

0

As per latest syllabus

prescribed by NMC **PREVIOUS** SOLVED PAPERS

YEARS

1988 - 2023

1834 MCQs

Chapter-wise & Subtopic-wise

NEET(UG) CHEMISTRY

INCLUDES SOLVED QUESTION PAPER OF 2023

A comprehensive collection of NEET & AIPMT Questions from past 36 Years

PREVIOUS SOLVED PAPER

Chapter-wise & Subtopic-wise

NEET CHEMISTRY

Updated as per latest syllabus prescribed by

NMC on 06th October, 2023

Salient Features

- A compilation of 36 years of AIPMT/NEET questions (1988-2023)
- Includes solved questions from NEET (UG) 2023
- Includes '1834' AIPMT/NEET MCQs
- Chapter-wise and Subtopic-wise segregation of questions
- Year-wise flow of content concluded with the latest questions
- Solutions provided wherever required
- Graphical analysis of questions: Chapter-wise and Subtopic-wise
- Separate list of questions excluded from the NEET (UG) 2024 syllabus

Scan the adjacent QR code in *Quill - The Padhai App* to view **NEET (UG) 2023** (Manipur) question paper along with answers and solutions in PDF format.

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

Target's '**NEET Chemistry: PSP (Previous Solved Papers)**' is a compilation of questions asked in the past 36 years (1988-2023) in the National Eligibility cum Entrance Test (NEET), formerly known as the All India Pre-Medical Test (AIPMT).

The book consists of chapter-wise categorization of questions. Each chapter is further segregated into subtopics and thereafter all the questions pertaining to a subtopic are arranged year-wise concluding with the latest year. To aid students, we have also provided solutions for questions wherever deemed necessary.

Considering the latest modifications in the syllabus of NEET (UG) examination, a list of questions based on the concepts excluded from the latest NEET (UG) 2024 syllabus is provided.

A graphical (% wise) analysis of the subtopics for the past 36 years as well as 11 years (2013 onwards) has been provided at the onset of every topic. Both the graphs will help the students to understand and analyse each subtopic's distribution for NEET/AIPMT (36 years) and NEET (UG) (11 Years).

We are confident that this book will comprehensively cater to needs of students and effectively assist them to achieve their goal.

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you. Please write to us on: mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

Publisher

Edition: Fourth

Frequently Asked Questions

XX71 /1 ·	• This book acts as a go-to tool to find all the AIPMT/NEET questions since the past 36 years at one place.
why this book?	• The subtopic wise arrangement of questions provides the break-down of a chapter into its important components which will enable students to design an effective learning plan.
	• The graphical analysis guides students in ascertaining their own preparation of a particular topic.
Why the need for two graphs?	Admission for undergraduate and post graduate medical courses underwent a critical change with the introduction of NEET in 2013. Although it received a huge backlash and was criticised for the following two years, NEET went on to replace AIPMT in 2016. The introduction of NEET brought in a few structural differences in terms of how the exam was conducted. Although the syllabus has majorly remained the same, the chances of asking a question from a particular subtopic are seen to vary slightly with the inception of NEET. The two graphs will fundamentally help the students to understand that the (weightage) distribution of a particular subtopic are seen to vary slightly with the students to understand that the two graphs will fundamentally help the students to understand that the (weightage)
	for AIPMT may not necessarily be the subtopic with the most weightage for NEET.
	• The two graphs provide a subtopic's weightage distribution over the past 36 years (for NEET/AIPMT) and over the past 11 years (for NEET-UG).
How are the two graphs beneficial to the students?	• The students can use these graphs as a self-evaluation tool by analyzing and comparing a particular subtopic's weightage with their preparation of the subtopic. This exercise would help the students to get a clear picture about their strength and weakness based on the subtopics.
	• Students can also use the graphs as a source to know the most important as well as least important subtopics as per weightage of a particular chapter which will further help them in planning the study structure of a particular chapter. <i>(Note: The percentage-wise weightage analysis of subtopics is solely for the knowledge of</i>
	students and does not guarantee questions from subtopics having the most weightage, in the future exams.
	Question classification of a subtopic is done as per the authors' discretion and may vary with respect to another individual.)

Index

No.	Chapter Name	Page No.
1	Some Basic Concepts of Chemistry	1
2	Structure of Atom •	9
3	Classification of Elements and Periodicity in Properties	18
4	Chemical Bonding and Molecular Structure	23
5	States of Matter: Gases and Liquids 🗵	37
6	Thermodynamics •	46
7	Equilibrium	58
8	Redox Reactions	75
9	Hydrogen 🗷	78
10	s-Block Elements 🗵	81
11	p-Block Elements •	89
12	Organic Chemistry – Some Basic Principles and Techniques	95
13	Hydrocarbons	105
14	Environmental Chemistry	124
15	The Solid State 🗵	127
16	Solutions	136
17	Electrochemistry	147
18	Chemical Kinetics	158
19	Surface Chemistry 🗷	170
20	General Principles and Processes of Isolation of Elements	175
21	p-Block Elements (Group 15 to 18) •	179
22	d and f-Block Elements	191
23	Coordination Compounds	202

24	Haloalkanes and Haloarenes	217
25	Alcohols, Phenols and Ethers	227
26	Aldehydes, Ketones and Carboxylic Acids	241
27	Amines	261
28	Biomolecules	274
29	Polymers 🗷	282
30	Chemistry in Everyday Life 🗷	288

Usage of symbols:

- E Complete chapter excluded from the NEET (UG) 2024 syllabus (in index)
- - Part of the chapter excluded from the NEET (UG) 2024 syllabus (in index)
- **D** Sub-topics or questions that are not part of the NCERT Rationalised (2023-24) textbooks (in book)

