SAMPLE CONTENT

Based on Question Bank released by Maharashtra State Board

STD X: ENGLISH / SEMI ENGLISH MEDIUM

Science (Part I\&II) | Maths (Part I\&II)

$$
\text { Taréet Publications }{ }^{\oplus} \text { Pvt. Ltd. }
$$

SOLUTIONS TO

BOARD

QUESTION BANK

English Medium / Semi English

Salient Features

- Covers solutions to the Entire Question Bank of Std. X released by Maharashtra State Board in the March 2021
- Questions from reduced syllabus (2021-22) are marked with symbol (B)
- Includes Mathematics (Part I and II), Science and Technology (Part I and II)
- Answers framed for all questions are based on Government Textbook and as per the prescribed marking scheme
- Hints provided for questions wherever deemed necessary.

Printed at: Repro India Ltd., Mumbai

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

The Question Bank for Std. X was released by the Maharashtra State Board in the month of March 2021 as a respite to all the SSC students whose education had suffered due to the ongoing pandemic \& the resultant restrictions at that point of time. The board exam for the year 2021 couldn't be conducted due to the pandemic but the question bank released by the Board remains a guiding light for all the students who will be appearing for the board exam in the year 2022 and the further years as well.

Target's 'Solutions to SSC Board Question Bank' is intended for every state board student of standard X. As the name suggests, the book includes the solutions to each and every question that was provided in the question bank. The book encompasses all the question types as per the given sequence in the question bank for each subject, that is, for Mathematics (Part I and II), Science and Technology (Part 1 and 2). Keeping in the mind syllabus reduced for the academic year 2021-22, questions belonging to the reduced syllabus are marked with symbol (R)

The answers framed in the book are completely based on the Government Textbook. At certain points, we have simplified or modified the answers for the ease of understanding. We have ensured that the answers are as per the prescribed marking scheme so that the student's efforts bear the desired fruits.

To aid students, hints are provided for questions wherever deemed necessary.
We hope that the students find the book as one stop solution to the Question Bank .

- Publisher

Edition: First

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.
Please write to us on: mail@targetpublications.org
A book affects eternity; one can never tell where its influence stops

Disclaimer

[^0]

Q.1. (A) MCQ
[1 Mark]

1. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\mathrm{AB}: \mathrm{PQ}=3: 4$ then $\mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{PQR})=$?
(A) $9: 25$
(B) $9: 16$
(C) $16: 9$
(D) $25: 9$
2. Which of the following is not a test of similarity?
(A) AAA
(B) SAS
(C) SAA
(D) SSS
3. If $\triangle X Y Z \sim \triangle P Q R$ and $A(\triangle X Y Z)=25 \mathrm{~cm}^{2}$, $\mathrm{A}(\triangle \mathrm{PQR})=4 \mathrm{~cm}^{2}$ then $\mathrm{XY}: \mathrm{PQ}=$?
(A) $4: 25$
(B) $2: 5$
(C) $5: 2$
(D) $25: 4$
4. Ratio of areas of two similar triangles is $9: 25$.
\qquad is the ratio of their corresponding sides.
(A) $3: 4$
(B) $3: 5$
(C) $5: 3$
(D) $25: 81$
5. Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, if $\angle \mathrm{A}=45^{\circ}$ and $\angle \mathrm{E}=35^{\circ}$ then $\angle \mathrm{B}=$?
(A) 45°
(B) 35°
(C) 25°
(D) 40°
6. In fig, seg $\mathrm{DE} \|$ sec BC , identify correct statement.

(A) $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
(B) $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
(C) $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{EC}}{\mathrm{AC}}$
(D) $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
7. If $\triangle \mathrm{XYZ} \sim \Delta \mathrm{PQR}$ then $\frac{\mathrm{XY}}{\mathrm{PQ}}=\frac{\mathrm{YZ}}{\mathrm{QR}}=$?
(A) $\frac{X Z}{P R}$
(B) $\frac{X Z}{P Q}$
(C) $\frac{X Z}{Q R}$
(D) $\frac{Y Z}{P Q}$
8. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{LMN}$ and $\angle \mathrm{A}=60^{\circ}$ then $\angle \mathrm{L}=$?
(A) 45°
(B) 60°
(C) 25°
(D) 40°
9. In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{XYZ}, \frac{\mathrm{DE}}{\mathrm{XY}}=\frac{\mathrm{FE}}{\mathrm{YZ}}$ and $\angle \mathrm{E} \cong \angle \mathrm{Y}$. \qquad test gives similarity between $\triangle \mathrm{DEF}$ and $\triangle \mathrm{XYZ}$.

(A) AAA
(B) SAS
(C) SAA
(D) SSS
10. In fig. $\mathrm{BD}=8, \mathrm{BC}=12$, $B-D-C$, then $\frac{A(\triangle A B C)}{A(\triangle A B D)}=$?
(A) $2: 3$
(B) $3: 2$
(C) $5: 3$
(D) $3: 4$

Answers:

1.

(B) 2 .
(C) 3 .
(C)
4. (B)
5. (B) 6 .
(D) 7. (A)
8. (B)
9.
(B)
10. (B)

Hints:

1. $\frac{\mathrm{A}(\Delta \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}$

$$
=\frac{3^{2}}{4^{2}}=\frac{9}{16}
$$

\ldots...Theorem of areas of similar triangles]
$\therefore \quad \mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{PQR})=9: 16$
3. $\frac{\mathrm{A}(\Delta \mathrm{XYZ})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{X Y^{2}}{\mathrm{PQ}^{2}}$
\ldots...[Theorem of areas of similar triangles]
$\therefore \quad \frac{25}{4}=\frac{\mathrm{XY}^{2}}{\mathrm{PQ}^{2}}$
$\therefore \quad \frac{\mathrm{XY}}{\mathrm{PQ}}=\frac{5}{2}$
$\therefore \quad \mathrm{XY}: \mathrm{PQ}=5: 2$
4. Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ be two similar triangles.

According to the given condition,
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{9}{25}$

But $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}$
...[Theorem of areas of similar triangles]
$\therefore \quad \frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{9}{25}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{3}{5}$
$\therefore \quad 3: 5$ is the ratio of their corresponding sides.
5. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \quad \angle \mathrm{B} \cong \angle \mathrm{E}$
\ldots [Corresponding angles of similar triangles]
But $\angle \mathrm{E}=35^{\circ}$
...[Given]
$\therefore \quad \angle \mathrm{B}=35^{\circ}$
6. Basic proportionality theorem
8. $\triangle \mathrm{ABC} \sim \triangle \mathrm{LMN}$
$\therefore \quad \angle \mathrm{A} \cong \angle \mathrm{L}$
\ldots [Corresponding angles of similar triangles]
But $\angle \mathrm{A}=60^{\circ}$
\ldots [Given]
$\therefore \quad \angle \mathrm{L}=60^{\circ}$
10. Note that $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$ have same height.
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ABD})}=\frac{\mathrm{BC}}{\mathrm{BD}} \ldots\left[\begin{array}{l}\text { The ratio of the areas of two } \\ \text { triangles with equal heights is } \\ \text { equal to the ratio of their } \\ \text { corresponding bases. }\end{array}\right]$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ABD})}=\frac{12}{8}=\frac{3}{2}$
Q. 1 (B) Solve
[1 Mark]

1. Are triangles in figure similar? If yes, then write the test of similarity.

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{6}{3}=\frac{2}{1}$
$\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{8}{4}=\frac{2}{1}$
$\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{10}{5}=\frac{2}{1}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
...[From (i), (ii) and (iii)]
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
...[SSS test of similarity]
$\therefore \quad$ The triangles in the figure are similar by SSS test of similarity.
2. In fig., line $\mathrm{BC} \|$ line $\mathrm{DE}, \mathrm{AB}=2, \mathrm{BD}=3$,
$A C=4$ and $C E=x$, then find the value of x.

