SAMPLE CONTENT SOLUTIONS TO ONBased on Question Bank released by Maharashtra State Board **STD X: ENGLISH / SEMI ENGLISH MEDIUM**

Science (Part I&II) | Maths (Part I&II)

SOLUTIONS TO SSSC BOARD QUESTION BANK

English Medium / Semi English

Salient Features

- Covers solutions to the Entire Question Bank of Std. X released by Maharashtra State Board in the March 2021
- Questions from reduced syllabus (2021-22) are marked with symbol 📵
- Includes Mathematics (Part I and II), Science and Technology (Part I and II)
- Answers framed for all questions are based on Government Textbook and as per the prescribed marking scheme
- Hints provided for questions wherever deemed necessary.

Printed at: Repro India Ltd., Mumbai

© Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

TEID: 2216

PREFACE

The Question Bank for Std. X was released by the Maharashtra State Board in the month of March 2021 as a respite to all the SSC students whose education had suffered due to the ongoing pandemic & the resultant restrictions at that point of time. The board exam for the year 2021 couldn't be conducted due to the pandemic but the question bank released by the Board remains a guiding light for all the students who will be appearing for the board exam in the year 2022 and the further years as well.

Target's **'Solutions to SSC Board Question Bank'** is intended for every state board student of standard X. As the name suggests, the book includes the solutions to each and every question that was provided in the question bank. The book encompasses all the question types as per the given sequence in the question bank for each subject, that is, for Mathematics (Part I and II), Science and Technology (Part 1 and 2). Keeping in the mind syllabus reduced for the academic year 2021-22, questions belonging to the reduced syllabus are marked with symbol **R**.

The answers framed in the book are completely based on the Government Textbook. At certain points, we have simplified or modified the answers for the ease of understanding. We have ensured that the answers are as per the prescribed marking scheme so that the student's efforts bear the desired fruits.

To aid students, hints are provided for questions wherever deemed necessary.

We hope that the students find the book as one stop solution to the Question Bank.

Publisher
 Edition: First

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops

Disclaimer

This reference book is transformative work based on Solutions to 'SSC Board Question Bank (2020-21)' for Mathematics (Part I and II), Science and Technology (Part I and II) released by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

© reserved with the Publisher for all the contents created by our Authors.

