Written as per the syllabus prescribed by the National Council of Educational Research and Training (NCERT).

CBSE
 CLASS X MATHEMATICS

Salient Features

Extensive coverage of the syllabus in an effortless and easy to grasp format.
Neat and labelled diagrams.
'Things to Remember' highlights important facts.
Variety of additional problems for practice.
Questions from previous years board papers have been solved.
Memory Maps at the end of each chapter to facilitate quick revision.
Sample Test Paper at the end of each chapter designed for student's Self Assessment.
Two Model Question Papers according to the latest paper pattern.

Printed at: Print to Print, Mumbai

[^0]
Contents

Chapter No.	Chapter Name	Page No.
01	Real Numbers	1
02	Polynomials	25
03	Pair of Linear Equations in Two Variables	65
04	Quadratic Equations	142
05	Arithmetic Progressions	192
06	Triangles	248
07	Coordinate Geometry	327
08	Introduction to Trigonometry	376
09	Some Applications of Trigonometry	443
10	Circles	476
11	Constructions	510
12	Areas Related to Circles	556
13	Surface Areas and Volumes	616
14	Statistics	666
15	Probability	780
	Model paper - I	807
	Model paper - II	811

01. Real Numbers

Euclid's Division Lemma

Given positive integers a and b, there exist unique integers q and r satisfying

$$
\mathrm{a}=\mathrm{bq}+\mathrm{r} ; 0 \leq \mathrm{r}<\mathrm{b}
$$

where ' a ' is dividend, ' b ' is divisor, ' q ' is quotient and r is the remainder.
Note: q and r can also be zero.

Examples:

Consider the following pair of integers:
i. 29,8

Here, $\mathrm{a}=29$ and $\mathrm{b}=8$
By using Euclid's Division lemma,
$\mathrm{a}=\mathrm{bq}+\mathrm{r} ; 0 \leq \mathrm{r}<\mathrm{b}$
i.e., $29=8 \times 3+5 ; 0 \leq 5<8$
ii. $\quad 77,7$

Here, $\mathrm{a}=77$ and $\mathrm{b}=7$
By using Euclid's Division lemma,
$\mathrm{a}=\mathrm{bq}+\mathrm{r} ; 0 \leq \mathrm{r}<\mathrm{b}$
i.e., $77=7 \times 11+0 ; 0 \leq 0<7$
iii. 9,12

Here, $a=9$ and $b=12$
By using Euclid's Division lemma,
$\mathrm{a}=\mathrm{bq}+\mathrm{r} ; 0 \leq \mathrm{r}<\mathrm{b}$
i.e., $9=12 \times 0+9 ; 0 \leq 9<12$

$$
\ldots .\left[\begin{array}{rl}
0 & \leftarrow \text { quotient (q) } \\
\text { divisor }(\mathrm{b}) \longrightarrow 12 \sqrt{9} & \leftarrow \text { dividend (a) } \\
-0 & \\
\overline{9} & \leftarrow \text { remainder (r) }
\end{array}\right]
$$

Euclid's Division Algorithm:

Euclid's division algorithm is a technique to compute the Highest Common Factor (HCF) of two given positive integers.

Euclid's Division Algorithm to find HCF of two positive integers ' a ' and ' b ' $(a>b)$:
Step I: By Euclid's division lemma, find whole numbers ' q ' and ' r ' where $\mathrm{a}=\mathrm{bq}+\mathrm{r} ; 0 \leq \mathrm{r}<\mathrm{b}$
Step II: If $r=0$, the HCF is b. If $r \neq 0$, apply the division lemma to b and r .

Step III: Continue the process till the remainder is zero. When the remainder is zero the divisor at that stage is the required HCF .
For the above algorithm $\operatorname{HCF}(a, b)=\operatorname{HCF}(b, r)$

Example:

Use Euclid's division algorithm to find the HCF of 1467 and 453.

Solution:

Step I:Apply Euclid's division lemma to 1467 and 453, $1467=453 \times 3+108$

$$
\ldots .\left[\begin{array}{r}
\left.3 \leftarrow 453 \begin{array}{c}
\frac{1467}{-1359} \leftarrow a \\
\frac{108}{4} \leftarrow r
\end{array}\right]
\end{array}\right]
$$

Step II: Since $r \neq 0$
$\therefore \quad$ apply Euclid's division lemma to 453 and 108, $453=108 \times 4+21$

Step III: Again, $\mathrm{r} \neq 0$
$\therefore \quad$ apply Euclid's division lemma to 108 and 21, $108=21 \times 5+3$

$$
\ldots .\left[\begin{array}{r}
51 \\
21 \\
-\frac{108}{3}
\end{array}\right]
$$