Solution:
In $\triangle \mathrm{ADE}$, line $\mathrm{BC} \|$ seg DE
...[Given]
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{CE}} \quad \ldots$ [Basic proportionality theorem]
$\therefore \quad \frac{2}{3}=\frac{4}{x}$
..[Given]
$\therefore \quad x=4 \times \frac{3}{2}$
$=2 \times 3$
$\therefore \quad x=6$
3. State whether the following triangles are similar or not: If yes, then write the test of similarity.
$\angle \mathrm{P}=35^{\circ}, \angle \mathrm{X}=35^{\circ}$ and $\angle \mathrm{Q}=60^{\circ}, \angle \mathrm{Y}=60^{\circ}$

Solution:
In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{XYZ}$,
$\angle \mathrm{P}=35^{\circ}, \angle \mathrm{X}=35^{\circ}, \angle \mathrm{Q}=60^{\circ}$ and $\angle \mathrm{Y}=60^{\circ}$
\ldots...[Given]
$\therefore \quad \angle \mathrm{P} \cong \angle \mathrm{X}$ and $\angle \mathrm{Q} \cong \angle \mathrm{Y}$
$\therefore \quad \triangle \mathrm{PQR} \sim \Delta \mathrm{XYZ} \quad \ldots$ [AA test of similarity]
$\therefore \quad$ The triangles in the figure are similar by AA test of similarity.
4. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{LMN}$ and $\angle \mathrm{B}=40^{\circ}$, then $\angle M=$? Give reason.

Solution:

$\Delta \mathrm{ABC} \sim \Delta \mathrm{LMN} \quad \ldots$ [Given]
$\therefore \quad \angle \mathrm{B} \cong \angle \mathrm{M}$
...(i)[Corresponding angles of similar triangles]
But $\angle \mathrm{B}=40^{\circ}$
...[Given]
$\therefore \quad \angle \mathrm{M}=40^{\circ}$
...[From (i)]
5. Areas of two similar triangles are in the ratio $144: 49$. Find the ratio of their corresponding sides.

Solution:

Let the areas of two similar triangles be $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and their corresponding sides be S_{1}, S_{2} respectively.
$\therefore \quad \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{144}{49}$
...(i)[Given]
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{S}_{1}^{2}}{\mathrm{~S}_{2}^{2}}$
...[Theorem of areas of similar triangles]
$\therefore \quad \frac{144}{49}=\frac{\mathrm{S}_{1}^{2}}{\mathrm{~S}_{2}^{2}}$
....[From (i)]
$\therefore \quad \frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{12}{7} \quad \ldots$ [Taking square root of both sides]
$\therefore \quad$ The ratio of the corresponding sides of the given triangles is 12:7.
6. $\triangle \mathrm{PQR} \sim \Delta \mathrm{SUV}$. Write pairs of congruent angles.
Solution:
$\Delta \mathrm{PQR} \sim \Delta \mathrm{SUV}$
...[Given]
$\therefore \quad \angle \mathrm{P} \cong \angle \mathrm{S}, \angle \mathrm{Q} \cong \angle \mathrm{U}, \angle \mathrm{R} \cong \angle \mathrm{V}$
\ldots [Corresponding angles of similar triangles]
7. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$. Write the ratios of their corresponding sides.

Solution:

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}
$$

...[Given]
$\therefore \quad$ The ratios of corresponding sides of the given triangles are $\frac{\mathrm{AB}}{\mathrm{DE}}, \frac{\mathrm{BC}}{\mathrm{EF}}$ and $\frac{\mathrm{AC}}{\mathrm{DF}}$.
8. In fig., $T P=10 \mathrm{~cm}, P S=6 \mathrm{~cm} \cdot \frac{A(\Delta R T P)}{A(\Delta R P S)}=$?

Solution:

Draw RE \perp TS, T-E-S
$\triangle \mathrm{RTP}$ and $\triangle \mathrm{RPS}$ have same height RE.
$\frac{\mathrm{A}(\Delta \mathrm{RTP})}{\mathrm{A}(\Delta \mathrm{RPS})}=\frac{\mathrm{TP}}{\mathrm{PS}}$
... [Triangles having equal height]

$$
=\frac{10}{6} \quad \ldots[\text { Given }]
$$

$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{RTP})}{\mathrm{A}(\Delta \mathrm{RPS})}=\frac{5}{3}$
9. Ratio of corresponding sides of two similar triangles is $4: 7$, then find the ratio of their areas.
Solution:
Let the corresponding sides of similar triangles be s_{1} and s_{2}.
Let A_{1} and A_{2} be their corresponding areas.
$\mathrm{s}_{1}: \mathrm{s}_{2}=4: 7$
...[Given]
$\therefore \quad \frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}=\frac{4}{7}$
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{s}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}$
...[Theorem of areas of similar triangles]

$$
\begin{aligned}
& =\left(\frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}\right)^{2} \\
& =\left(\frac{4}{7}\right)^{2} \quad \ldots[\text { From (i) }] \\
& =\frac{16}{49}
\end{aligned}
$$

$\therefore \quad$ Ratio of areas of similar triangles $=16: 49$
10. Write the test of similarity for triangles given in figure.

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$

$$
\begin{array}{rll}
& \angle \mathrm{ABC} \cong \angle \mathrm{PQR} & \ldots\left[\text { Each of measure } 60^{\circ}\right] \\
& \angle \mathrm{ACB} \cong \angle \mathrm{PRQ} & \ldots\left[\text { Each of measure } 30^{\circ}\right] \\
\therefore & \Delta \mathrm{ABC} \sim \triangle \mathrm{PQR} & \ldots[\text { AA test of similarity }]
\end{array}
$$

Q. 2 (A) Complete the activities. [2 Marks]

1. In fig. $\mathrm{BP} \perp \mathrm{AC}, \mathrm{CQ} \perp \mathrm{AB}, \mathrm{A}-\mathrm{P}-\mathrm{C}$ and $\mathrm{A}-\mathrm{Q}-\mathrm{B}$ then show that $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQC}$ are similar.

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQC}$

$\angle \mathrm{APB}=\square^{0}$	\ldots (i)
$\angle \mathrm{AQC}=\square^{0}$	\ldots (ii)
$\angle \mathrm{APB} \cong \angle \mathrm{AQC}$	$\ldots[$ From (i) and (ii)]
$\angle \mathrm{PAB} \cong \angle \mathrm{QAC}$	$\ldots \square$
$\triangle \mathrm{APB} \sim \triangle \mathrm{AQC}$	$\ldots \square$

Solution:

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQC}$

$$
\begin{equation*}
\angle \mathrm{APB}=\mathbf{9 0}^{\circ} \tag{i}
\end{equation*}
$$

$\angle \mathrm{AQC}=\mathbf{9 0}{ }^{\circ}$
$\therefore \quad \angle \mathrm{APB} \cong \angle \mathrm{AQC}$
...[From (i) and (ii)]
$\angle \mathrm{PAB} \cong \angle \mathrm{QAC}$ [Common angle]
$\therefore \quad \triangle \mathrm{APB} \sim \triangle \mathrm{AQC}$
[AA test of similarity]
2. Observe the figure and complete following activity.