Questions based on the concepts excluded from the NEET (UG) 2024 Syllabus

Chapter Name	Sub-topic Name	Questions not part of NEET (UG) 2024 Syllabus	Page no.
2. Structure of Atom	2.1 Fundamental particles	9	
2. Structure of Atom	2.2 Atomic number and mass number	All Questions	10
5. States of Matter: Gases and Liquids	Entire chapter is deleted	1	39
6. Thermodynamics	6.8 Third law of thermodynamics	All Questions	48
9. Hydrogen	Entire chapter is deleted	I	81
10. s-Block Elements	Entire chapter is deleted	1	84
	11.4 Important compounds of boron: Borax, orthoboric acid, and diborane		93
	11.5 Aluminium and its important compounds	93	
11. p-Block Elements	11.9 Allotropes of carbon	94	
	11.10 Important compounds of carbon		94
	11.11 Important compounds of silicon		94
14. Environmental Chemistry	Entire chapter is deleted	1	128
15. The Solid State	Entire chapter is deleted	1	131
19. Surface Chemistry	Entire chapter is deleted	1	175
20. General Principles and Processes of Isolation of Elements	Entire chapter is deleted	1	180
	21.1 Group 15: Nitrogen family	1, 2, 6, 7, 8, 9, 10, 12, 14, 15, 17, 19-31	185- 187
21. p-Block Elements (Group 15 to 18)	21.2 Group 16: Oxygen family	2, 3, 4, 5, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 24, 25	187-188

	21.3 Group 17: Halogen family	1-8, 10, 11, 13, 16, 17, 19, 22, 23, 24, 25, 27, 28, 29, 30, 32	188-191			
	21.4 Group 18: Noble gases	191				
29. Polymers	Entire chapter is deleted	292				
30. Chemistry in Everyday Life	Entire chapter is deleted					

Note: The above table contains the list of chapters/subtopics/question numbers that are excluded from the latest syllabus of NEET (UG) 2024. However, these questions are covered to give an idea about the variety and difficulty levels of questions asked in the examination over the years.

Disclaimer

Utmost care has been taken in compiling and checking the information to ensure that the content is useful and accurate. However, the publisher and the authors shall not be responsible for any loss or damages caused to any person on account of errors or omission which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

© reserved with the Publisher for all the contents created by our Authors.

Chapter-wise Weightage Analysis of past 11 Years (2013 Onwards)

Some Basic Concepts of Chemistry

- 1.1 Units of measurement
- 1.2 Uncertainty in measurement
- 1.3 Atomic and molecular masses
- 1.4 Mole concept and molar mass
- 1.5 Percentage composition, empirical and molecular formulae
- 1.6 Chemical reactions, stoichiometry and calculations based on stoichiometry

- force per unit volume (A)
- (B) energy per unit volume
- (C) force
- (D) energy

1.2 Uncertainty in measurement

- 1. Given the numbers: 161 cm, 0.161 cm, 0.0161 cm. The number of significant figures for the three numbers is [1998]
 - 3, 3 and 4 respectively (A)
 - (B) 3, 4 and 4 respectively
 - 3, 4 and 5 respectively (C)
 - 3, 3 and 3 respectively (D)

1.3 Atomic and molecular masses

1.	Boron ¹¹ B (8	n has two 81%). Ca	stable lculate	isotopes, average	, ¹⁰ B (at.wt.	19%) and of boron
	in the	periodic	table.			[1990]
	(A)	10.8		(B)	10.2	
	(C)	11.2		(D)	10.0	

comp ²⁰⁰ X	osition: : 90 % ¹⁹⁹	X : 8.0 %	6 ²⁰² X :	2.0 %	
The	weighted	average	atomic	mass	of the
natur	ally-occur	ring ele	ment X	is clo	sest to
					[2007]

201 amu 202 amu (A) (B) 199 amu (C) (D) 200 amu

1.4 Mole concept and molar mass

- 1. 1 cc N₂O at NTP contains [1988] 1.8 $\times 10^{22}$ atoms (A)
 - $\times 10^{23}$ molecules (B) 2400
 - $\frac{1.32}{224} \times 10^{23}$ electrons (C)
 - all the above (D)

2. The number of oxygen atoms in 4.4 g of CO₂ is approximately [1990]

- 1.2×10^{23} (A)
- 6×10^{22} (B)
- 6×10^{23} (C)
- 12×10^{23} (D)

3. The molecular weight of O₂ and SO₂ are 32 and 64 respectively. At 15 °C and 150 mmHg pressure, one litre of O₂ contains 'N' molecules. The number of molecules in two litres of SO₂ under the same conditions of temperature and pressure will be _____.

(B)

(D)

Ν

4N

[1990]

[1998]

D) 2

- (A) N/2(C) 2N
- 4. The number of moles of oxygen in 1 L of air containing 21 % oxygen by volume, in standard conditions, is _____. [1995]
 (A) 0.186 mol (B) 0.21 mol
 (C) 2.10 mol (D) 0.0093 mol
- 5. 0.24 g of a volatile gas, upon vaporisation, gives 45 mL vapour at NTP. What will be the vapour density of the substance? (Density of $H_2 = 0.089$) [1996] (A) 95.93 (B) 59.93 (C) 95.39 (D) 5.993
- 6. Haemoglobin contains 0.334 % of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (Atomic weight of Fe is 56) present in one molecule of haemoglobin is

