_{\mathrm{s}!} \cdot \mu_{\mathrm{disc}}-\quad$ olid sphere
22. The of nL nents of inertia of two discs of t) sar ; yass and same thickness but of diffe nt df sities is given by $\frac{I_{1}}{I_{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}=\frac{d_{2}}{d_{1}}$
23. Tr ind ratios of different K.E., use
i. $\frac{\text { RotationalK.E. }}{\text { TotalK.E. }}=\frac{\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}}{\left(1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}\right)}$
ii. $\frac{\text { LinearK.E. }}{\text { TotalK.E. }}=\frac{1}{\left(1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}\right)}$

Classical Thinking

1.2 Characteristics of Circular Motion

1. The angular displacement in circular motion is
(A) dimensional quantity.
(B) dimensionless quantity.
(C) unitless and dimensionless quantitv
(D) unitless quantity.
2. Direction of $\vec{\alpha} \times \vec{r}$ is
(A) tangent to path.
(B) perpendicular ρ path.
(C) parallel to the p
(D) along the path.
3. The vector rel tion b veen linear velocity \vec{v}, angular velocit, $\rightarrow \vec{i}$, and raulus vector \vec{r} is given by
(A) $\vec{v}=\vec{\omega} \times$
(B) $\quad \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{r}}+\vec{\omega}$
(C)
(D) $\vec{v}=\vec{r}-\vec{\omega}$
4. Wha s the angular speed of the seconds hand of a atch?
$60 \mathrm{rad} / \mathrm{s}$
(B) $\pi \mathrm{rad} / \mathrm{s}$
(C) $\pi / 30 \mathrm{rad} / \mathrm{s}$
(D) $2 \mathrm{rad} / \mathrm{s}$
5. What is the angular velocity of the earth?
(A) $\frac{2 \pi}{86400} \mathrm{rad} / \mathrm{s}$
(B) $\frac{2 \pi}{3600} \mathrm{rad} / \mathrm{s}$
(C) $\frac{2 \pi}{24} \mathrm{rad} / \mathrm{s}$
(D) $\frac{2 \pi}{6400} \mathrm{rad} / \mathrm{s}$
6. The ratio of angular speeds of minute hand and hour hand of a watch is
(A) $1: 12$
(B) $60: 1$
(C) $1: 60$
(D) $12: 1$
7. The angular velocity of a particle rotating in a circular orbit 100 times per minute is
(A) $1.66 \mathrm{rad} / \mathrm{s}$
(B) $10.47 \mathrm{rad} / \mathrm{s}$
(C) $10.47 \mathrm{deg} / \mathrm{s}$
(D) $60 \mathrm{deg} / \mathrm{s}$
8. A body of mass 100 g is revolving in a horizontal circle. If its frequency of rotation is 3.5 r.p.s. and radius of circular path is 0.5 m , the angular speed of the body is
(A) $18 \mathrm{rad} / \mathrm{s}$
(B) $20 \mathrm{rad} / \mathrm{s}$
(C) $22 \mathrm{rad} / \mathrm{s}$
(D) $24 \mathrm{rad} / \mathrm{s}$
9. An electric motor of 12 horse-power generates an angular velocity of $125 \mathrm{rad} / \mathrm{s}$. What will be the frequency of rotation?
(A) 20 Hz
(B) $20 / \pi \mathrm{Hz}$
(C) $20 / 2 \pi \mathrm{~Hz}$
(D) 40 Hz
10. A body moves with constant angular velocity on a circle. Magnitude of angular acceleration is
(A) $r \omega^{2}$
(B) constant
(C) zero
(D) $\mathrm{r} \omega$
11. Calculate the angular acceleration of a centrifuge which is accelerated from rest to 350 r.p.s. in 220 s.
(A) $10 \mathrm{rad} \mathrm{s}^{-2}$
(B) $20 \mathrm{rad} \mathrm{s}^{-2}$
(C) $25 \mathrm{rad} \mathrm{s}^{-2}$
(D) $30 \mathrm{rad} \mathrm{s}^{-2}$
12. A wheel has circumference C. If it makes f r.p.s., the linear speed of a point on the circumference is
(A) $2 \pi \mathrm{fC}$
(B) fC
(C) $\mathrm{fC} / 2 \pi$
(D) $\mathrm{fC} / 60$
13. A body is whirled in a horizontal circle of radius 20 cm . It has angular velocity of $10 \mathrm{rad} / \mathrm{s}$. What is its linear velocity at any point on circular path?