In fig, $\angle \mathrm{B}=75^{\circ}, \angle \mathrm{D}=75^{\circ}$
$\angle \mathrm{B} \cong$ \qquad \ldots [each of 75°]
$\angle \mathrm{C} \cong \angle \mathrm{C}$

$\Delta \mathrm{ABC} \sim \Delta \square$
... \square similarity test]

Solution:

In fig, $\angle \mathrm{B}=75^{\circ}, \angle \mathrm{D}=75^{\circ}$
$\angle \mathrm{B} \cong \angle \mathrm{D}$
\ldots [each of $\left.75^{\circ}\right]$
$\angle \mathrm{C} \cong \angle \mathrm{C}$
\ldots Common angle
$\Delta \mathrm{ABC} \sim \Delta \overline{\mathbf{E D C}} \quad \cdots[\mathbf{A A}$ similarity test $]$
3. $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}, \mathrm{A}(\triangle \mathrm{ABC})=80$ sq.cm, $\mathrm{A}(\triangle \mathrm{PQR})=125 \mathrm{sq} . \mathrm{cm}$, then complete $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{80}{125}=\frac{\square}{\square}$, hence $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\square}{\square}$
Solution:
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{80}{125}=\frac{\mathbf{1 6}}{\mathbf{2 5}}$
...(i)[Given]
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}$
...(ii)[Theorem of areas of similar triangles]
$\therefore \quad \frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{16}{25}$
\ldots..[From (i) and (ii)]
Hence $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{4}{5}$
...[Taking square root of both sides]
4. In fig., $P M=10 \mathrm{~cm}, A(\Delta P Q S)=100 \mathrm{sq} . \mathrm{cm}$, $A(\Delta Q R S)=110$ sq.cm, then NR?
$\Delta \mathrm{PQS}$ and $\Delta \mathrm{QRS}$ having seg QS common base.

Areas of two triangles whose base is common are in proportion of their corresponding \qquad \square.

$$
\begin{aligned}
& \frac{\mathrm{A}(\Delta \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{QRS})}=\frac{\square}{\mathrm{NR}}, \\
& \frac{100}{110}=\frac{\square \mathrm{NR}}{} \\
& \mathrm{NR}=\square \mathrm{cm}
\end{aligned}
$$

Solution:

$\Delta \mathrm{PQS}$ and $\Delta \mathrm{QRS}$ having seg QS common base.
Areas of two triangles whose base is common are in proportion of their corresponding heights
$\frac{\mathrm{A}(\Delta \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{QRS})}=\frac{\mathbf{P M}}{\mathrm{NR}}$,
$\frac{100}{110}=\frac{\mathbf{1 0}}{\mathrm{NR}}$
$\therefore \quad \mathrm{NR}=\frac{110 \times 10}{100}$
$\therefore \quad \mathrm{NR}=11 \mathrm{~cm}$
Q. 2 (B)

1. In fig., $A B \perp B C$ and $D C \perp B C, A B=6$, $D C=4$ then $\frac{A(\triangle A B C)}{A(\triangle B C D)}=$?

Solution:

$\triangle A B C$ and $\triangle B C D$ have same base $B C$. $\therefore \quad \frac{A(\triangle A B C)}{A(\triangle B C D)}=\frac{A B}{D C} \quad \ldots$ [Triangles having equal base]

$$
=\frac{6}{4} \quad \ldots[\text { Given }]
$$

$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{BCD})}=\frac{3}{2}$
2. In fig., seg $A C$ and seg $B D$ intersect each other at point P.
$\frac{A P}{P C}=\frac{B P}{P D}$, then prove that $\Delta A B P \sim \Delta C D P$

Proof:
In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{CDP}$,

$$
\begin{array}{rll}
& \frac{\mathrm{AP}}{\mathrm{PC}}=\frac{\mathrm{BP}}{\mathrm{PD}} & \ldots[\text { Given }] \\
& \angle \mathrm{APB} \cong \angle \mathrm{CPD} & \ldots[\text { Vertically opposite angles }] \\
\therefore & \Delta \mathrm{ABP} \sim \Delta \mathrm{CDP} & \ldots[\text { SAS test of similarity }]
\end{array}
$$

[Note: The question has been modified.]
3. $\triangle \mathrm{ABP} \sim \triangle \mathrm{DEF}$ and
$\mathrm{A}(\triangle \mathrm{ABP}): \mathrm{A}(\triangle \mathrm{DEF})=144: 81$, then $\mathrm{AB}: \mathrm{DE}=$?
Solution:

$$
\begin{aligned}
& \frac{\mathrm{A}(\triangle \mathrm{ABP})}{\mathrm{A}(\triangle \mathrm{DEF})}=\frac{144}{81} \\
& \frac{\mathrm{~A}(\triangle \mathrm{ABP})}{\mathrm{A}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}
\end{aligned}
$$

...(ii)[Theorem of areas of similar triangles]
$\therefore \quad \frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{144}{81}$
\ldots...[From (i) and (ii)]
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{12}{9}$ or $\frac{4}{3}$
...[Taking square root of both sides]
4. From given information, is $P Q \| B C$?
$A P=2, P B=4, A Q=3, Q C=6$

Solution:

$$
\begin{array}{r}
\frac{\mathrm{AP}}{\mathrm{~PB}}=\frac{2}{4}=\frac{1}{2} \\
\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{3}{6}=\frac{1}{2} \tag{ii}
\end{array}
$$

...(i)[Given]

In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{2}$
\ldots...[From (i) and (ii)]
$\therefore \quad$ line $\mathrm{PQ} \|$ side BC
...[Converse of basic proportionality theorem]
5. Areas of two similar triangles are $225 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$. If side of smaller triangle is 12 cm , find corresponding side of major triangle.
Solution:
Let the areas of two similar triangles be A_{1} and A_{2}.
$\mathrm{A}_{1}=225 \mathrm{~cm}^{2}$ and $\mathrm{A}_{2}=81 \mathrm{~cm}^{2}$
Let the corresponding sides of triangles be s_{1} and s_{2} respectively.
$\mathrm{s}_{1}=12 \mathrm{~cm}$
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{s}_{1}{ }^{2}}{\mathrm{~s}_{2}{ }^{2}}$
...[Theorem of areas of similar triangles]
$\therefore \quad \frac{225}{81}=\frac{\mathrm{s}_{1}{ }^{2}}{12^{2}}$
$\therefore \quad \mathrm{s}_{1}{ }^{2}=\frac{225 \times 12^{2}}{81}$
$\therefore \quad \mathrm{s}_{1}=\frac{15 \times 12}{9}$
.[Taking square root of both sides]
$\therefore \quad \mathrm{s}_{1}=20 \mathrm{~cm}$
$\therefore \quad$ The length of the corresponding side of the bigger triangle is 20 cm .
6. In fig., $\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{DCB}=90^{\circ}, \mathrm{AB}=6$, $\mathrm{DC}=8$, then $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{BCD})}=$?