- 7. The number of atoms in 4.25 g of NH₃ is approximately _____. [1999] (A) 4×10^{23} (B) 2×10^{23} (C) 1×10^{23} (D) 6×10^{23}
- 8. Specific volume of cylindrical virus particle is 6.02×10^{-2} cc/g whose radius and length are 7 Å and 10 Å respectively. If N_A = 6.02×10^{23} , find molecular weight of virus. [2001]
 - (A) 15.4 kg/mol
 - (B) 1.54×10^4 kg/mol
 - (C) 3.08×10^4 kg/mol
 - (D) 3.08×10^3 kg/mol
- 9. Which has maximum molecules? [2002] (A) $7 g N_2$ (B) $2 g H_2$ (C) $16 g NO_2$ (D) $16 g O_2$
- 10. The maximum number of molecules is present in _____. [2004]
 - (A) $15 L of H_2$ gas at STP
 - $(B) \quad 5 \ L \ of \ N_2 \ gas \ at \ STP$
 - (C) $0.5 \text{ g of } \text{H}_2 \text{ gas}$
 - (D) $10 \text{ g of } O_2 \text{ gas}$
- 11. The number of atoms in 0.1 mol of a triatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$. [2010] (A) 6.026×10^{22} (B) 1.806×10^{23} (C) 3.600×10^{23} (D) 1.800×10^{22}

- 12. Which has the maximum number of molecules among the following? [2011] (A) 44 g CO₂ (B) 48 g O₃ (C) 8 g H₂ (D) 64 g SO₂
- 13. Equal masses of H_2 , O_2 and methane have been taken in a container of volume V at temperature 27°C in identical conditions. The ratio of the volume of gases $H_2 : O_2$: methane would be _____. [2014] (A) 8:16:1 (B) 16:8:1 (C) 16:1:2 (D) 8:1:2
- 14. A mixture of gases contains H₂ and O₂ gases in the ratio of 1 : 4 (w/w). What is the molar ratio of the two gases in the mixture? [2015]
 (A) 16 : 1
 (B) 2 : 1
 (C) 1 : 4
 (D) 4 : 1
- 15. The number of water molecules is maximum in _____. [Re-Test 2015]
 - (A) 18 g of water
 - (B) 18 moles of water
 - (C) 18 molecules of water
 - (D) 1.8 g of water
- 16. If Avogadro number N_A , is changed from $6.022 \times 10^{23} \text{ mol}^{-1}$ to $6.022 \times 10^{20} \text{ mol}^{-1}$, this would change _____. [Re-Test 2015]
 - (A) the ratio of chemical species to each other in a balanced equation
 - (B) the ratio of elements to each other in a compound
 - (C) the definition of mass in units of grams
 - (D) the mass of one mole of carbon
- 17. At S.T.P. the density of CCl₄ vapour in g/L will be nearest to _____. [2016] (A) 6.87 (B) 3.42 (C) 10.26 (D) 4.57
- 18. In which case is the number of molecules of water maximum? [2018](A) 18 mL of water
 - (B) 0.18 g of water
 - (C) 0.00224 L of water vapours at 1 atm and 273 K
 - (D) 10^{-3} mol of water
- 19. Which one of the followings has maximum number of atoms? [Phase-I 2020]
 - (A) 1 g of $Mg_{(s)}$ [Atomic mass of Mg = 24]
 - (B) 1 g of $O_{2(g)}$ [Atomic mass of O = 16]
 - (C) 1 g of $Li_{(s)}$ [Atomic mass of Li = 7]
 - (D) 1 g of $Ag_{(s)}$ [Atomic mass of Ag = 108]
- 20. One mole of carbon atom weighs 12 g, the number of atoms in it is equal to (Mass of carbon-12 is 1.9926×10^{-23} g).

[Phase-II 2020]