(A) $10 \mathrm{~m} / \mathrm{s}$
(B) $2 \mathrm{~m} / \mathrm{s}$
(C) $20 \mathrm{~m} / \mathrm{s}$
(D) $\sqrt{2} \mathrm{~m} / \mathrm{s}$
14. In uniform circular motion,
(A) both velocity and acceleration are constant.
(B) velocity changes and acceleration is constant.
(C) velocity is constant and acceleration changes.
(D) both velocity and accelf ation ce inge
15. A particle performing uniform circu mol has
(A) radial velocity and radial acce. ation.
(B) radial velocity and tr isvers ccen tion.
(C) transverse velocity dradial : eleration.
(D) transverse velocis. an' transverse acceleratio
16. Assertion: \& ular m on, i. centripetal and cen ${ }^{+}$igal - ces acting in opposite direction ba 'ce each ther.
$\mathbf{R e}^{\text {. .. Centr. tal and centrifugal forces don't }}$ a at th ne tilıe.
(1.) asse . . . is True, Reason is True; Reason is a rrect explanation for Assertion nosertion is True, Reason is True; Reason is not a correct explanation for Assertion
Assertion is True, Reason is False
(D) Assertion is False but Reason is True.
17. When a body moves with a constant speed along a circle,
(A) its linear velocity remains constant.
(B) no force acts on it.
(C) no work is done on it.
(D) no acceleration is produced in it.
18. In uniform circular motion,
(A) both the angular velocity and the angular momentum vary.
(B) the angular velocity varies but the angular momentum remains constant.
(C) both the angular velocity and the angular momentum remains constant.
(D) the angular momentum varies but angular velocity remains constant.
19. Assertion: If a body moving in a cir slar p , has constant speed, then there is no. re acting on it.
Reason: The direction of the veloc vec * of a body moving in a circular th ina ring.
(A) Assertion is T_{1}.eas s True Reason is a correct explai. n for \digamma, on
(B) Assertion is True, K , on is True; Reason is not a cor ct $\mathrm{e}_{\lambda_{1}}$ ' nnatic. or Assertion
(C) Assert is True, eason is False
(D) Assertiol False but Reason is True.
20. A pe acle 1s novi ; on a circular path with cons nt speed, ien its acceleration will be
(A) ro.
(B) ex... radial acceleration.
(C) internal radial acceleration.
(D) ionstant acceleration.
21. article moves along a circular orbit with constant angular velocity. This necessarily means,
(A) its motion is confined to a single plane.
(B) its motion is not confined to a single plane.
(C) nothing can be said regarding the plane of motion.
(D) its motion is one-dimensional.
22. Select the WRONG statement.
(A) In U.C.M. linear speed is constant.
(B) In U.C.M. linear velocity is constant.
(C) In U.C.M. magnitude of angular momentum is constant.
(D) In U.C.M. angular velocity is constant.
23. If a particle moves in a circle describing equal angles in equal intervals of time, the velocity vector
(A) remains constant.
(B) changes in magnitude only.
(C) changes in direction only.
(D) changes both in magnitude and direction.
24. A particle moves along a circle with a uniform speed v. After the position vector has made an angle of 30° with the reference position, its speed will be
(A) $\quad \mathrm{v} \sqrt{2}$
(B) $\frac{\mathrm{v}}{\sqrt{2}}$
(C) $\frac{\mathrm{v}}{\sqrt{3}}$
(D) v
25. A car travels due north with a uniform velocity. As the car moves over muddy area, mud sticks to the tyre. The particles of the mud as it leaves the ground are thrown
(A) vertically upwards.