Solution:
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{BCD}$ have same base BC .
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{BCD})}=\frac{\mathrm{AB}}{\mathrm{DC}} \ldots$ [Triangles having equal base]

$$
=\frac{6}{8}
$$

$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}=\frac{3}{4}$

Q. 3 (A) Complete the following activities.

[3 Marks]

1. In $\triangle \mathrm{ABC}, \mathrm{AP} \perp \mathrm{BC}$ and $\mathrm{BQ} \perp \mathrm{AC}, \mathrm{B}-\mathrm{P}-\mathrm{C}$, $\mathrm{A}-\mathrm{Q}-\mathrm{C}$, then show that $\triangle \mathrm{CPA} \sim \Delta \mathrm{CQB}$. If $\mathrm{AP}=7, \mathrm{BQ}=8, \mathrm{BC}=12$, then $\mathrm{AC}=$?

In $\triangle \mathrm{CPA}$ and $\Delta \mathrm{CQB}$

\ldots. each 90°]
$\angle \mathrm{ACP} \cong \angle \square$. \ldots [common angle]
$\Delta \mathrm{CPA} \sim \Delta \mathrm{CQB} \quad \ldots[\square$ similarity test $]$
$\frac{\mathrm{AP}}{\mathrm{BQ}}=\frac{\square}{\mathrm{BC}}$
\ldots...corresponding sides of similar triangles]
$\frac{7}{8}=\frac{\square}{12}$
$\mathrm{AC} \times \square=7 \times 12$
$\mathrm{AC}=10.5$

Solution:

In $\triangle \mathrm{CPA}$ and $\triangle \mathrm{CQB}$
$\begin{array}{ll}\angle \mathrm{CPA} \cong \angle \mathbf{C Q B} . & \ldots\left[\text { each } 90^{\circ}\right] \\ \angle \mathrm{ACP} \cong \angle \mathrm{BCQ} & \ldots[\text { common angle }] \\ \Delta \mathrm{CPA} \sim \triangle \mathrm{CQB} & \ldots[\mathbf{A A} \text { similarity test }] \\ \frac{\mathrm{AP}}{\mathrm{BQ}}=\frac{\mathrm{AC}}{\mathrm{BC}} & \end{array}$
...[corresponding sides of similar triangle]
$\frac{7}{8}=\frac{\mathbf{A C}}{12}$
$\mathrm{AC} \times \mathbf{8}=7 \times 12$
$\mathrm{AC}=\frac{7 \times 12}{8}$

$$
=\frac{7 \times 3}{2}=\frac{21}{2}
$$

$\mathrm{AC}=10.5$
2. A line is parallel to one side of triangle which intersects remaining two sides in two distinct points then that line divides sides in same proportion.
Given: In $\triangle \mathrm{ABC}$ line $l \|$ side BC and line l intersect side AB in P and side AC in Q.

To prove: $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
Construction: Draw CP and BQ Proof:

$\triangle \mathrm{APQ}$ and $\triangle \mathrm{PQB}$ have equal height.
$\frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQB})}=\frac{\square}{\mathrm{PB}}$
$\frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQC})}=\frac{\square}{\mathrm{QC}}$
... [areas in proportion of base](ii)
$\triangle \mathrm{PQC}$ and $\triangle \mathrm{PQB}$ have \square is common base.

Seg PQ || Seg BC, hence height of $\triangle \mathrm{APQ}$ and $\triangle \mathrm{PQB}$.
$\mathrm{A}(\Delta \mathrm{PQC})=\mathrm{A}(\Delta \square) \quad \ldots$ (iii)
$\frac{\mathrm{A}(\Delta \mathrm{APQ})}{\mathrm{A}(\Delta \mathrm{PQB})}=\frac{\mathrm{A}(\Delta \square)}{\mathrm{A}(\Delta \square)} \quad \ldots[$ (i), (ii), and (iii)]
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}} \quad \ldots[(\mathrm{i})$ and (ii)]

Solution:

Proof:
$\triangle \mathrm{APQ}$ and $\triangle \mathrm{PQB}$ have equal height.
$\frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQB})}=\frac{\mathbf{A P}}{\mathrm{PB}}$
$\frac{\mathrm{A}(\Delta \mathrm{APQ})}{\mathrm{A}(\Delta \mathrm{PQC})}=\frac{\left.\begin{array}{|c}\mathbf{A Q} \\ \mathrm{QC}\end{array} . \quad \text { areas in proportion of base }\right](\mathrm{i})}{}$ $\triangle \mathrm{PQC}$ and $\triangle \mathrm{PQB}$ have $\mathbf{P Q}$ is common base.
Seg PQ || Seg BC , hence height of $\triangle \mathrm{APQ}$ and $\triangle \mathrm{PQB}$.
$\mathrm{A}(\Delta \mathrm{PQC})=\mathrm{A}(\Delta \mathbf{\text { PQB }})$
...[Areas of two triangles having equal base and height are equal](iii)
$\frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQB})}=\frac{\mathrm{A}(\Delta \boxed{\mathrm{APQ}})}{\mathrm{A}(\Delta \boxed{\mathrm{PQC}})} \ldots[$ (i), (ii), and (iii)]
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$ \ldots..[(i) and (ii)]
3. From fig., seg $\mathrm{PQ} \|$ side $\mathrm{BC}, \mathrm{AP}=x+3$, $\mathrm{PB}=x-3, \mathrm{AQ}=x+5, \mathrm{QC}=x-2$, then complete the acitivity to find the vlaue of x.

In $\triangle P Q B, P Q \|$ side $B C$
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\square}$
$\frac{x+3}{x-3}=\frac{x+5}{\square}$
$(x+3) \square=(x+5)(x-3)$
$x^{2}+x-\square=x^{2}+2 x-15$
$x=$ \qquad

Solution:

In $\triangle \mathrm{PQB}, \mathrm{PQ} \|$ side BC

$$
\begin{array}{ll}
& \frac{\mathrm{AP}}{\mathrm{~PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}} \quad \ldots[\text { Basic proportionality theorem }] \\
& \frac{x+3}{x-3}=\frac{x+5}{\overline{x-2}} \\
\therefore & (x+3) x^{x-2}=(x+5)(x-3) \\
\therefore & x^{2}+x-\mathbf{6}=x^{2}+2 x-15 \\
\therefore & x-6=2 x-15 \\
\therefore & 2 x-x=15-6 \\
\therefore & x=\mathbf{9}
\end{array}
$$

Q.3. (B)
[3 Marks]

1. There are two poles having heights 8 m and 4 m on plane ground as shown in fig. Because of sunlight shadows of smaller pole is $\mathbf{6 m}$ long, then find the length of shadow of longer
pole.