(A) 6.022×10^{23} (B) 1.2×10^{23} (C) 6.022×10^{22} (D) 12×10^{22}

				Chant
				Chapi
1.5	Percentage composition, empirical and molecular formulae		6.	In th 4NH
1				whe
1.	which of the following fertilizers has the highest nitrogen percentage?			mad
	(A) Ammonium sulphate			(A)
	(B) Calcium cvanamide			(B)
	(C) Urea			(C)
	(D) Ammonium nitrate			(D)
2.	Percentage of Se in peroxidase anhydrous		7.	Vol
	enzyme is 0.5 % by weight (at. Wt. = 78.4)			deco
	then minimum molecular weight of peroxidase			()
	anhydrous enzyme is [2001]			(A)
	(A) 1.568×10^{4} (B) 1.568×10^{5}		0	(C) M.1
	(C) 15.68 (D) 2.136×10^{10}		δ.	M01
3.	Suppose the elements X and Y combine to			(A)
	form two compounds XY_2 and X_3Y_2 . When			(\mathbf{C})
	0.1 mole of XY_2 weighs 10 g and 0.05 mole of X V, weights 0 g, the atomic weights of V and		9	Whe
	X ₃ I ₂ weights 9 g, the atomic weights of X and V are [Phase-II 2016]).	0°C
	$\begin{array}{c} \text{(A)} 30 \ 20 \end{array} \qquad $			1 L
	$\begin{array}{cccc} (11) & 50, 20 \\ (C) & 60, 40 \\ (D) & 20, 30 \end{array}$			sam
4	An organic compound contains 78% (by wt)			(A)
	carbon and remaining percentage of hydrogen.		10.	Hov
	The right option for the empirical formula of			forn
	this compound is [Atomic wt. of C			and
	is 12, H is 1] [2021]			(A)
	(A) CH_2 (B) CH_3 (C) CH_4 (D) CH_4			(C)
1.6	Chemical reactions, stoichiometry and		11.	10 §
1.0	calculations based on stoichiometry			fille
1	A matel avide has the formula 7.0. It can be			01 \
1.	A metal oxide has the formula Z_2O_3 . It can be reduced by hydrogen to give free metal and			$\overline{(A)}$
	water. 0.1596 g of the metal oxide requires 6 mg			(C)
	of hydrogen for complete reduction. The atomic		12	10
	weight of the metal is [1989]			clos
	(A) 27.9 (B) 159.6			how
	(C) 79.8 (D) 55.8			(A)
2.	What is the weight of oxygen required for the			(C)
	complete combustion of 2.8 kg of ethylene?		13.	Whe
	$(A) = \frac{2}{2} \frac{9}{4} \frac{1}{2} \frac{9}{2} \frac{9}{4} \frac{1}{2} \frac{9}{4} \frac{9}{4$			11.2
	(A) 2.0 kg (B) 0.4 kg (C) 9.6 kg (D) 9.6 kg			HCI
2	The number of gram melaculas of evugan in			(A)
5.	The number of grain molecules of oxygen in 6.02×10^{24} CO molecules is [1990]		14	(\mathbf{C})
	(A) 10 g molecules (B) 5 g molecules		14.	20.0 decc
	(C) 1 g molecules (D) 0.5 g molecules			and
4	A 5 molar solution of H_2SO_4 is diluted from			perc
••	1 litre to a volume of 10 litres, the normality			sam
	of the solution will be . [1991]			(A)
	(A) 1 N (B) $0.1 \overline{\text{ N}}$ (C) 5 N (D) 0.5 N	V	15.	Ar
5.	The amount of zinc required to produced			oxal
	224 mL of H ₂ at STP on treatment with dilute			evol
	H ₂ SO ₄ will be [1996]			KO
	(A) 65 g (B) 0.065 g			proc
	(C) $0.65 g$ (D) $6.5 g$			(A)

C	Chapte	er 1: S	ome B	asic C	oncep	ts of C	hemis	stry
).	In the 4NH when	e react $B_{(g)} + 5$ 1 mo	ion, $O_{2(g)}$ – le of a	→ 41 mmoni	NO _(g) + ia and	- 6H ₂ O 1 mole	(<i>l</i>) of O ₂	are
	made (A) (B) (C) (D)	to rea all th 1.0 n 1.0 n all th	act to c the oxygenole of nole of the amm	omple gen wil `NO w `H ₂ O i ionia v	tion l be cc vill be j s produ vill be	onsume produce uced consun	· [199 d ed ned	98]
	Volu decor	me of nposit	f CO_2	obtai 9.85 g	ned b of Ba	y the CO ₃ is	comp	lete 001
	(A) (C)	2.24 0.84	L L		(B) (D)	1.12 I 0.56 I		1
	Mola 1.17 (A)	rity of g/cc is 36.5	liquid	HCl, : 	(B)	ity of s 18.25	olutio [20	n is 01]
) <u>.</u>	What 0°C a 1 L o same (A)	volui and 1 of prop condi 5 L	ne of atm, i atm, i pane ga tions? (B)	oxyger s need as (C ₃ F 10 L	(D) a gas (ed to H_8) means (C)	42.10 O ₂) me burn co asured 7 L	easured omplet under [200 (D)	d at tely the 08] 6 L
0.	How forme and 3	many ed from .2 g H	moles m a re ICl?	s of lea	ad (II) betwe	chlorid en 6.5	le will g of F [20	be bO 08]
	(A) (C)	0.01	4		(Б) (D)	0.029		
1.	10 g filled of w	of hy in a ater p	/droge steel v produc	n and essel a ed in	64 g and ex this r	of oxy ploded eaction	gen w . Amo will [20	vere ount be 09]
	(A) (C)	3 mo 1 mo			(B) (D)	4 mol 2 mol	l	
2.	1.0 g closed how 1 (A) (C)	of ma d vesse nuch? Mg, Mg,	agnesiu el. Whi (At wi 0.16 g 0.44 g	m is b ich read Mg =	urnt w ctant is 24; O (B) (D)	ith 0.56 left in = 16) $O_2, 0$ $O_2, 0$	6 g O ₂ excess [20 .16 g .28 g	in a s and 014]
3.	When 11.2 HCl _{(§} (A) (C)	n 22.4 litres o g) form 1 mo 0.5 n	4 litre of $Cl_{2(g)}$ ned is e l of H nol of]	es of g), each equal to $Cl_{(g)}$ $HCl_{(g)}$	$\begin{array}{c} H_{2(g)} \\ a \text{ at } S.7 \\ \hline \\ 0 \\ \hline \\ \hline$	is mix T.P, the 2 mol 1.5 m	xed v mole: [20] if HC ol of I	vith s of 14] Cl _(g) HCl _(g)
4.	20.0 decor and 8 perce samp (A)	g of mposes 3.0 g 1 ntage j le? (A 60	a m s on he magnes purity o t. wt.: (B)	agnesi eating sium o of mag Mg = 2 84	um ca to give xide. V nesium 24 u) (C)	arbonate e carbo What we carbon [Re-T e 75	e sam n diox vill be nate in est 20 (D)	nple tide the the 15] 96
5.	A m oxalie evolv KOH produ (A)	ixture c acid red ga pelle act at \$ 1.4	of 2. is treaseous ts. We STP w (B)	3 g fo ated w mixtu eight (i ill be _ 3.0	$\frac{\text{ormic}}{\text{vith co}}$ $\frac{\text{vith co}}{\text{in g}}$ $\frac{\text{c}}{\text{(C)}}$	acid a nc. H_2 passed of the r 2.8	nd 4. SO ₄ . I throu remain [20 (D)	5 g The ugh ing 18] 4.4