(B) vertically inwards.
(C) towards north.
(D) towards south.
26. The acceleration of a particle in U.C.M. directed towards centre and along the radius is called
(A) centripetal acceleration.
(B) centrifugal acceleration.
(C) gravitational acceleration.
(D) tangential acceleration.
27. If the angle between tangential acceleration and resultant acceleration in non U.C.M. is α, then direction of the resultant acceleration will be
(A) $\tan ^{-1}\left(\frac{a_{t}}{a_{r}}\right)$
(B) $\tan ^{-1}\left(\frac{a_{r}}{a_{t}}\right)$
(C) $\tan ^{-1}\left(\frac{\mathrm{a}_{\mathrm{r}}}{\mathrm{a}_{\alpha}}\right)$
(D) $\tan ^{-1}\left(\frac{\mathrm{a}_{\mathrm{t}}}{\mathrm{a}_{\alpha}}\right)$
28. The force required to keep a body in uniform circular motion is
(A) centripetal force.
(B) centrifugal force.
(C) frictional force.
(D) breaking force.
29. Select the WRONG statement.
(A) Centrifugal force has sam, nag, ide ar that of centripetal force.
(B) Centrifugal force aic th radius, away from the ce. +
(C) Centrifugal force t sts in i rtial frame of referencr
(D) Centrifuog force call oseudo force, as its .g. `annot b, explaı.ed.
30. The centrlp \urcorner accelc tion is given by
(A) $\quad \frac{1}{r} \quad$ (. $\quad \mathrm{vr}$
(C) vr^{2}
(D) $\quad \mathrm{v} / \mathrm{r}$
31. f im ${ }^{r} \mathrm{r}_{\mathrm{L}}+$ consequence of centrifugal force is the the e :ut is,
(A) $\quad \mathrm{m}$ d at poles and flat at the equator.
(土 trat at poles and bulged at the equator.
(C high tides and low tides.
, rising and setting of sun.
32. When a car is going round a circular track, the resultant of all the forces on the car in an inertial frame is
(A) acting away from the centre.
(B) acting towards the centre.
(C) zero.
(D) acting tangential to the track.
33. Place a coin on gramophone disc near its centre and set the disc into rotation. As the speed of rotation increases, the coin will slide away from the centre of the disc. The motion of coin is due to
(A) radial force towards centre.
(B) non-conservative force.
(C) centrifugal force.
(D) centripetal force.
34. If p is the magnitude of linear momen $\rightarrow \mathrm{f} \mathrm{a}$ particle executing a uniform circula motı. then the ratio of centripetal force ac g on the particle to its linear momentum is oiven
(A) $\frac{\mathrm{r}}{\mathrm{v}}$
(B)
(C) $\quad \frac{\mathrm{v}}{-}$
(D) r
35. Two particles of equ asse \quad... olving in circular paths of radii r_{1} a ${ }^{1} r_{2}$ respectively with the same speer 1ı ratio - neir centripetal forces is
(A)
(B) $\sqrt{\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}}$
(C)
(D) $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
36. A 16 g object attached to a nylon cord outside a spe : vehicle is rotating at a speed of $5 \mathrm{~m} / \mathrm{s}$. If th orce acting on the cord is 125 N , its radius or path is
(A) 2 m
(B) 4 m
(C) 6 m
(D) 1 m
37. The breaking tension of a string is 50 N . A body of mass 1 kg is tied to one end of a 1 m long string and whirled in a horizontal circle. The maximum speed of the body should be
(A) $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $7.5 \mathrm{~m} / \mathrm{s}$
(D) $5 \mathrm{~m} / \mathrm{s}$
38. A flywheel rotates at a constant speed of 3000 r.p.m. The angle described by the shaft in one second is
(A) $3 \pi \mathrm{rad}$
(B) $30 \pi \mathrm{rad}$
(C) $100 \pi \mathrm{rad}$
(D) $3000 \pi \mathrm{rad}$