Step IV: Apply Euclid's division lemma to 21 and 3, $21=3 \times 7+0$

$$
\cdots\left[\begin{array}{r}
7 \\
3 \longdiv { 2 1 } \\
-\frac{21}{0}
\end{array}\right]
$$

Since, $r=0$
$\therefore \quad \operatorname{HCF}(1467,453)=3$
$\therefore \quad 3=\operatorname{HCF}(21,3)=\operatorname{HCF}(108,21)$

$$
=\operatorname{HCF}(453,108)=\operatorname{HCF}(1467,453)
$$

Things to Remember

* Euclid's division algorithm can be extended for all integers except zero i.e., $b \neq 0$.

NCERT Exercise 1.1

1. Use Euclid's division algorithm to find the HCF of:
i. 135 and 225 ii. 196 and 38220
iii. 867 and 255

Solution:

i. Since $225>135$, we apply the division lemma to 225 and 135 , to get
$225=135 \times 1+90$

Solution:

$\operatorname{HCF}(616,32)$ will give the maximum number of columns in which they can march.
Let us use Euclid's algorithm, to find the HCF.
$616=32 \times 19+8$
$32=8 \times 4+0$
$\therefore \quad$ the HCF of 616 and 32 is 8 .
$\therefore \quad$ the maximum number of columns in which they can march is 8 .
4. Use Euclid's division lemma to show that the square of any positive integer is either of the form $\mathbf{3 m}$ or $\mathbf{3 m}+\mathbf{1}$ for some integer m.
[Hint: Let x be any positive integer then it is of the form $3 \mathrm{q}, 3 \mathrm{q}+1$ or $3 \mathrm{q}+2$. Now square each of these and show that they can be rewritten in the form 3 m or $3 \mathrm{~m}+1$.]
[CBSE 2015]

Solution:

Let x be any positive integer and $\mathrm{b}=3$.
Then, by Euclid's division lemma, $x=3 \mathrm{q}+\mathrm{r}$ for some integer $\mathrm{q} \geq 0$ and
$\mathrm{r}=0,1,2$ because $0 \leq \mathrm{r}<3$
$\therefore \quad x=3 q$ or $3 q+1$ or $3 q+2$
When $x=3 \mathrm{q}$,
$(x)^{2}=(3 \mathrm{q})^{2}=9 \mathrm{q}^{2}$

$$
=3\left(3 q^{2}\right)
$$

$=3 \mathrm{~m}$, where m is a integer
When $x=3 \mathrm{q}+1$

$$
\begin{aligned}
(x)^{2} & =(3 q+1)^{2}=9 q^{2}+6 q+1 \\
& =3\left(3 q^{2}+2 q\right)+1 \\
& =3 m+1, \text { where } m \text { is a integer }
\end{aligned}
$$

When $x=3 \mathrm{q}+2$,

$$
\begin{aligned}
(x)^{2} & =(3 q+2)^{2}=9 q^{2}+12 q+4 \\
& =3\left(3 q^{2}+4 q+1\right)+1 \\
& =3 m+1, \text { where } m \text { is a integer }
\end{aligned}
$$

$\therefore \quad$ the square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m .
5. Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 \mathrm{~m}, 9 \mathrm{~m}+1$ or $9 \mathrm{~m}+8$.

Solution:

Let a be any positive integer and $\mathrm{b}=3$.
Then, by Euclid's division lemma, $a=3 q+r$
for some integer $\mathrm{q} \geq 0$ and
$r=0,1,2$ because $0 \leq r<3$
$\therefore \quad a=3 q$ or $3 q+1$ or $3 q+2$
When $a=3 q$,
$\mathrm{a}^{3}=(3 q)^{3}=27 \mathrm{q}^{3}$
$=9\left(3 q^{3}\right)$
$=9 \mathrm{~m}$, where m is a integer
When $\mathrm{a}=3 \mathrm{q}+1$,
$\mathrm{a}^{3}=(3 q+1)^{3}=27 \mathrm{q}^{3}+27 \mathrm{q}^{2}+9 \mathrm{q}+1$
$=9\left(3 q^{3}+3 q^{2}+q\right)+1$
$=9 \mathrm{~m}+1$, where m is a integer

When $\mathrm{a}=3 \mathrm{q}+2$,

$$
\begin{aligned}
\mathrm{a}^{3} & =(3 q+2)^{3}=27 q^{3}+54 q^{2}+36 q+8 \\
& =9\left(3 q^{3}+6 q^{2}+4 q\right)+8 \\
& =9 m+8, \text { where } m \text { is a integer }
\end{aligned}
$$