- 16. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is _____. [2019] (A) 20 (B) 30 (C) 40 (D) 10
- 17. What mass of 95% pure CaCO₃ will be required to neutralise 50 mL of 0.5 M HCl solution according to the following reaction? CaCO_{3(s)} + 2HCl_(aq) → CaCl_{2(aq)} + CO_{2(g)} + 2H₂O_(l) [Calculate upto second place of decimal point]
 [2022]
 - (A) 3.65 g (B) 9.50 g (C) 1.25 g (D) 1.32 g

18. The **right** option for the mass of CO_2 produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40) [CaCO₃ $\xrightarrow{1200K}$ CaO + CO₂] [2023] (A) 1.76 g (B) 2.64 g (C) 1.32 g (D) 1.12 g

 Ξ Answers to MCQs

1.1 :	1.	(B)																		
1.2 :	1.	(D)																		
1.3 :	1.	(A)	2.	(D)																
1.4 :	1.	(D)	2.	(A)	3.	(C)	4.	(D)	5.	(B)	6.	(A)	7.	(D)	8.	(A)	9.	(B)	10.	(A)
	11.	(B)	12.	(C)	13.	(C)	14.	(D)	15.	(B)	16.	(D)	17.	(A)	18.	(A)	19.	(C)	20.	(A)
1.5 :	1.	(C)	2.	(B)	3.	(A)	4.	(B)												
1.6 :	1.	(D)	2	(C)	3.	(B)	4.	(A)	5.	(C)	6.	(A)	7.	(B)	8.	(C)	9.	(A)	10.	(B)
	11.	(B)	12.	(A)	13.	(A)	14.	(B)	15.	(C)	16.	(B)	17	(D)	18.	(A)				

Solutions to MCQs

1.1 Units of measurement

1.

Quantity	Dimensions
Pressure	$[M L^{-1} T^{-2}]$
Force per unit volume	$[M L^{-2} T^{-2}]$
Energy per unit volume	$[M L^{-1} T^{-2}]$
Force	$[M L T^{-2}]$
Energy	$[M L^2 T^{-2}]$

1.2 Uncertainty in measurement

 161 has three significant figures as all are non-zero digits.
 0.161 has three significant figures as zero on the left of the first non-zero digit is not significant.
 0.161 also has three significant figures as

0.0161 also has three significant figures as zeros on the left of the first non-zero digit are not significant.

1.3 Atomic and molecular masses

1. Average atomic mass = $\frac{\text{Sum of (Isotopic mass × its abundance)}}{100}$

Average atomic mass = $\frac{(19 \times 10) + (81 \times 11)}{100}$ = 10.81 \approx 10.8

2. Average atomic mass

$$= \frac{\text{Sum of (Isotopic mass × its abundance)}}{100}$$
Average isotopic mass of X

$$= \frac{(200 \times 90) + (199 \times 8) + (202 \times 2)}{100}$$

$$= 200 \text{ a.m.u.}$$

1.4 Mole concept and molar mass

- 1. At NTP, 1 mol N₂O = 22400 cc N₂O = 6.02×10^{23} N₂O molecules
- $\therefore \quad 1 \text{ cc of } N_2O = \frac{6.02 \times 10^{23}}{22400} \text{ molecules}$ Each N₂O molecule contains 3 atoms, Hence,
- $\therefore \quad 1 \text{ cc } N_2O = \frac{3 \times 6.02 \times 10^{23}}{22400} = \frac{1.8 \times 10^{22}}{22400}$ Nitrogen contains 7 electrons while O contains 8 electrons. Hence, the number of electrons in one molecule of N₂O is 22. Hence, Number of electrons in 1 cc N₂O $= \frac{6.02 \times 10^{23}}{22400} \times 22 = \frac{1.32}{224} \times 10^{23} \text{ electrons}$

Volume

- 2. Number of moles in 4.4 g of CO₂ = $\frac{4.4}{44} = 0.1$ Number of oxygen atoms in 1 mole of CO₂
- $= 2 \times N_A$ $\therefore \quad \text{Number of oxygen atoms in 0.1 mole of CO}_2$ $= 0.1 \times 2 \times N_A$ $= 0.2 \times 6.022 \times 10^{23}$
 - $= 1.20 \times 10^{23}$
- 3. One litre of O_2 contains N molecules at 15 °C and 150 mmHg pressure. If 1 L of one gas contains N molecules then 2 L of any gas under the same conditions will contain 2N molecules.
- 4. 1 L of air = 1000/0.21 = 210 mL of O₂
- \therefore 22400 mL = 1 mole
- :. $210 \text{ mL} = \frac{1}{22400} \times 210 = 0.0093 \text{ mol}$
- 5. Weight of volatile gas = 0.24 g Volume of gas = 45 mL = 0.045 L Density = $\frac{Mass}{Volume}$ Mass of 45 mL of H₂ = 0.089 × 0.045 = 4.005 × 10⁻³ g