No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

CONTENTS

Chapter / Ouestion No.		Subject					
~~~~		Mathematics (Part – I)					
	01	Linear Equations in Two Variables	1				
	02	Ouadratic Equations	13				
	03	Arithmetic Progression	19				
	04	Probability	28				
	01	Mathematics (Part - II)	20				
	01	Similarity	35				
	02	Pythagoras Theorem	44				
	03	Circle	52				
	04	Geometric Constructions	71				
	05	Co-ordinate Geometry	98				
	06	Trigonometry	107				
	00	Science and Technology (Part - I)	107				
		Choose the correct option in the multiple choice answer for the following					
Q.1	(A)	questions.	121				
	(B) I	Find the correlation	128				
	(B) II	Find odd one out and give its explanation	130				
	(B) III	Answer the following questions in one sentence	130				
	(B) IV	Match the columns	135				
	(B) V	Complete the incomplete sentence	137				
	(B) VI Write the name:						
	(B) VI	Right or wrong sentence	140				
	(B) VIII	Write an explanation	143				
	(B) IX	III.     white an explanation.       V     Identify who I am I					
0.2	$(\mathbf{D})$ $\mathbf{IX}$ .	Write Scientific reasons	144				
<u>Q.2</u>	$(\mathbf{R})$ I	Solve the following Questions	154				
	$(\mathbf{B})$ II	Distinguish hetween:	165				
	(B) III	Write short notes	168				
	(B) IV	Explain the following reactions with the balanced equations	170				
	$(\mathbf{B})\mathbf{V}$	Explain the following reactions with the balanced equations.	170				
	$(\mathbf{B}) \mathbf{V}\mathbf{I}$	Draw a next labelled diagram	171				
	$(\mathbf{B}) \mathbf{VI}$	Complete flow chart given below	172				
03	(D) VII.	Answer the Following	173				
Q.3		Answer the following questions	1/4				
<u> </u>		Science and Technology (Part II)	177				
01	(A)	Choose the correct option	210				
	$(\mathbf{R})$ I	Find the odd one out	210				
	(B) II	Name the following	217				
	(B) II	Relate the following	210				
	(B) IV	Write the function of	210				
	$(\mathbf{D})\mathbf{I}\mathbf{V}$ $(\mathbf{P})\mathbf{V}$	Write whether true or false	219				
	(B) VI	Match the following	220				
	$(\mathbf{D}) \mathbf{V} \mathbf{I}$	Define	222				
		Answer in one sentence	223				
02	$(\mathbf{D})$ v III $(\mathbf{A})$	Give scientific reasons	224				
	(A) (D) I	Solve the following sub-questions	227				
	(D) I (D) II	Write short notes	233				
		Distinguish between following	244				
$\bigcirc 2$		Answer the following questions	248				
		Answer the following questions	250				
Q 4		Solve the following questions	269				

## 01 Similarity

<b>Q.1.</b> 1.	(A) MCQ If $\triangle ABC \sim \triangle PQR$ and	nd AB:	[1 Mark] $PQ = 3 : 4 then$	9.	In
	$A(\Delta ABC) : A(\Delta PQR) =$	?	-		Ζ
	(A) 9:25	(B)	9:16		be
	(C) 16:9	(D)	25:9		
2.	Which of the follow similarity?	ving is	s not a test of		
	(A) AAA	(B)	SAS		
	(C) SAA	(D)	SSS		
3.	If $\Delta XYZ \sim \Delta PQR$ and $A(\Delta PQR) = 4 \text{ cm}^2$ then $\Delta PQR = 4 \text{ cm}^2$	nd A(∆ XY:PQ	XYZ) = 25cm ² ,		F
	(A) 4:25	(B)	2:5		(A
	(C) 5:2	(D)	25:4		(C
4.	Ratio of areas of two s is the ratio of th	similar i neir cor	triangles is 9 : 25. responding sides.	10.	In D