1.3 Applications of Uniform Circular Motion

39. The safety speed of a vehicle on a curve horizontal road is
(A) $\mu \mathrm{rg}$
(B) $\sqrt{\mu \mathrm{rg}}$
(C) $\mu r^{2} g$
(D) $\mu /(\mathrm{rg})^{2}$
40. The safe speed of a vehicle on a horizontal curve road is independent of
(A) mass of vehicle.
(B) coefficient of friction between road surface and tyre of vehicle.
(C) radius of curve.
(D) acceleration due to gravity.

Page no. 11 to 47 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes

Answer Key

1. (B) 2. $\quad(\mathrm{A}) \quad 3 . \quad(\mathrm{A}) \quad 4 . \quad(\mathrm{C}) \quad 5 . \quad(\mathrm{A}) \quad 6 . \quad(\mathrm{D}) \quad 7 . \quad(\mathrm{B}) \quad 8 . \quad(\mathrm{C}) \quad 9 . \quad$ (A) $10 . \quad$ (1
2. (A) 12. (B) 13. (B) $14 . \quad$ (D) $15 . \quad$ (C) $16 . \quad$ (D) $17 . \quad$ (C) $18 . \quad$ (C) $19 . \quad$ (D) $20 . \quad$ (C)
3. (A) 22. (B) 23. (C) 24. (D) 25. (D) 26. (A) 27. (B) 28. (A) 29. (C) \quad (D) ,
4. (B) 32. (B) 33. (C) 34. (C) 35. (A) 36. (A) 37. (A) 38. (C) 39. (B)). (A),
5. (C) 42. (C) 43. (B) 44. (A) 45. (D) 46. (C) 47. (A) 48. (B) 49. (B) \quad (C (C)

6. (B) 72. (D) 73. (A) 74. (C) 75. (A) 76. (A) 77. (A) 78. 1. 79. (B) r). (C)

7. (D) 92. (C) 93. (C) 94. (A) 95. (C) 96. (B) 97. (C) 9r \quad (C) y \quad (C) 100. (D)
8. (B) 102. (B) 103. (B) 104. (C) 105. (A) 106. (A) 107. (D) 08. (b, 109. (D) 110. (A)
9. (D) 112. (A) 113. (B) 114. (C) 115. (C) 116. (A) 117. (A) \&. (D) 19. (A) 120. (B) 121. (D)

Critical Thinking

1. (D) 2. (C) 3. (A) 4. (A) 5. (B) i. \quad (D) 7. \quad (C) $8 . \quad$ (B) 9. (A) $10 . \quad$ (B)

 31. (A) 32. (C) 33. (C) 34. (B) 35. (C) $36 . \quad$ (C) $37 . \quad$ (B) $38 . \quad$ (B) $39 . \quad$ (C) $40 . \quad$ (B)