Vapour density

- $= \frac{\text{Mass of certain volume of vapour}}{\text{Mass of same volume of hydrogen}}$ $= \frac{0.24}{4.005 \times 10^{-3}} = 59.93$
- 6. 100 g of haemoglobin contains 0.334 g of Fe
- $\therefore \quad 67200 \text{ g of haemoglobin contains} \\ = \frac{67200 \times 0.334}{2}$
 - = 100= 224.448 g of Fe. Number of atoms of Fe = $\frac{224.448}{57}$

$$= 4.008 \approx 4$$

- 7. Molecular mass of $NH_3 = 14 + (3 \times 1) = 17$ Number of moles $= \frac{4.25}{17} = 0.25$ mol Number of molecules of NH_3 $= 0.25 \times 6.02 \times 10^{23} = 1.506 \times 10^{23}$ molecules One molecule of NH_3 contains 4 atoms.
- $\therefore \quad 1.506 \times 10^{23} \text{ molecules will contain} \\ = 1.506 \times 10^{23} \times 4 \\ = 6.024 \times 10^{23} \text{ atoms} \approx 6 \times 10^{23} \text{ atoms.}$
- 8. Volume of cylindrical virus particle = $\pi r^2 l$ = 3.14 × (7 × 10⁻⁸)² × 10 × 10⁻⁸ = 1.54 × 10⁻²³ cc

	Weight of one virus particle = $\frac{1}{\text{Specific volume}}$
	$=\frac{1.54 \times 10^{-21}}{2}$
<i>.</i>	6.02×10^{-2} Molecular weight of virus particle = weight of
	N _A particles = $\frac{1.54 \times 10^{-21}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$ g/mol
	= 15400 g/mol = 15.4 kg/mol
9.	(A) 7 g N ₂ = $\frac{7}{28} \times 6.022 \times 10^{23} = 1.51 \times 10^{23}$
	(B) 2 g H ₂ = $\frac{2}{2} \times 6.022 \times 10^{23} = 6.022 \times 10^{23}$
	(C) 16 g NO ₂ = $\frac{16}{46} \times 6.022 \times 10^{23} = 2.09 \times 10^{23}$
	(D) 16 g O ₂ = $\frac{12}{32} \times 6.022 \times 10^{23} = 2.26 \times 10^{23}$
10.	(A) 15 L H ₂ = $\frac{15}{22.4} \times 6.022 \times 10^{23} = 4.03 \times 10^{23}$
	(B) 5 L N ₂ = $\frac{5}{22.4} \times 6.022 \times 10^{23} = 1.34 \times 10^{23}$
	(C) 0.5 g of H ₂ = $\frac{0.5}{2} \times 6.022 \times 10^{23} = 1.51 \times 10^{23}$
	(D) 10 g of $O_2 = \frac{10}{32} \times 6.022 \times 10^{23} = 1.88 \times 10^{23}$
11.	Total number of atoms in a given amount of substance = $n \times N_{1} \times A$ tomicity

- 11. Total number of atoms in a given amount of substance = $n \times N_A \times Atomicity$ = $0.1 \times 6.02 \times 10^{23} \times 3$ = 1.806×10^{23}
- 12. Option (A): 44 g $CO_2 = 1$ mole of CO_2 Option (B): 48 g $O_3 = 1$ mole of O_3 Option (C): 8 g $H_2 = 4$ moles of H_2 Option (D): 64 g $SO_2 = 1$ mole of SO_2
- 13. According to Avogadro's hypothesis, ratio of the volumes of gases will be equal to the ratio of their no. of moles. $\frac{\text{weight of H}_2}{2} : \frac{\text{weight of O}_2}{32} : \frac{\text{weight of CH}_4}{16}$

$$\frac{1}{2}$$
 : $\frac{1}{32}$: $\frac{1}{16}$
Ratio is 16 : 1 : 2.

...

- 14. Number of moles of $H_2 = \frac{1}{2}$ Number of moles of $O_2 = \frac{4}{32}$ Hence, molar ration $= \frac{1}{2}: \frac{4}{32} = 4: 1$
- 15. 1 mole of water = 18 g of water = 6.022×10^{23} molecules of water
- $\therefore 18 \text{ moles of water} = 18 \times 6.022 \times 10^{23} \text{ molecules of water} = 1.08396 \times 10^{25} \text{ molecules of water}$

- 16. When Avogadro number is 6.022 × 10²³ mol⁻¹, the mass of 1 mol of carbon = 12 g
 ∴ Mass of 1 mol of carbon when Avogadro
 - number is $6.022 \times 10^{20} \text{ mol}^{-1}$ = $\frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}} = 12 \times 10^{-3} \text{ g}$

Thus, the mass of 1 mol of carbon is changed.

17. Volume of 1 mole of a gas at STP = 22.4 L1 mol CCl₄ vapour = $12 + 4 \times 35.5 = 154 \text{ g}$ Therefore, 22.4 L of a gas contains 154 g of CCl₄.

Density = $\frac{Mass}{Volume}$

$$\therefore \quad \text{Density of CCl}_4 \text{ vapour} = \frac{154}{22.4} \text{ g/L} = 6.875 \text{ g/L}$$

18. Option (A) 18 mL of water = 18 g of water = $\frac{18}{100}$

$$= 1 \text{ mol of water}$$
¹⁸

Option (B)

0.18 g water = $\frac{0.18}{18}$ = 0.01 mol of water Option (C)

0.00224 L of water vapours at 1 atm and 273 K (STP conditions) = 2.24 mL of water

$$=\frac{2.24}{22.4}$$

= 0.1 mol of water

Option (D) has 10^{-3} mol of water.

Hence, 18 mL of water, i.e., option (A) has maximum number of moles of water and hence, it contains maximum number of water molecules.