	$\overline{(A)}$ 3:4	(B)	3:5		D
	(C) 5:3	(D)	25:81		(7
5.	Given $\triangle ABC \sim \triangle DI$ $\angle E = 35^{\circ}$ then $\angle B = ?$	EF, if	$\angle A = 45^{\circ}$ and		(E (C
	(A) $45^{\circ}$	(B)	35°		(1
	(C) 25°	(D)	40°	Ans	wer
6.	In fig, seg DE    se statement.	ec BC,	identify correct		1. 5. 9.
	А			Hint	· • •
	$\wedge$				.з. А
				1.	A
	D	— E			
	В		°C		
	(A) $\frac{AD}{AD} = \frac{AE}{AE}$	(B)	$\underline{AD} = \underline{AB}$	÷	A
	DB AC	(-)	DB AC	2	A
	(C) $\frac{AD}{DD} = \frac{EC}{AC}$	(D)	$\frac{AD}{DD} = \frac{AE}{EC}$	5.	A
	DB AC		DB EC		
7.	If $\Delta XYZ \sim \Delta PQR$ then	$\frac{\rm XY}{\rm PQ} =$	$\frac{\mathrm{YZ}}{\mathrm{QR}} = ?$	<i>.</i>	$\frac{2}{2}$
	(A) $\frac{XZ}{PR}$	(B)	$\frac{XZ}{PQ}$		$\frac{X}{P}$
	(C) XZ	$(\mathbf{D})$	YZ		v
	$(C) \frac{1}{QR}$	(D)	PQ		Λ
Q		/ A _ /	$60^{\circ}$ than $\sqrt{1} = 2$	4.	L
0.	(A) $45^{\circ}$	$\angle A = 0$ (R)	$60^{\circ}$		A
	$(C) 25^{\circ}$	(D)	40°		A
	(0) 20	$(\mathbf{D})$	10	1	А



$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB}{PQ^2}$$
$$= \frac{3^2}{4^2} = \frac{9}{16}$$
...[Theorem of

...[Theorem of areas of similar triangles]

$$A(\Delta ABC) : A(\Delta PQR) = 9 : 16$$

3. 
$$\frac{A(\Delta XYZ)}{A(\Delta PQR)} = \frac{XY^2}{PQ^2}$$

...[Theorem of areas of similar triangles]

$$\therefore \qquad \frac{25}{4} = \frac{XY}{PQ^2}$$
$$\therefore \qquad \frac{XY}{PQ} = \frac{5}{2}$$

 $\therefore XY : PQ = 5 : 2$ 

4. Let  $\triangle ABC$  and  $\triangle PQR$  be two similar triangles. According to the given condition,  $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{9}{25}$ 

SSC: Board Question Bank But  $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2}$ ...[Theorem of areas of similar triangles]  $\frac{AB^2}{PQ^2} = \frac{9}{25}$ *.*..  $\frac{AB}{PQ} = \frac{3}{5}$ *.*.. 3:5 is the ratio of their corresponding sides. *.*.. 5.  $\triangle ABC \sim \triangle DEF$  $\angle B \cong \angle E$ *.*.. ...[Corresponding angles of similar triangles] But  $\angle E = 35^{\circ}$ ...[Given]  $\angle B = 35^{\circ}$ *.*.. 6. Basic proportionality theorem 8.  $\Delta ABC \sim \Delta LMN$  $\angle A \cong \angle L$ *.*.. ...[Corresponding angles of similar triangles] But  $\angle A = 60^{\circ}$ ...[Given]  $\angle L = 60^{\circ}$ *.*.. 10. Note that  $\triangle ABC$  and  $\triangle ABD$  have same height. The ratio of the areas of two  $A(\Delta ABC) = BC$ triangles with equal heights is  $\frac{1}{A(\Delta ABD)} = \frac{1}{BD} \dots$ *.* . equal to the ratio of their corresponding bases.  $\frac{A(\Delta ABC)}{A(\Delta ABD)} = \frac{12}{8} = \frac{3}{2}$ Q.1 (B) Solve [1 Mark] Are triangles in figure similar? If yes, then 1. write the test of similarity. А 10 6 3 Q R 4 В 8 Solution: In  $\triangle ABC$  and  $\triangle PQR$ ,  $\underline{AB} = \underline{6} = \underline{2}$ ...(i)  $PQ \overline{3} \overline{1}$  $\frac{\mathrm{BC}}{\mathrm{QR}} = \frac{8}{4} = \frac{2}{1}$ ...(ii)  $\frac{\mathrm{AC}}{\mathrm{PR}} = \frac{10}{5} = \frac{2}{1}$ ...(iii)  $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$ ...[From (i), (ii) and (iii)] ...