 71. (A) 72. (D) 73. (B) 74. (L 75. (D) 76. (D) 77. (A) 78. (A) 79. (A) 80. (A)
 91. (B) 92. (A) 93. (. 94. () 95. (C) 96. (B) 97. (A) 98. (D) 99. (A) 100. (C) 101. (D) 102. (A) 10^{2} (C) ${ }^{1} 04$. () 105. (D) 106. (A) 107. (A) 108. (B) 109. (B) 110. (B) 111. (B) 112. (C) 13. ' ' 1. (B) 115. (B) 116. (B) 117. (A) 118. (D) 119. (B) 120. (D) 121. (B) 122. (A 73. (C) 124. 1) 125. (B) 126. (A) 127. (B) 128. (A) 129. (A) 130. (A) 131. (C) $132 .($) $1 . \quad$ (A) 134. (C) 135. (D) 136. (C) 137. (B) 138. (A) 139. (A) 140. (A) 141. (C) 142. (143. ©) 144. (C) 145. (B) 146. (C) 147. (D) 148. (A) 149. (C) 150. (B) 151. (D) 1 D 153. (A) 154. (C) 155. (B) 156. (B) 157. (A) 158. (B) 159. (B) 160. (B) 161. (I $16 .{ }^{\prime}$) 163. (B) 164. (C) 165. (A) 166. (C) 167. (A) 168. (D) 169. (C) 170. (B) (A) 12. (i) 173. (A) 174. (B) 175. (B) 176. (A) 177. (A) 178. (D) 179. (D) 180. (A) $181 \quad \sim$ (A) 183. (A) 184. (D) 185. (C) 186. (B) 187. (B) 188. (B) 189. (C) 190. (D) 1. (L 192. (B) 193. (B) 194. (C) 195. (B) 196. (D) 197. (C) 198. (C) 199. (C) 200. (A) 201. (B 202. (A) 203. (B) 204. (C) 205. (C) 206. (A) 207. (A) 208. (A) 209. (C) 210. (D) 11 1) 212. (B) 213. (D) 214. (C) 215. (A) 216. (C) 217. (A) 218. (D) 219. (D) 220. (C) 221. (A) 222. (C) 223. (C) 224. (C) 225. (D) 226. (A) 227. (B) 228. (C) 229. (C) 230. (B) 231. (B) 232. (C) 233. (C) 234. (A) 235. (A) 236. (C) 237. (D) 238. (B) 239. (C) 240. (C) 241. (A) 242. (D) 243. (B) 244. (B) 245. (C) 246. (A) 247. (C) 248. (B) 249. (D) 250. (A) 251. (A) 252. (B) 253. (A) 254. (D) 255. (A) 256. (A) 257. (A) 258. (B) 259. (C) 260. (D) 261. (B) 262. (A) 263. (B) 264. (B) 265. (B) 266. (D) 267. (A) 268. (A) 269. (C) 270. (A) 271. (A) 272. (A) 273. (B) 274. (A) 275. (C) 276. (C) 277. (A)

Competitive Thinking

(2.	(B)	3.	(B)	4.	(C)	5.	(A)	6.	(B)	7.	(D)	8.	(C)	9.	(C)	10.)
(D)	12.	(D)	13.	(B)	14.	(A)	15.	(D)	16.	(D)	17.	(B)	18.	(A)	19.	(B)	20.	(D)
21. (A)	22.	(D)	23.	(B)	24.	(A)	25.	(A)	26.	(A)	27.	(B)	28.	(B)	29.	(D)	30.	(A)
(A)	32.	(B)	33	(A)	34	(B)	35.	(D)	36.	(C)	37.	(A)	38.	(B)	39	(B)	40	
(C)	42.	(B)	43.	(D)	44	(B)	45.	(B)	46.	(B)	47.	(D)	48.	(B)	49.	(C)	50.	()
51. (B)	52.	(C)	53.	(A)	54.	(B)	55.	(D)	56.	(A)	57.	(C)	58.	(D)	59	(A)		
61. (C)	62.	(C)	63.	(B)	64.	(D)	65.	(C)	66.	(D)	67.	(D)	68	(B)	69	(A)		(A)
(D)	72	(B)	73	(A)	74	(D)	75.	(B)	76.	(A)	7	(B)	78.	(D)	79.	(C)		(A)
81. (D)	82.	(C)	83.	(A)	84.	(B)	85.	(B)	86.	(B)	87.	(B)	88.	(A)	89.			C)
91. (D)	92.	(C)	93.	(A)	94.	(A)	95.	(A)	96.	(D)	97.	(A)	98.	(A)		(A)		
101. (B)	102.	(D)	103.	(C)	104.	(A)	105.	(C)	106.	(C)			108					(B)
11. (D)	112.	(B)	113.	(B)	114.	(B)	115.	(C)	116.	(A)	117.							