6

Solution:
Here, AC and PR represents the bigger and smaller poles, and BC and QR represents their shadows respectively.
Now, $\triangle \mathrm{ACB} \sim \Delta \mathrm{PRQ}$
$\ldots[\because$ Vertical poles and their shadows
form similar figures]
$\therefore \quad \frac{\mathrm{CB}}{\mathrm{RQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
...[Corresponding sides of similar triangles]
$\therefore \quad \frac{x}{6}=\frac{8}{4}$
$\therefore \quad x=\frac{8 \times 6}{4}$
$\therefore \quad x=12 \mathrm{~m}$
$\therefore \quad$ The shadow of the bigger pole will be 12 metres long at that time.
2. In $\triangle A B C, B-D-C$ and $B D=7, B C=20$, then find the following ratio.
i. $\frac{\mathrm{A}(\Delta \mathrm{ABD})}{\mathrm{A}(\Delta \mathrm{ADC})}$
ii. $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}$
iii. $\frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\Delta \mathrm{ABC})}$

Solution:

Draw $\mathrm{AE} \perp \mathrm{BC}, \mathrm{B}-\mathrm{E}-\mathrm{C}$.
$B C=B D+D C$
$\therefore \quad 20=7+D C$
$\therefore \quad \mathrm{DC}=20-7=13$
i. $\quad \triangle \mathrm{ABD}$ and $\triangle \mathrm{ADC}$ have same height AE .
$\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{\mathrm{BD}}{\mathrm{DC}}$
...[Triangles having equal height]
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{7}{13}$
ii. $\quad \triangle \mathrm{ABD}$ and $\triangle \mathrm{ABC}$ have same height AE .
$\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{BD}}{\mathrm{BC}}$
...[Triangles having equal height]
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{7}{20}$
iii. $\triangle \mathrm{ADC}$ and $\triangle \mathrm{ABC}$ have same height AE .
$\frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{DC}}{\mathrm{BC}}$
...[Triangles having equal height]
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{13}{20}$
3. In given fig., quadrilateral PQRS, side $P Q \|$ side $\mathrm{SR}, \mathrm{AR}=5 \mathrm{AP}$, then prove that, $\mathrm{SR}=5 \mathrm{PQ}$

Proof:
side $\mathrm{PQ} \|$ side SR and seg SQ is their transversal. ...[Given]
$\therefore \quad \angle \mathrm{QSR} \cong \angle \mathrm{SQP} \quad \ldots$ [Alternate angles]
$\therefore \quad \angle \mathrm{ASR} \cong \angle \mathrm{AQP} \quad \ldots$ (i) $[\mathrm{Q}-\mathrm{A}-\mathrm{S}]$
In $\triangle \mathrm{ASR}$ and $\triangle \mathrm{AQP}$,
$\angle \mathrm{ASR} \cong \angle \mathrm{AQP} \quad \ldots[$ From (i) $]$
$\angle \mathrm{SAR} \cong \angle \mathrm{QAP} \quad \ldots$ [Vertically opposite angles]
$\therefore \quad \Delta \mathrm{ASR} \sim \Delta \mathrm{AQP} \quad \ldots$ [AA test of similarity]
$\therefore \quad \frac{\mathrm{AR}}{\mathrm{AP}}=\frac{\mathrm{SR}}{\mathrm{PQ}}$
...(ii)[Corresponding sides of similar triangles]
But, $\mathrm{AR}=5 \mathrm{AP}$...[Given]
$\therefore \quad \frac{\mathrm{AR}}{\mathrm{AP}}=\frac{5}{1}$
$\therefore \quad \frac{\mathrm{SR}}{\mathrm{PQ}}=\frac{5}{1}$
$\ldots[$ From (ii) and (iii)]
$\therefore \quad \mathrm{SR}=5 \mathrm{PQ}$
4. In triangle $A B C$ point D is on side $B C$ (B-D-C) such that $\angle \mathrm{BAC}=\angle \mathrm{ADC}$ then prove that $C A^{2}=C B \times C D$

Proof:
In $\triangle \mathrm{BAC}$ and $\triangle \mathrm{ADC}$,

$$
\begin{array}{rll}
& \angle \mathrm{BAC} \cong \angle \mathrm{ADC} & \ldots[\text { Given }] \\
& \angle \mathrm{BCA} \cong \angle \mathrm{ACD} & \ldots[\text { Common angle }] \\
\therefore \quad & \Delta \mathrm{BAC} \sim \triangle \mathrm{ADC} & \ldots[\text { AA test of similarity }]
\end{array}
$$

$\therefore \quad \frac{\mathrm{CA}}{\mathrm{CD}}=\frac{\mathrm{CB}}{\mathrm{CA}}$
\ldots..[Corresponding sides of similar triangles]
$\therefore \quad \mathrm{CA} \times \mathrm{CA}=\mathrm{CB} \times \mathrm{CD}$
$\therefore \quad \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}$
5. In Quadrilateral ABCD , side $\mathrm{AD} \| \mathrm{BC}$, diagonal $A C$ and $B D$ intersect in point P, then prove that $\frac{A P}{P D}=\frac{P C}{B P}$

Proof:

seg AD \| seg BC and
BD is their transversal. ...[Given]
$\therefore \quad \angle \mathrm{DBC} \cong \angle \mathrm{BDA} \quad \ldots$ [Alternate angles]
$\therefore \quad \angle \mathrm{PBC} \cong \angle \mathrm{PDA} \quad \ldots(\mathrm{i})[\mathrm{D}-\mathrm{P}-\mathrm{B}]$
In $\triangle \mathrm{PBC}$ and $\triangle \mathrm{PDA}$,
$\angle \mathrm{PBC} \cong \angle \mathrm{PDA} \quad \ldots[$ From (i) $]$
$\angle \mathrm{BPC} \cong \angle \mathrm{DPA}$
...[Vertically opposite angles]
$\therefore \quad \triangle \mathrm{PBC} \sim \triangle \mathrm{PDA} \quad \ldots$ [AA test of similarity]
$\therefore \quad \frac{\mathrm{BP}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{AP}}$
\ldots...[Corresponding sides of similar triangles]
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{BP}}$
...[By alternendo]
Q. 4
[4 Marks]

1. Side of equilateral triangle $P Q R$ is 8 cm then find the area of triangle whose side is half of the side of triangle $P Q R$.
Given: $\triangle \mathrm{PQR}$ is an equilateral triangle with $\mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=8 \mathrm{~cm}$ and $\triangle \mathrm{ABC}$ is an equilateral triangle with $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=4 \mathrm{~cm}$
To find: $\mathrm{A}(\triangle \mathrm{ABC})$
Construction:
Draw seg $\mathrm{AD} \perp \mathrm{BC}$; B-D-C
Solution:
In $\triangle \mathrm{ABD}$,
$\angle \mathrm{ADB}=90^{\circ}$
...[construction]
$\angle \mathrm{ABD}=60^{\circ}$

...[Angle of an equilateral triangle]
$\angle \mathrm{BAD}=30^{\circ} \ldots$ [Remaining angle of a triangle]
$\therefore \quad \triangle \mathrm{ABD}$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
$\therefore \quad \mathrm{AD}=\frac{\sqrt{3}}{2} \mathrm{AB} \quad \ldots$ [side opposite to 60°]

$$
\begin{equation*}
=\frac{\sqrt{3}}{2} \times 4=2 \sqrt{3} \tag{i}
\end{equation*}
$$

Area of triangle $=\frac{1}{2} \times$ base \times height
$\therefore \quad$ Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{BC}$

$$
\begin{aligned}
& =\frac{1}{2} \times 2 \sqrt{3} \times 4 \\
& =2 \times 2 \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