19. Number of atoms = Number of moles × Avogadro's constant = $\frac{Mass of a substance}{Molar mass of a substance} × N_A$ Number of atoms of Max = $\frac{1}{2}$ × N

Number of atoms of $Mg_{(s)} = \frac{1}{24} \times N_A$

Number of atoms of $O_{2(g)} = \frac{2 \times 1}{32} \times N_A$

Number of atoms of $Li_{(s)} = \frac{1}{7} \times N_A$

Number of atoms of $Ag_{(s)} = \frac{1}{108} \times N_A$

- 20. Number of atoms in 1 mole of carbon = 6.022×10^{23}
- 1.5 Percentage composition, empirical and molecular formulae

1. (A) % of nitrogen in
$$(NH_4)_2SO_4 = \frac{28}{132} \times 100$$

= 21.21%
(B) % of nitrogen in $CaCN_2 = \frac{28}{80} \times 100 = 35$ %

- (C) % of nitrogen in CO(NH₂)₂ = $\frac{28}{60} \times 100$ = 46.66 %
- (D) % of nitrogen NH₄NO₃ = $\frac{28}{80} \times 100 = 35$ %
- 2. Since, 0.5 g Se = 100 gm peroxidase anhydrous enzyme

:. 78.4 g Se =
$$\frac{100 \times 78.4}{0.5}$$
 = 1.568 × 10⁴

Hence, minimum molecular mass of peroxidase anhydrous enzyme is 1.568×10^4 g/mol.

- 3. 0.1 mol of $XY_2 = 10 \text{ g}$
- $\therefore \quad 1 \text{ mol of } XY_2 = 100 \text{ g}$ i.e, Molecular weight of $XY_2 = 100$ 0.05 mol of $X_3Y_2 = 9 \text{ g}$
- ∴ 1 mol of X₃Y₂ = 180 g
 i.e., Molecular weight of X₃Y₂ = 180
 Let atomic weights of X and Y be x and y respectively.

$$x + 2y = 100 \qquad \dots (1)$$

$$3x + 2y = 180 \qquad \dots (ii)$$

Subtracting (i) from (ii),

$$2x = 180 - 100$$

$$x = 40$$

Substituting $x = 40$ in (i),

$$40 + 2y = 100$$

$$y = 30$$

Element	% Composition	Atomic ratio	Simplest ratio
С	78	$\frac{78}{12} = 6.5$	$\frac{6.5}{6.5} = 1$
Н	22	$\frac{22}{1} = 22$	$\frac{22}{6.5} = 3.38$

 \therefore The empirical formula of the compound is CH₃.

1.6 Chemical reactions, stoichiometry and calculations based on stoichiometry

1. The reaction is $Z_2O_3 + 3H_2 \longrightarrow 2Z + 3H_2O$ Hence, as per reaction stoichiometry, 1 mole H_2 or 6 g H₂ reacts with one mole of Z_2O_3 . Now, 0.1596 g of Z_2O_3 react with 0.006 g of H₂. ∴ 6 g H₂ reacts with $=\frac{0.1596}{0.006} \times 6 = 159.6$ g of Z_2O_3 Therefore, molecular mass of Z_2O_3 is 159.6 g/mol. ∴ Molecular mass of $Z_2O_3 = (2 \times At. Wt. Z + 3 At. Wt. O)$ Atomic mass of $Z = \frac{159.6 - (3 \times 16)}{2} = 55.8$ g

 $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$ 2. 28 g of ethylene require 96 g of O_2 2.8×10^3 g of ethylene require = $\frac{2.8 \times 10^3 \times 96}{28}$ ÷. $= 9.6 \times 10^3$ g = 9.6 kg3. 1 mole of CO is equivalent to 6.02×10^{23} molecules 10 mole CO will correspond to *.*.. 6.02×10^{24} molecules 6.02×10^{24} CO molecules contain 6.02×10^{24} atoms of oxygen, which is equivalent to 10 g atoms of oxygen 10 g atoms of (O) oxygen = 5 g molecules of (\therefore Oxygen is a diatomic gas.) O_2 4. $M_1V_1 = M_2V_2$ $5 \times 1 = M_2 \times 10$ $M_2 = 0.5 M$ Normality = $n \times Molarity$ $= 2 \times 0.5$ (\therefore H₂SO₄ is a diprotic acid) = 1 N $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$ 5. 1 Mole of zinc reacts to give 1 mole of hydrogen 1 mole of hydrogen at STP is 22,400 mL. 65 g zinc react to liberate 22400 mL of H₂

- Amount of zinc required to produce 224 mL of *.*.. H₂ at STP = $\frac{224 \times 65}{22400}$ = 0.65 g
- $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$ 6. From above reaction, 4 Moles of NH_3 require 5 moles of O_2 .

1 Moles of $NH_3 = \frac{5}{4}$ moles of $O_2 = 1.25$ mol of O_2 *.*.. Therefore, 1 mol of NH₃ require 1.25 mol of O₂. In given conditions, 1 mole of NH₃ and 1 mole of O_2 are made to react to completion. Hence, all the oxygen will be consumed.

7. $BaCO_3 \longrightarrow BaO + CO_2$ 197.34 g of BaCO₃ gives 22.4 L of CO₂

9.85 g of BaCO₃ will give
$$\frac{22.4 \times 9.85}{197.34}$$

= 1.118 L \approx 1.12 L

...

Density = 1.17 g/cc = 1170 g/L8. Hence, volume of the solution = 1 LMass of the solute = 1170 g. Mol of solute = 32.05 mol

Molarity =
$$\frac{\text{Moles of solute}}{\text{Volume of solution (L)}} = \frac{32.05}{1}$$

= 32.05 M

Chapter 1: Some Basic Concepts of Chemistry

9.
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O_3$$

(1 mol). (5 mol)

At STP, volume is proportional to mole. 1 L of propane gas will require 5 L of O₂. 1 mol propane gas (C₃H₈) requires 5 mol oxygen gas (O₂). Hence, 1 L propane gas (C_3H_8) requires 5 L oxygen gas (O_2) .