Evaluation Test

1. Angular velocity of hour arm of a clock, in $\mathrm{rad} / \mathrm{s}$, is
(A) $\frac{\pi}{43200}$
(B) $\frac{\pi}{21600}$
(C) $\frac{\pi}{30}$
(D) $\frac{\pi}{1800}$
2. A particle moves in a circular path, 0.4 m in radius, with constant speed. If particle molros 5 revolutions in each second of its m on, © speed of the particle is
(A) $10.6 \mathrm{~m} / \mathrm{s}$
(B) $11.2 \mathrm{~m} / \mathrm{s}$
(C) $12.6 \mathrm{~m} / \mathrm{s}$
(D) $13.6 \mathrm{~m} / \mathrm{s}$
3. With what minir an eed a small ball be pushed ins: a smoc vert. 1 tube from a height h so at it . y reach the top of the tube?
(A) $\sqrt{2} \mathrm{~g}_{(} \quad \overline{-2 \mathrm{R})}$
(F \div
(C) $\sqrt{\mathrm{g}(5},-2 \mathrm{~h})$ $\sqrt{ } \operatorname{gg} \overline{(2 R-h)}$

A wheel rotates with constant acceleration of $2.0 \mathrm{rad} / \mathrm{s}^{2}$. If the wheel has an initial angular velocity of $4 \mathrm{rad} / \mathrm{s}$, then the number of revolutions it makes in the first ten seconds will be approximately,
(A) 16
(B) 22
(C) 24
(D) 20
5. A cirr an ol dius R is rotating about its axis $\operatorname{rrough} C$ vith uniform angular velocity ω $i \mathrm{ad} / \mathrm{s}$: shown [he magnitude of velocity of A relative D :

(A) zero
(B) $\mathrm{R} \omega \sin (\theta / 2)$
(C) $2 R \omega \sin (\theta / 2)$
(D) $\sqrt{3} \mathrm{R} \omega \sin (\theta / 2)$
6. Consider an object of mass m that moves in a circular orbit with constant velocity v_{0} along the inside of a cone. Assume the wall of the cone to be frictionless. Find radius of the orbit.

(A) $\frac{v_{0}{ }^{2}}{g} \tan ^{2} \phi$
(B) $\frac{\mathrm{v}_{0}{ }^{2}}{\mathrm{~g}} \cos ^{2} \phi$
(C) $\frac{\mathrm{v}_{0}{ }^{2}}{\mathrm{~g}} \tan \phi$
(D) $\frac{\mathrm{v}_{0}{ }^{2}}{\mathrm{~g}}$
7. A bullet is moving horizontally with certain velocity. It pierces two paper discs rotating coaxially with angular speed ω separated by a distance l. If the hole made by bullet on second disc is shifted by an angle θ with respect to the first, find velocity of bullet.
(A) ωl
(B) $\frac{l \theta}{\omega}$
(C) $\omega \frac{l}{\theta}$
(D) $\quad \omega l(\theta)^{2}$
8. If a particle moves with uniform speed then its tangential acceleration will be
(A) $\frac{v^{2}}{r}$
(B) zero
(C) $\mathrm{r} \omega^{2}$
(D) infinite
9.

Figure shows a sphere from which a small sphere is excavated. Find the MI of this system about the centre of bigger circle.
(A) $\frac{51}{140} \mathrm{MR}^{2}$
(B) $\frac{37}{140} \mathrm{MR}^{2}$
(C) $\frac{27}{70} \mathrm{MR}^{2}$
(D) $\frac{3}{14} \mathrm{MR}^{2}$
10. A particle comes round a circle of radius 1 m once. The time taken by it is 10 s . The average velocity of motion is
(A) $0.2 \pi \mathrm{~m} / \mathrm{s}$
(B) $2 \pi \mathrm{~m} / \mathrm{s}$
(C) $2 \mathrm{~m} / \mathrm{s}$
(D) zero
11. Given is the α-t graph for a car wheel, where brakes produce an acceleration α. Which of the following can be the form of $\theta-\mathrm{t}$ graph?
(A) Straight line
(B) Parabola
(C) Circle
(D) Hyperbola

12. The diameter of a fly eel is ? m and it makes 900 revolutions $p t$. चinute. alculate the acceleration at ar $\quad \ldots \quad \eta$ its
(A) $540 \pi^{2} \mathrm{~m} / \mathrm{s}$
B) $\quad 70 \mathrm{~m} / \mathrm{s}^{2}$
(C) $360 \pi \mathrm{in} / \mathrm{s}$
($\left\llcorner\right.$. $54 \mathrm{~m} / \mathrm{s}^{2}$
13. The graph. 'elow $s . v$ angular velocity as a funct ${ }^{+}$of I In which one of these is the m snitu of ngular velocity constantly d rea ng h time?