$\therefore \quad$ the cube of any positive integer is of the form $9 m$ or $9 m+1$ or $9 m+8$

Problems based on Exercise 1.1

1. Using Euclid's division algorithm, find the HCF of 240 and 228.
[CBSE 2012]

Solution:

By Euclid's division algorithm,
$240=228 \times 1+12$
$228=12 \times 19+0$
$\therefore \quad \operatorname{HCF}(240,228)=12$
2. Find the HCF of 180, 252 and 324 by Euclid's Division algorithm. [CBSE 2016]

Solution:

By Euclid's division algorithm,
$324=252 \times 1+72$
$252=72 \times 3+36$
$72=36 \times 2+0$
$\therefore \quad \operatorname{HCF}(324,252)=36$
$180=36 \times 5+0$
$\therefore \quad \operatorname{HCF}(180,36)=36$
$\therefore \quad \operatorname{HCF}(324,252,180)=36$
3. Find the HCF by Euclid's division algorithm of the numbers 92690,7378 and 7161.
[CBSE 2013]

Solution:

By Euclid's division algorithm,
$92690=7378 \times 12+4154$
$7378=4154 \times 1+3224$
$4154=3224 \times 1+930$
$3224=930 \times 3+434$
$930=434 \times 2+62$
$434=62 \times 7+0$
$\therefore \quad \operatorname{HCF}(92690,7378)=62$
$7161=62 \times 115+31$
$62=31 \times 2+0$
$\therefore \quad \operatorname{HCF}(7161,62)=31$
$\therefore \quad \operatorname{HCF}(92690,7378,7161)=31$
4. Using Euclid's division algorithm, find whether the pair of numbers 231, 396 are coprime or not.

Solution:

By Euclid's division algorithm,
$396=231 \times 1+165$
$231=165 \times 1+66$
$165=66 \times 2+33$
$66=33 \times 2+0$
$\therefore \quad \operatorname{HCF}(231,396)=33$
$\therefore \quad$ the numbers are not coprime.
5. Express the HCF of numbers 72 and 124 as a linear combination of 72 and 124.
[CBSE 2016]

Solution:

Since, $124>72$
By Euclid's division algorithm,
$124=72 \times 1+52$
$72=52 \times 1+20$
$52=20 \times 2+12$
$20=12 \times 1+8$
$12=8 \times 1+4$
$8=4 \times 2+0$
$\therefore \quad \operatorname{HCF}(124,72)=4$
From (i),
$4=12-8 \times 1$
$=12-(20-12 \times 1)$
$\ldots .[\because 8=20-12 \times 1]$
$=12-20+12 \times 1$
$=12 \times 2-20$
$=(52-20 \times 2) \times 2-20$
$\ldots .[\because 12=52-20 \times 2]$
$=52 \times 2-20 \times 4-20$
$=52 \times 2-20 \times 5$
$=52 \times 2-(72-52 \times 1) \times 5$
$\ldots .[\because 20=72-52 \times 1]$
$=52 \times 2-72 \times 5+52 \times 5$
$=52 \times 7-72 \times 5$
$=(124-72 \times 1) \times 7-72 \times 5$
$\ldots .[\because 52=124-72 \times 1]$
$=124 \times 7-72 \times 7-72 \times 5$
$=124 \times 7-72 \times 12$
$=72 \mathrm{~m}+124 \mathrm{n}$,
where $\mathrm{m}=-12$ and $\mathrm{n}=7$
6. Two tankers contain 850 litres and 680 litres of petrol. Find the maximum capacity of a container which can measure the petrol of each tanker in exact number of times.
[CBSE 2012]
Solution:
$\operatorname{HCF}(850,680)$ will give the maximum capacity of container.
$850=680 \times 1+170$
$680=170 \times 4+0$
$\therefore \quad \operatorname{HCF}(850,680)=170$
$\therefore \quad$ the maximum capacity of a container which can measure the petrol of each tanker in exact number of times is 170 litres.
7. A sweetseller has 420 kaju barfis and 130 badam barfis. She wants to stack them in such a way that each stack has the same number, and they take up the least area of the tray. What is the maximum number of barfis that can be placed in each stack for this purpose?