...[From (i)]
$\therefore \quad$ Area of the triangle whose side is half of the side of $\triangle \mathrm{PQR}$ is $4 \sqrt{3} \mathrm{sq} . \mathrm{cm}$.
2. Areas of two similar triangles are equal then prove that triangles are congruent.
Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$ and $\mathrm{A}(\Delta \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{PQR})$
To prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
Proof:

$$
\begin{equation*}
\frac{\mathrm{A}(\Delta \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{PQR})}=1 \tag{i}
\end{equation*}
$$

Also, $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$
\ldots [Theorem of areas of similar triangles]
$\therefore \quad 1=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}} \quad \ldots[$ From (i) $]$
$\therefore \quad 1=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}$
$\therefore \quad \mathrm{AB}^{2}=\mathrm{PQ}^{2}$
$\therefore \quad \mathrm{AB}=\mathrm{PQ} \quad \ldots$ [Taking square root of both sides]
i.e., $\operatorname{seg} A B \cong \operatorname{seg} P Q$

Similarly, seg $B C \cong \operatorname{seg} Q R$
and seg $A C \cong \operatorname{seg} P R$
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \quad \ldots[$ SSS test of congruency $]$
3. Two triangles are similar. Smaller triangle's sides are $4 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$. Perimeter of larger triangle is 90 cm then find the sides of larger triangle.
Given: $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
In $\triangle \mathrm{ABC}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$
In $\triangle \mathrm{PQR}, \mathrm{PQ}+\mathrm{QR}+\mathrm{PR}=90 \mathrm{~cm}$
To find: $P Q, Q R$ and $P R$

\ldots...[Corresponding sides of similar triangles]
Let $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=k$
$\therefore \quad \frac{4}{\mathrm{PQ}}=\frac{5}{\mathrm{QR}}=\frac{6}{\mathrm{PR}}=\mathrm{k} \quad \ldots$ [Given]
$\therefore \quad \frac{4}{\mathrm{PQ}}=\mathrm{k}, \frac{5}{\mathrm{QR}}=\mathrm{k}$ and $\frac{6}{\mathrm{PR}}=\mathrm{k}$
$\therefore \quad \mathrm{PQ}=\frac{4}{\mathrm{k}}, \mathrm{QR}=\frac{5}{\mathrm{k}}$ and $\mathrm{PR}=\frac{6}{\mathrm{k}}$
$\therefore \quad \mathrm{PQ}+\mathrm{QR}+\mathrm{PR}=\frac{4}{\mathrm{k}}+\frac{5}{\mathrm{k}}+\frac{6}{\mathrm{k}}$
$\therefore \quad 90=\frac{15}{\mathrm{k}}$
.[Given]
$\therefore \quad \mathrm{k}=\frac{15}{90}=\frac{1}{6}$
$\therefore \quad \mathrm{PQ}=\frac{4}{\left(\frac{1}{6}\right)}=4 \times 6=24 \mathrm{~cm}$
$\ldots[$ From (i)]
$\mathrm{QR}=\frac{5}{\left(\frac{1}{6}\right)}=5 \times 6=30 \mathrm{~cm}$
\ldots. [From (i)]
$\mathrm{PR}=\frac{6}{\left(\frac{1}{6}\right)}=6 \times 6=36 \mathrm{~cm}$
\ldots. [From (i)]
$\therefore \quad$ The sides of the larger triangle are $24 \mathrm{~cm}, 30 \mathrm{~cm}$ and 36 cm .

Q. 5

1. In fig., $P S=2, S Q=6$, $\mathrm{QR}=5, \mathrm{PT}=x$ and TR $=y$. Then find the pair of value of x and y such that ST $\|$ side QR.

Solution:

In $\triangle \mathrm{PQR}$,
line $\mathrm{ST}|\mid$ side QR
...[Given]
$\therefore \quad \frac{\mathrm{PS}}{\mathrm{SQ}}=\frac{\mathrm{PT}}{\mathrm{TR}} \quad \ldots$ [Basic proportionality theorem]
$\therefore \quad \frac{2}{6}=\frac{\mathrm{PT}}{\mathrm{TR}}$
...[Given]
$\therefore \quad \frac{1}{3}=\frac{x}{y}$
$\therefore \quad y=3 x$
$\therefore \mathrm{PR}=\mathrm{PT}+\mathrm{TR} \quad \ldots[\mathrm{P}-\mathrm{T}-\mathrm{R}]$
$\therefore \quad \mathrm{PR}=x+y \quad \ldots$ (ii)[Given]
In $\triangle \mathrm{PQR}, \mathrm{PQ}+\mathrm{QR}>\mathrm{PR}$
$\ldots\left[\begin{array}{l}\text { The sum of the lengths of } \\ \text { any two sides of a triangle is } \\ \text { greater than the third side }\end{array}\right]$
$\therefore \quad(\mathrm{PS}+\mathrm{SQ})+\mathrm{QR}>\mathrm{PR} \quad \ldots[\mathrm{P}-\mathrm{S}-\mathrm{Q}]$
$\therefore \quad 2+6+5>$ PR $\quad \ldots$ [Given]
$\therefore \quad 13>\mathrm{PR}$
$\therefore x+y<13 \quad \ldots[$ [From (ii)]
$\therefore \quad x+3 x<13$
$\ldots[$ From (i)]
$\therefore \quad 4 x<13$
$\therefore \quad$ Integer values of x satisfying equation (ii) are $1,2,3$.
$\therefore \quad$ If $x=1$, we get $y=3 x=3$
If $x=2$, we get $y=3 x=6$
 .[From (i)]
If $x=3$, we get $y=3 x=9$
$\therefore \quad$ Some of the pairs of values of x and y are $(1,3),(2,6),(3,9)$.
2. An architecture have model of building. Length of building is $1 \mathbf{m}$ then length of model is 0.75 cm . Then find length and height of model building whose actual length is 22.5 m and height is 10 m .

Solution:

Note that the dimensions of the actual building and the dimensions of the model must be in same proportion.
$\therefore \quad \frac{\text { Length of building }}{\text { Lenght of model building }}$
$=\frac{\text { Height of building }}{\text { Height of model building }}=\frac{1}{0.75} \ldots$ [Given]
$\therefore \quad \frac{22.5}{\text { Length of model building }}$
$=\frac{10}{\text { Height of model building }}=\frac{1}{0.75} \ldots$ [Given]
$\therefore \quad \frac{22.5}{\text { Legnth of model building }}=\frac{1}{0.75}$
$\therefore \quad$ Length of the model building $=22.5 \times 0.75$

$$
=16.875 \mathrm{~m}
$$

Also, $\frac{10}{\text { Height of model building }}=\frac{1}{0.75}$
$\therefore \quad$ Height of the model building $=10 \times 0.75=7.5 \mathrm{~m}$
$\therefore \quad$ Length and height of the model building are 16.875 m and 7.5 m respectively.

Note: The \circledR^{\circledR} marked questions are the part of reduced/non-evaluative portion for academic year 2020-21 only.

1. Transfer of information from molecules of DNA to mRNA is called \qquad process.
(A) translocation
(B) translation
(C) transcription
(D) differentiation
2. Similarities in initial stages indicate the _ evidence.
(A) Connecting links
(B) Anatomical
(C) Embryological
(D) Palaeontological
3. is a vestigial organ in human beings.
(A) Wisdom teeth
(B) Ear muscles
(C) Body hairs
(D) All of the above
4. Protein located in bones is \qquad .
(A) myosin
(B) melanin
(C) haemoglobin
(D) ossein
5. Which of the following vitamins is necessary for synthesis of NADH_{2} ?
(A) Vitamin B_{3}
(B) Vitamin C
(C) Vitamin B_{2}
(D) Vitamin K
6.