(B)

(C)

(D)

14. A solid cylinder of mass M and radius R is pivoted at its centre and three particles of mass m are fixed at the perimeter of the cylinder. Find the angular velocity of the cylinder after the system has moved through 90°.
(A)

$$
\sqrt{\frac{M g}{R(M+6 m)}}
$$

(B)

$$
\sqrt{\frac{4 m g}{R(M+6 m)}}
$$

(C) $\sqrt{\frac{2 \mathrm{Mg}}{\mathrm{R}(\mathrm{M}+6 \mathrm{~m})}}$
(D)

$$
\sqrt{\frac{3 m g}{R(M+6 m)}}
$$

15. If a tension in $a \quad \operatorname{ng}^{2}$ is $1 \mathrm{~N}^{\mathrm{N}} \mathrm{A}$ load at the lower end of $\operatorname{strin}_{\varepsilon}$ is 0.1 kg , the length of string is 6 m . \urcorner find its gular velocity ($\mathrm{g}=10 \mathrm{~m} / \mathrm{c}^{2}$)
(A), $\mathrm{rad} / \mathrm{s}$
(B) $4 \mathrm{rad} / \mathrm{s}$
(C) $2 \mathrm{rad} / \mathrm{s}$
(D) $1 \mathrm{rad} / \mathrm{s}$
16. The ma speed of a car on a road-turn of radi 30 m , if the coefficient of friction betw n the tyres and the road is 0.4 , will be
(A) $10.84 \mathrm{~m} / \mathrm{s}$
$9.84 \mathrm{~m} / \mathrm{s}$
(C) $8.84 \mathrm{~m} / \mathrm{s}$
(D) $6.84 \mathrm{~m} / \mathrm{s}$
17. For the given situation as shown in the graph, the initial angular velocity of the particle is $2 \pi \mathrm{rad} / \mathrm{s}$. What will be the final angular velocity if the particle follows the given $\alpha-\mathrm{t}$ graph?

(A) $3 \pi \mathrm{rad} / \mathrm{s}$
(B) $4 \pi \mathrm{rad} / \mathrm{s}$
(C) $5 \pi \mathrm{rad} / \mathrm{s}$
(D) $6 \pi \mathrm{rad} / \mathrm{s}$
18. A disc is in pure rolling motion with a velocity v on a rough horizontal surface. The resultant velocity of a point P at an angle θ with the horizontal would be
(A)
$2 \mathrm{v} \cos \left(\frac{\theta}{2}\right)$
(B) $2 \mathrm{v} \sin \left(\frac{\theta}{2}\right)$
(C) v
(D) 2 v

19. A thin rod is placed co-axially within a thin hollow tube which lies on a smooth horizontal table. The rod having the same mass ' M ' and length ' L ' as that of tube is free to move within the tube. The system is given an angular velocity ' ω ' about a vertical axis from one of its ends. Considering negligible friction between surfaces, find the angular velocity of the rod as it just slips out of the tube.
(A) $\frac{\omega}{2}$
(B) $\frac{\omega}{4}$
(C) $\frac{\omega}{3}$
(D) ω
20. A sphere rolls on the surface with velocity v . It encounters a smooth frictionless incline of height h which it needs to climb. What will be the minimum velocity for which it will climb the incline?
(A) $\sqrt{\frac{10}{7} \mathrm{gh}}$
(B) $\sqrt{\mathrm{gh}}$
(C) $\sqrt{\frac{5}{2} \mathrm{gh}}$
(D) $\sqrt{2 \mathrm{gh}}$

Answers to Evaluation Test

1.	(B)	2.	(C)	3.	(D)	4.	(Q)
5.	(C)	6.	(C)	7.	(C))
9.	(A)	10.	(D)	11.	Q)		(A)
13.	(A)	14.	(B)	15.	(A)	16.	I
17.	(B)	18	(B)	$1 \circ$	Q)	?	(D)

The Answers +n Phy 's of. ..