Solution:

$\operatorname{HCF}(420$, 130) will give the maximum number of barfis that can be placed in each stack.
By Euclid's division algorithm,
$420=130 \times 3+30$
$130=30 \times 4+10$
$30=10 \times 3+0$
$\therefore \quad \operatorname{HCF}(420,130)=10$
$\therefore \quad$ the sweetseller can make stacks of 10 for both kinds of barfi.
8. The length, breadth and height of a room are $8 \mathrm{~m} 25 \mathrm{~cm}, 6 \mathrm{~m} 75 \mathrm{~cm}$ and 4 m 50 cm respectively. Find the length of the longest rod that can measure the three dimensions of the room exactly.
[CBSE 2012]

Solution:

$$
\begin{array}{ll}
& \text { Since, } 1 \mathrm{~m}=100 \mathrm{~cm} \\
\therefore \quad & 8 \mathrm{~m} 25 \mathrm{~cm}=825 \mathrm{~cm} \\
& 6 \mathrm{~m} 75 \mathrm{~cm}=675 \mathrm{~cm} \\
4 \mathrm{~m} 50 \mathrm{~cm}=450 \mathrm{~cm} \\
& H C F(825,675,450) \text { will give the length of the } \\
& \text { longest rod. } \\
& 825=675 \times 1+150 \\
& 675=150 \times 4+75 \\
& 150=75 \times 2+0 \\
\therefore \quad & H C F(825,675)=75 \\
& 450=75 \times 6+0 \\
\therefore \quad & H C F(450,75)=75 \\
\therefore \quad & H C F(825,675,450)=75 \\
\therefore \quad & \text { the length of the longest rod is } 75 \mathrm{~cm} .
\end{array}
$$

NCERT Exemplar

1. Write whether every positive integer can be of the form $\mathbf{4 q}+2$, where q is an integer. Justify your answer.

Solution:

No, every positive integer cannot be only of the form $4 q+2$.

Justification:

Let a be any positive integer. Then by Euclid's division lemma, we have
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$, where $0 \leq \mathrm{r}<\mathrm{b}$
Putting $\mathrm{b}=4$, we get
$\mathrm{a}=4 \mathrm{q}+\mathrm{r}$, where $0 \leq \mathrm{r}<4$
Hence, a positive integer can be of the form, $4 q, 4 q+1,4 q+2$ and $4 q+3$.
2. "The product of two consecutive positive integers is divisible by 2%. Is this statement true or false? Give reasons.

Solution:

True.

Justification:

Let a, $a+1$ be two consecutive positive integers.

By Euclid's division lemma, we have
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$, where $0 \leq \mathrm{r}<\mathrm{b}$
For $b=2$, we have
$a=2 q+r$, where $0 \leq r<2$
Putting $r=0$ in (i), we get
$\mathrm{a}=2 \mathrm{q}$, which is divisible by 2 .
$\mathrm{a}+1=2 \mathrm{q}+1$, which is not divisible by 2 .
Putting $\mathrm{r}=1$ in (i), we get
$\mathrm{a}=2 \mathrm{q}+1$, which is not divisible by 2 .
$\mathrm{a}+1=2 \mathrm{q}+2$, which is divisible by 2 .
Thus for $0 \leq r<2$, one out of every two consecutive integers is divisible by 2 .
$\therefore \quad$ The product of two consecutive positive integers is divisible by 2 .
3. "The product of three consecutive positive integers is divisible by 6". Is this statement true or false? Justify your answer.

Solution:

True.

Justification:

At least one out of every three consecutive positive integers is divisible by 2.
$\therefore \quad$ The product of three consecutive positive integers is divisible by 2.
At least one out of every three consecutive positive integers is divisible by 3 .
$\therefore \quad$ The product of three consecutive positive integers is divisible by 3 .
Since the product of three consecutive positive integers is divisible by 2 and 3 .
$\therefore \quad$ It is divisible by 6 also.
4. Write whether the square of any positive integer can be of the form $3 m+2$, where m is a natural number. Justify your answer.

Solution:

No.

Justification:

Let a be any positive integer. Then by Euclid's division lemma, we have
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$, where $0 \leq \mathrm{r}<\mathrm{b}$
For $b=3$, we have
$a=3 q+r$, where $0 \leq r<3$
$\therefore \quad$ The numbers are of the form $3 q, 3 q+1$ and $3 q+2$.
$\therefore \quad(3 q)^{2}=9 q^{2}=3\left(3 q^{2}\right)$

$$
=3 \mathrm{~m}, \text { where } \mathrm{m} \text { is a integer. }
$$

$$
\begin{aligned}
(3 q+1)^{2} & =9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1 \\
& =3 m+1 \\
& \text { where } m \text { is a integer. } \\
(3 q+2)^{2} & =9 q^{2}+12 q+4, \\
& \text { which cannot be expressed in the } \\
& \text { form } 3 m+2 .
\end{aligned}
$$

$\therefore \quad$ Square of any positive integer cannot be expressed in the form $3 \mathrm{~m}+2$.

[^0]: © Target Publications Pvt. Ltd.
 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