$\overline{\text { (A) }} \quad$ Somatic
(B) Gametes
(C) Stem
(D) Both (A) and (C)
7. The first step of karyokinesis is \qquad .
(A) anaphase
(B) telophase
(C) metaphase
(D) prophase
8. _is not a part of mitosis.
(A) Anaphase
(B) Diplotene
(C) Prophase
(D) Cytokinesis
9. We get \qquad energy from lipids.
(A) $4 \mathrm{cal} / \mathrm{gm}$
(B) $9 \mathrm{cal} / \mathrm{gm}$
(C) $9 \mathrm{kcal} / \mathrm{gm}$
(D) $4 \mathrm{kcal} / \mathrm{gm}$
10. In humans, there are \qquad pairs of chromosomes.
(A) 22
(B) 23
(C) 44
(D) 46
11. Which of the following is not a type of asexual reproduction in multicellular organisms?
(A) Fragmentation
(B) Regeneration
(C) Budding
(D) Binary fission
12. Find the odd one out:
(A) Stigma
(B) Anther
(C) Style
(D) Ovary
13. At the time of birth, there are \qquad oocytes in the ovary of a female foetus.
(A) 1 to 2 million
(B) 2 to 3 million
(C) 2 to 4 million
(D) none of these
14. \qquad modern remedial technique is used if there is a problem in implantation of embryo in the uterus.
(A) Surrogacy
(B) Sperm bank
(C) In vitro fertilization
(D) none of these
15. Implantation of the embryo occurs in \qquad .
(A) uterus
(B) ovary
(C) oviduct
(D) vagina
16. In humans, sperm production occurs in the organ \qquad
(A) testes
(B) scrotum
(C) prostate gland
(D) ovaries
17. Pregnant mother supplies nourishment to her foetus through \qquad .
(A) uterus
(B) placenta
(C) ovary
(D) oviduct
18. twins are formed from a single embryo.
(A) Dizygotic
(B) Monozygotic
(C) Multiple zygote
(D) Zygote
19. Pollen grains are formed by \qquad division in locules of anthers.
(A) meiosis
(B) mitosis
(C) amitosis
(D) binary
20. Asexual reproduction occurs by \qquad cell division.
(A) mitotic
(B) meiotic
(C) fertilization
(D) double fertilization
21. This method of asexual reproduction is seen in Paramoecium.
(A) Transverse binary fission
(B) Longitudinal binary fission
(C) Simple binary fission
(D) Regeneration
22. In meiosis, the number of chromosomes becomes \qquad .
(A) multiple times
(B) triple
(C) half
(D) double
23. Generally, every month, \qquad ovum is released in the abdominal cavity alternately from each ovary.
(A) 1
(B) 2
(C) 3
(D) 4
24. is present in unisexual flower.
(A) Both androecium and gynoecium
(B) Only androecium
(C) Only gynoecium
(D) Androecium or gynoecium
\qquad is a chemical factor of abiotic components.
(A) Air
(B) water
(C) Nutrients
(D) sunlight
(8) 26 . \qquad is an organic compound of abiotic components.
(A) Protein
(B) Iron
(C) Sodium
(D) Oxygen
27.
(A) Lesser florican
(B) Tiger
(C) Giant squirrel
(D) Musk deer
28. \qquad is an indeterminate species.
(A) Red panda
(B) Lion
(C) Lion tailed monkey
(D) Giant squirrel
29. Occurrence of diversity among the organisms of the same species is called \qquad diversity.
(A) species
(B) genetic
(C) ecosystem
(D) animal
30. In modern civilization, \qquad has become a primary need
(A) food
(B) cloth
(C) shelter
(D) energy
31. Most electric power plants are based on the principle of \qquad -.
(A) electro induction
(B) magnetic induction
(C) electro-magnetic induction
(D) electromagnet
32. Principle of Electromagnetic induction was invented by the scientist \qquad .
(A) Ohm
(B) Michael Faraday
(C) Joule
(D) Newton
33. In the power plant based on nuclear energy is used to rotate the generator.
(A) Steam turbine
(B) air turbine
(C) water turbine
(D) none of these
34. When a neutron is bombarded on an atom of uranium, \qquad neutrons are generated in this process.
(A) 1
(B) 2
(C) 3
(D) 4
35. Kinetic energy in flowing water drives \qquad to generate electricity.
(A) watermill
(B) windmill
(C) turbines
(D) generator
36. Wind turbines with capacity \qquad are commercially available.
(A) 1 kW to 7 MW
(B) 1 kW to 7 kW
(C) 1 kW to 7000 W
(D) 1 W to 7 MW
37. Solar photovoltaic cells convert the solar radiation energy directly into \qquad energy.
(A) electrical
(B) potential
(C) kinetic
(D) heat
38. A silicon solar cell of dimension 1 sq.cm. generates current of about
(A) 50 mA
(B) 30 mA
(C) 50 A
(D) 30 A
39. A silicon solar cell of dimension 1 sq.cm. generates \qquad potential difference.
(A) 0.1 V
(B) 0.5 V
(C) 0.1 mV
(D) 0.5 Mv
40. In nuclear power plants, neutrons are bombarded on atoms of \qquad
(A) Uranium-236.
(B) Barium
(C) Krypton.
(D) Uranium -235.
41. My body is soft and slimy, hence I am referred as \qquad .
(A) Mollusca
(B) Echinodermata
(C) Annelida
(D) Arthropoda
42. Which of the following is a hermaphrodite animal?
(A) Doliolum
(B) Scorpion
(C) Centipede
(D) Cockroach
43. Which of the following animals can regenerate its broken body parts?
(A) Frog
(B) Starfish
(C) Sparrow
(D) Pigeon
44. Which of the following is a warm blooded (homeotherm) animal?
(A) Bat
(B) Tortoise
(C) Wall lizard
(D) Crocodile
45. My body is \qquad shaped to minimize water resistance.
(A) pointed
(B) spindle
(C) cartilaginous
(D) flat
®46.
(A) Rabbit
(B) Cat
(C) Leech
(D) Earthworm
47. Which of the following animals has a hard calcareous shell?
(A) Nereis
(B) Shark
(C) Bivalve
(D) Herdmania
48.
(A) Citric
(B) Gluconic
(C) Lactic
(D) Itaconic
49. Nowadays, \qquad are used for treatment of diarrhoea and treatment of poultry also.
(A) yoghurt
(B) probiotics
(C) vinegar
(D) cheese
50. Yoghurt is a milk product produced with the help of \qquad -ill
(A) Lactobacilli
(B) Azotobacter
(C) Corynebacterium
(D) Streptococcus.
51. \qquad is a powerful antibiotic against treatment of tuberculosis.
(A) Penicillin
(B) Rifamycin
(C) Streptomycin
(D) Bacitracin.
52. is used in the commercial bakery industry.
(A) Compressed yeast
(B) Algae
(C) Bacteria
(D) Microbes
53. \qquad is a substance obtained by microbial $\overline{\text { processing that functions as artificial sweetener. }}$
(A) Nycin
(B) Lysine
(C) Xanthenes
(D) Xylitol
54. At the earliest stage of development, the organism is in the form of a mass of a cell, which are almost alike, those cells are called
\qquad -.
(A) stem cells
(B) RBC
(C) WBC
(D) none of these
55. Which of the following factors are considered or need to be paid attention during organ transplantation?
(A) Blood group of recipient
(B) Diseases of donor
(C) Age of donor
(D) All of the above
56. Availability of \qquad is an important requirement in organ transplantation.
(A) doctor
(B) clinic
(C) donor
(D) ambulance
57. The disease related with the synthesis of insulin is
(A) cancer
(B) arthritis
(C) heart disease
(D) diabetes
58. Transgenic raw potatoes generate the immunity against \qquad disease.
(A) plague
(B) cholera
(C) leprosy
(D) TB
59. \qquad have valuable contributions in the green revolution in the USA.
(A) Dr. Norman Borlaug
(B) Dr. Swaminathan
(C) Dr. Verghese Kurien
(D) Dr. Har Govind Khorana
60. Methods like artificial insemination and embryo transplant are mainly used for \qquad .
(A) animal husbandry
(B) wild life
(C) pet animals
(D) infertile women
61. \qquad is the revolutionary event in biotechnology after cloning.
(A) Human genome project
(B) DNA discovery
(C) Stem cell research
(D) All of the above
62. Biotechnology integrated the toxin which is fatal for \qquad , was produced in leaves and bolls of cotton.
(A) bollworm
(B) caterpillar
(C) sparrow
(D) frog
63. Cell \qquad starts from $14^{\text {th }}$ day of conception.
(A) growth
(B) differentiation
(C) development
(D) division
64. The Government of India has encouraged __ for improving the productivity by launching the program NKM-16.
(A) aquaculture
(B) poultry
(C) piggery
(D) apiculture
® 65 . \qquad are present in the umbilical cord by which the foetus is joined to the uterus of the mother.
(A) Stem cells
(B) Muscle cells
(C) Neuron cells
(D) Bone cells
66. For the purpose of preservation stem cell samples are kept in \qquad (B)
(A) liquid oxygen
(B) hydrogen
(C) liquid chlorine
(D) liquid nitrogen
67. Phenylketonuria arises due to genetic changes in \ldots cells.
(A) liver
(B) intestine
(C) pancreas
(D) heart
68. organism is used as biofertilizers.
(A) Thiobacillus
(B) Nostoc
(C) Saccharomyces
(D) Escherichia
69. Alcohol consumption mainly affects the (A) system.
(A) nervous
(B) excretory
(C) respiratory
(D) digestive
70. Laughter club is a remedy to drive away
\qquad addic
(A) addictions
(B) stress
(C) lethargy
(D) epidemics
71. \qquad helps to improve concentration in the studies.
(A) Hobbies
(B) Sports
(C) Meditation
(D) Eatables
72. \qquad influence is stronger in case of $\overline{\text { adolescents. }}$
(A) Teachers
(B) Fathers
(C) Relatives
(D) Peer group
73. Our \qquad has been changed to some extent in the age of technology.
(A) lifestyle
(B) habit
(C) circumstance
(D) passion
®74. Hobbies like \qquad pet animals help to create a positive mindset.
(A) feeding
(B) transferring
(C) rearing
(D) looking
75. Continuous consumption of \qquad substances causes carcinogenic effects especially on the mouth and lung.
(A) hot
(B) sweet
(C) spicy
(D) tobacco like
76. Alcoholic person lacks the \qquad thinking.
(A) straight
(B) rational
(C) universal
(D) spiritual
77. \qquad may arise due to excessive use of mobile phones.
(A) Headache
(B) Problem in vision
(C) Joint pains
(D) All of the above
78. Liquor is produced from \qquad .
(A) alcohol
(B) glucose
(C) acid
(D) salt
79. Salaam Mumbai Foundation runs programs for
\qquad in a slum area.
(A) education
(B) tobacco
(C) cybercrimes
(D) domestic violence