 $\therefore \quad \Delta ABC \sim \Delta PQR \qquad ...[SSS test of similarity]$ 

- :. The triangles in the figure are similar by SSS test of similarity.
- 2. In fig., line BC || line DE, AB = 2, BD = 3, AC = 4 and CE = x, then find the value of x. A Solution: In  $\triangle ADE$ , line BC || seg DE ...[Given] AB  $= \frac{AC}{C}$ ...[Basic proportionality theorem] ċ. BD CE  $\frac{2}{3} = \frac{4}{x}$ ...[Given] ...  $x = 4 \times \frac{3}{2}$ *.*..  $= 2 \times 3$ *.*.. x = 63. State whether the following triangles are similar or not: If yes, then write the test of similarity.  $\angle P = 35^{\circ}, \angle X = 35^{\circ} \text{ and } \angle Q = 60^{\circ}, \angle Y = 60^{\circ}$ Х Ζ Y 0 R Solution: In  $\triangle$ PQR and  $\triangle$ XYZ,  $\angle P = 35^{\circ}, \angle X = 35^{\circ}, \angle Q = 60^{\circ} \text{ and } \angle Y = 60^{\circ}$ ...[Given]  $\angle P \cong \angle X$  and  $\angle Q \cong \angle Y$ *.*..  $\Delta PQR \sim \Delta XYZ$ *.*.. ...[AA test of similarity] *.*.. The triangles in the figure are similar by AA test of similarity. 4. If  $\triangle ABC \sim \triangle LMN$  and  $\angle B = 40^\circ$ , then  $\angle M = ?$  Give reason. Solution:  $\Delta ABC \sim \Delta LMN$ ...[Given]  $\angle B \cong \angle M$ *.*.. ...(i)[Corresponding angles of similar triangles] But  $\angle B = 40^{\circ}$ ...[Given]  $\angle M = 40^{\circ}$ ...[From (i)] *.*.. 5. Areas of two similar triangles are in the ratio 144:49. Find the ratio of their corresponding sides. Solution:

Let the areas of two similar triangles be  $A_1$ ,  $A_2$ and their corresponding sides be  $S_1$ ,  $S_2$ respectively.

#### **Mathematics - II**

$$\therefore \qquad \frac{A_1}{A_2} = \frac{144}{49} \qquad \dots (i)[Given]$$
$$\frac{A_1}{A_2} = \frac{S_1^2}{S_2^2}$$

...[Theorem of areas of similar triangles]

$$. \frac{144}{49} = \frac{S_1^2}{S_2^2} \qquad \dots [From (i)]$$

- $\therefore \qquad \frac{S_1}{S_2} = \frac{12}{7} \qquad \dots [Taking square root of both sides]$
- :. The ratio of the corresponding sides of the given triangles is 12:7.
- 6.  $\Delta PQR \sim \Delta SUV$ . Write pairs of congruent angles.

#### Solution:

÷

 $\Delta PQR \sim \Delta SUV \qquad \dots [Given]$  $\therefore \qquad \angle P \cong \angle S, \angle Q \cong \angle U, \angle R \cong \angle V$ 

...[Corresponding angles of similar triangles]

7.  $\triangle ABC \sim \triangle DEF$ . Write the ratios of their corresponding sides.

#### Solution:

- $\Delta ABC \sim \Delta DEF$  ...[Given]
- $\therefore \quad \text{The ratios of corresponding sides of the given} \\ \text{triangles are } \frac{AB}{DE}, \frac{BC}{EF} \text{ and } \frac{AC}{DF}.$
- 8. In fig., TP = 10 cm, PS = 6 cm.  $\frac{A(\Delta RTP)}{A(\Delta RPS)}$  = ?



Solution:

÷.



Draw RE  $\perp$  TS, T-E-S  $\Delta$ RTP and  $\Delta$ RPS have same height RE.  $\frac{A(\Delta RTP)}{A(\Delta RPS)} = \frac{TP}{PS}$ ...[Triangles having equal height]  $= \frac{10}{6}$  ...[Given]  $\frac{A(\Delta RTP)}{A(\Delta RPS)} = \frac{5}{3}$ 