10. $PbO + 2HCl \longrightarrow PbCl_2 + H_2O$ Molecular weight of PbO = 207.2 + 16

= 223.2Moles of PbO = $\frac{6.5}{223.2}$ = 0.029 mol Moles of HCl = $\frac{3.2}{36.5}$ = 0.088 mol

0.029 mol of PbO required 0.058 mol of HCl. Hence, HCl is in excess, PbO is limiting reagent.

From stoichiometry, mol of $PbO = mol of PbCl_2$ $0.029 \text{ mol of PbO} = 0.029 \text{ mol of PbCl}_2$

- 11. $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(g)}$ Ratio of moles of reactants, $H_2 : O_2 = 2 : 1$ Actual amount of reactants: 10 g H₂ and 64 g O₂ Actual moles of reactants: 5 mol H₂ and 2 mol O₂ Ratio of actual moles of reactants, $H_2: O_2 = 5: 2 = 2.5: 1$
- The limiting reactant is O_2 . ÷ Now, 1 mole of oxygen gives 2 moles of water. Hence, 2 moles of oxygen will give 4 moles of water.
- 12. $2Mg + O_2 \longrightarrow 2MgO$ (2×24) (32) 48 g of Mg requires 32 g of O₂ 0.56 g of O₂ requires $=\frac{0.56 \times 48}{32} = 0.84$ g of Mg
- ÷.
- *.*:. Mg left = 1 - 0.84 = 0.16 g
- 13. 1 mol gas \equiv 22.4 L at S.T.P. Moles of $H_2 = 1 \mod 1$ Moles of $Cl_2 = 11.2/22.4 = 0.5$ mol The reaction is $H_{2(g)} +$ $Cl_{2(g)} \longrightarrow 2HCl_{(g)}$ From the reaction, 1 mol of H₂ requires 1 mol of Cl₂ to form 2 mol of HCl. Since, available Cl₂ is 0.5 mol, it is limiting reactant. Hence, 1 mol $Cl_2 = 2$ mol HCl $0.5 \text{ mol } \text{Cl}_2 = 1 \text{ mol } \text{HCl}$
- 14. $MgCO_{3(s)} \longrightarrow MgO_{(s)} + CO_{2(g)}$ Molar mass of $MgCO_3 = 84 \text{ g mol}^{-1}$
- Number of moles of MgCO₃ = $\frac{20}{84}$ = 0.238 mol *.*..
- ÷ 1 mole MgCO₃ gives 1 mole MgO
- *.*.. 0.238 mole MgCO₃ will give 0.238 mole MgO. Molar mass of MgO = 40 g mol^{-1}

 $0.238 \text{ mole MgO} = 40 \times 0.238$ ÷. = 9.52 g MgO Theoretical yield of MgO = 9.52 g *.*.. Practical yield of MgO is 8.0 g Percentage purity = $\frac{8}{9.52} \times 100 = 84 \%$ *.*.. Conc. H_2SO_4 HCOOH $CO + H_2O$ 15. 0.5 mol 0.5 mol Conc. H₂SO₄ $CO + CO_2 + H_2O$ (COOH)₂ 0.5 mol 0.5 mol Gaseous mixture formed is CO and CO₂ When it is passed through KOH, which CO₂ is absorbed. So, the remaining gas is CO. Weight of remaining gaseous product at STP is $0.5 \times 0.5 \times 28 = 2.8$ g 16. $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$ $3 \mod H_2 = 2 \mod NH_3$ $30 \text{ mol } H_2 = 20 \text{ mol } NH_3$ ∴. $CaCO_{3(s)} + 2HCl_{(aq)}$ 17. \rightarrow CaCl_{2(aq)} + CO_{2(g)} + 2H₂O_(l) From the reaction stoichiometry,

2 mol HCl will neutralise 1 mol CaCO₃.

So, 1 mol HCl will neutralise $\frac{1}{2}$ mol CaCO₃.

Number of moles = Molarity \times Volume (in L) Number of moles of HCl = 0.5×0.05 = 0.025 mol

18. Since the sample of CaCO₃ is 20% pure, the amount of actual CaCO₃ in the sample is $\frac{20 \times 20}{20} = 4 \text{ g}$

100

The balanced chemical equation is:

 $CaCO_3 \xrightarrow{\Delta} CaO +$ CO_2 1 mol 1 mol (100 g) (44 g)

1 mol of $CaCO_3 = 1$ mol of CO_2 *.*.. OR 100 g of $CaCO_3 = 44$ g of CO_2

:. 4 g of CaCO₃ =
$$\frac{44 \times 4}{100}$$
 = 1.76 g of CO₂

Give your NEET & JEE exam preparation the **TECHNOLOGY BOOST!**

Practice more than 17,000 MCQs

Use Coupon Code

Also available for Xth, XIth, XIIth & MHT-CET

- Practice chapter-wise & full syllabus MCQs in test format
- Get instant verification of your answer

Visit our website to know more about our

range of books for Xth, XIth, XIIth & MHT-CET

- Detailed analysis of every test on completion
- Option to save questions for future reference

Scan QR Code to download the app

Visit Our Website

Address: B2, 9th Floor, Ashar, Road No. 16/Z, Wagle Industrial Estate, Thane (W)- 400604

Quill

Target -

Practice Test

3 3 6 6

(A)- 40"

(B)+ 40°

(C)- 80°

(0)-20

Cet the next one right too

which of the following

8

DF

Tel: 88799 39712 / 13 / 14 / 15 Website: www.targetpublications.org Email: mail@targetpublications.org

Explore our range of NEET & JEE Books