Answers:

1.	(C)	2.	(C)	3.	(D)	4.	(D)
5.	(A)	6.	(D)	7.	(D)	8.	(B)
9.	(C)	10.	(B)	11.	(D)	12.	(B)
13.	(C)	14.	(A)	15.	(A)	16.	(A)
17.	(B)	18.	(B)	19.	(A)	20.	(A)
.	(A)	22.	(C)	23.	(A)	24.	(D)
25.	(C)	26.	(A)	27.	(D)	28.	(D)
29.	(B)	30.	(D)	31.	(C)	32.	(B)
33.	(A)	34.	(C)	35.	(C)	36.	(A)
37.	(A)	38.	(B)	39.	(B)	40.	(D)
.	(A)	42.	(A)	43.	(B)	44.	(A)
45.	(B)	46.	(D)	47.	(C)	48.	(C)
49.	(B)	50.	(A)	51.	(B)	52.	(A)
53.	(D)	54.	(A)	55.	(D)	56.	(C)
57.	(D)	58.	(B)	59.	(A)	60.	(A)
61.	(C)	62.	(A)	63.	(B)	64.	(A)

PERFELT SERIES

\longrightarrow English Kumarbharati

- मराठी अक्षरभारती
\rightarrow हिंदी लोकभारती
\rightarrow हिंदी लोकवाणी
- आमोदः सम्पूर्ण-संस्कृतम्
- आनन्दः संयुक्त-संस्कृतम्
- History and Political Science
\longrightarrow Geography
- Mathematics (Part - 1)
- Mathematics (Part - II)
- Science and Technology (Part-1)

Science and Technology (Part-2)

PRECISE SERIES

\longrightarrow My English Coursebook

- मराठी कुमारभारती
\rightarrow हिंदी लोकभारती
- हिंदी लोकवाणी
- आमोदः सम्पूर्ण-संस्कृतम्
- आनन्दः संयुक्त-संस्कृतम्
- इतिहास व राज्यशास्त्र
\rightarrow भूगोल
- गणित (भाग - I)
- गणित (भाग - II)
- विज्ञान आणि तंत्रज्ञान (भाग - १)
- विज्ञान आणि तंत्रज्ञान (भाग - २)

ADDITIDNAL TITLES FIR STD. X

- SSC Question Papers Set (Eng., Mar. \& Semi Eng. Med.)
- आमोद: (मम्ण र्ण संस्कृतम) SSC Question Papers Set
- हिंदी लोकवाणी (संयुक्ता), संस्कृत-आनन्दः (संयुक्तम)

SSC Question Papers Set

- Mathematics Challenging Questions
- Geography Map \& Graph Practice Book (Eng. \& Mar. Med.)
- Hindi Grammar Worksheets, Grammar books \& Writing Skills books for Marathi \& Hindi

Visit Our Website

Arét Publications ${ }^{\oplus}$ Pvt. Ltd. Transforming lives through learning.

 Address:$2^{\text {nd }}$ floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400080 Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org
Email: mail@targetpublications.org

[^0]: This reference book is transformative work based on Solutions to 'SSC Board Question Bank (2020-21)' for Mathematics (Part I and II), Science and Technology (Part I and II) released by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 (C) reserved with the Publisher for all the contents created by our Authors.

 No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