Ratio of areas of similar triangles = 16:49

*.*..

10. Write the test of similarity for triangles given in figure.



In ΔABC and ΔPQR ∠ABC ≅ ∠PQR ...[Each of measure 60°] ∠ACB ≅ ∠PRQ ...[Each of measure 30°] ∴ ΔABC ~ ΔPQR ...[AA test of similarity]

Q.2(A) Complete the activities.[2 Marks]1.In fig. BP  $\perp$  AC, CQ $\perp$ AB, A-P-C and A-Q-Bthen show that  $\triangle$ APB and  $\triangle$ AQC are similar.



#### SSC: Board Question Bank

#### Solution:

In  $\triangle APB$  and  $\triangle AQC$   $\angle APB = \boxed{90}^{0} \dots(i)$   $\angle AQC = \boxed{90}^{0} \dots(ii)$   $\therefore \quad \angle APB \cong \angle AQC \quad \dots[From (i) \text{ and } (ii)]$   $\angle PAB \cong \angle QAC \quad \dots[Common angle]$  $\therefore \quad \triangle APB \sim \triangle AQC \quad \dots[AA \text{ test of similarity}]$ 

2. Observe the figure and complete following activity.





Solution:

In fig, 
$$\angle B = 75^\circ$$
,  $\angle D = 75^\circ$   
 $\angle B \cong \boxed{\angle D}$  ...[each of 75°]  
 $\angle C \cong \angle C$  ...[Common angle]  
 $\triangle ABC \sim \triangle \boxed{EDC}$  ...[AA similarity test

3. 
$$\Delta ABC \sim \Delta PQR$$
,  $A(\Delta ABC) = 80$ sq.cm,  
 $A(\Delta PQR) = 125$ sq.cm, then complete  
 $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{80}{125} = \boxed{}$ , hence  $\frac{AB}{PQ} = \boxed{}$ 

Solution:

$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{80}{125} = \frac{16}{25} \qquad \dots (i)[Given]$$
$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2}$$

...(ii)[Theorem of areas of similar triangles]  $\frac{AB^2}{PQ^2} = \frac{16}{25} \qquad ...[From (i) and (ii)]$ Hence  $\frac{AB}{AB} = \boxed{\underline{4}}$ 

ence 
$$\frac{1}{PQ} = \frac{1}{5}$$
  
...[Taking square root of both sides]

4. In fig., 
$$PM = 10$$
 cm,  $A(\Delta PQS) = 100$  sq.cm,  
 $A(\Delta QRS) = 110$  sq.cm, then NR?  
 $\Delta PQS$  and  $\Delta QRS$  having seg QS common base.



Areas of two triangles whose base is common are in proportion of their corresponding .



#### Solution:

 $\Delta$ PQS and  $\Delta$ QRS having seg QS common base. Areas of two triangles whose base is common are in proportion of their corresponding **heights**.

$$\frac{A(\Delta PQS)}{A(\Delta QRS)} = \frac{PM}{NR},$$
$$\frac{100}{110} = \frac{10}{NR}$$
$$NR = \frac{110 \times 10}{100}$$
$$NR = 110 \text{ cm}$$

Q.2 (B)

*.*..

*.*..

1. In fig.,  $AB \perp BC$  and  $DC \perp BC$ , AB = 6,

DC = 4 then  $\frac{A(\Delta ABC)}{A(\Delta BCD)}$  = ?

#### Solution:

 $\triangle$ ABC and  $\triangle$ BCD have same base BC.

 $\therefore \qquad \frac{A(\Delta ABC)}{A(\Delta BCD)} = \frac{AB}{DC} \qquad \dots [Triangles having equal base]$  $= \frac{6}{4} \qquad \qquad \dots [Given]$  $\therefore \qquad \frac{A(\Delta ABC)}{A(\Delta BCD)} = \frac{3}{2}$ 

D

÷.

2. In fig., seg AC and seg BD intersect each other at point P.