1. A trapeze as in ircus

When the an ana is partner are stationary, the man's ms mus. support his partner's we., .t. 'hen ? two are swinging, however, tl mo s rrms must do an additional job. 1..en ne \mathcal{F}, ner is moving on a circular arc and is a entripetal acceleration. The man's is must exert an additional pull so that th. e will be sufficient centripetal force to p duce this acceleration. Because of the .dditional pull, it is harder for the man to hold his partner while swinging than while stationary.
2. Riding the bicycle in a loop the loop

A key idea in analyzing the stunt is to assume that rider and his bicycle travel through the top of the loop as a single particle in uniform
circular motion. Thus, at the top, the acceleration $\overrightarrow{\mathrm{a}}$ of this particle must have the magnitude $a=v^{2} / R$ and be directed downwards, toward the centre of the circular loop.
The gravitational force $\overrightarrow{\mathrm{F}}_{\mathrm{g}}$ is directed downward along a y-axis. The normal force $\overrightarrow{\mathrm{N}}$ on particle from the loop is also directen downward. Thus, Newton's second la-
axis components $\left(F_{\text {net, } y}=m a_{y}\right)$ gives \because

$$
\begin{aligned}
& -\mathrm{N}-\mathrm{F}_{\mathrm{g}}=\mathrm{m}(-\mathrm{a}) \\
\therefore & -\mathrm{N}-\mathrm{mg}=\mathrm{m}\left(\frac{\mathrm{v}^{2}}{\mathrm{R}}\right)
\end{aligned}
$$

Another Key idea is hr if. , articl has the least speed v needed .emal............then it is on the verge of losin ${ }_{\delta}$ ntact with the loop (falling away f in loop, ich means that $N=0$. Sl ituting is value for N into Equation (1) $g_{l}, \quad \mathrm{v}=\sqrt{\mathrm{gR}}$
The r er nu to n.o, certain that his speed at the 1 , of the ι, p is greater than $\sqrt{\mathrm{gR}}$ so that he do. not lr 2 contact with the loop and fall awav from.... Note that this speed requirement is inc yendent of mass rider and his bicycle.

Sr• aing ice skater

choosing the skater as the system, we can apply the conservation principle provided that the net external torque produced by air resistance and by friction between the skates and the ice is negligibly small. We assume it is to be negligible. Then the skater in first half of figure would spin forever at the same angular velocity, since her angular momentum is conserved in the absence of a net external torque. In the second half of figure, the inward movement of her arms and leg involves internal and not external torques and therefore, does not change her angular momentum. But angular momentum is the product of the moment of inertia I and angular velocity ω. By moving the mass of her arms and leg inward, the skater decreases the distance r of the mass from the axis of rotation and consequently, decreases her moment of inertia $I\left(I=\sum m r^{2}\right)$. If the product of I and ω is to remain constant, then ω must increase. Thus, by pulling her arms and leg inward, she spins with a larger angular velocity.

MHL-H:H Based on XII Syllabus of MHT-CET

Q AVAILABLE SUBJECTS:
MHT - CET Triumph Physics
MHT - CET Triumph Chemistry
MHT - CET Triumph Mathematics
MHT - CET Triumph Biology

BUY NOW

Salient Features

- Extensive Coverage of Std. 12th Syllabus
- Exhaustive subtopic wise coverage of MCQs in accordance with the latest syllabus
- Inclusion of MCQs from previous year's question papers
- Evaluation test provided at the end of each chapter
mail@targetpublications.org