 $\frac{AP}{PC} = \frac{BP}{PD}$ , then prove that  $\triangle ABP \sim \triangle CDP$ 



#### **Proof:**

*.*..

In  $\triangle$ ABP and  $\triangle$ CDP, AP BP ...[Given]  $\overline{PC} \overline{PD}$  $\angle APB \cong \angle CPD$  ...[Vertically opposite angles]  $\triangle ABP \sim \triangle CDP$  ...[SAS test of similarity] [Note: The question has been modified.]

- 3.  $\triangle ABP \sim \triangle DEF$  and  $A(\Delta ABP):A(\Delta DEF) = 144:81$ , then AB : DE = ?Solution:
  - $\frac{A(\Delta ABP)}{A(\Delta DEF)} = \frac{144}{81}$ ...(i)[Given]  $\frac{A(\Delta ABP)}{A(\Delta DEF)} = \frac{AB^2}{DE^2}$

...(ii)[Theorem of areas of similar triangles]

- $\frac{AB^2}{DE^2} = \frac{144}{81}$ ...[From (i) and (ii)] *.*..
- $\frac{\text{AB}}{\text{DE}} = \frac{12}{9} \text{ or } \frac{4}{3}$ ÷

...[Taking square root of both sides]

4. From given information, is PQ || BC? AP = 2, PB = 4, AO = 3, OC = 6



Solution:

*.*..

$\frac{AP}{PB} = \frac{2}{4} = \frac{1}{2}$	(i)[Given]
$\frac{AQ}{QC} = \frac{3}{6} = \frac{1}{2}$	(ii)
In $\triangle ABC$ , $\frac{AP}{PB} = \frac{AQ}{QC} = \frac{1}{2}$ line PQ    side BC	[From (i) and (ii)]

...[Converse of basic proportionality theorem]

Areas of two similar triangles are 225cm² and 5. 81 cm². If side of smaller triangle is 12 cm, find corresponding side of major triangle. Solution: Let the areas of two similar triangles be A₁ and A₂.  $A_1 = 225 \text{ cm}^2 \text{ and } A_2 = 81 \text{ cm}^2$ Let the corresponding sides of triangles be s₁ and s₂ respectively.  $s_1 = 12 \text{ cm}$  $\frac{A_1}{A_2} = \frac{s_1^2}{s_2^2}$ ...[Theorem of areas of similar triangles]  $\frac{225}{81} = \frac{{s_1}^2}{12^2}$ *.*..  $s_1^2 = \frac{225 \times 12^2}{81}$ *.*..  $s_1 = \frac{15 \times 12}{9}$ ÷ ...[Taking square root of both sides]  $s_1 = 20 \text{ cm}$ ÷. The length of the corresponding side of the *.*.. bigger triangle is 20 cm. 6. In fig.,  $\angle ABC = 90^\circ$ ,  $\angle DCB = 90^\circ$ , AB = 6, DC = 8, then  $\frac{A(\Delta ABC)}{A(\Delta BCD)}$  = ? 8 6 С B Solution:  $\triangle$ ABC and  $\triangle$ BCD have same base BC.  $A(\Delta ABC) - AB$ ...[Triangles having equal base] *.*..  $\overline{A(\Delta BCD)}^{-}\overline{DC}$  $\frac{A(\Delta ABC)}{A(\Delta DCB)}$ Complete the following activities. Q.3 **(A)** [3 Marks] 1. In  $\triangle ABC$ , AP  $\perp$  BC and BQ  $\perp$  AC, B-P-C, A-Q-C, then show that  $\triangle CPA \sim \triangle COB$ . If AP = 7, BQ = 8, BC = 12, then AC = ?



...[(i) and (ii)]  $\Delta$ APQ and  $\Delta$ PQB have equal height. ...[areas in proportion of base](i) ...[areas in proportion of base](ii)  $\Delta PQC$  and  $\Delta PQB$  have **PQ** is common base. Seg PQ || Seg BC, hence height of  $\triangle$ APQ and ...[Areas of two triangles having equal

...(iii)

...[(i), (ii), and (iii)]

base and height are equal](iii)  

$$\frac{A(\Delta APQ)}{A(\Delta PQB)} = \frac{A(\Delta \overline{APQ})}{A(\Delta \overline{PQC})} \quad \dots [(i), (ii), and (iii)]$$

$$\frac{AP}{PB} = \frac{AQ}{QC} \qquad \dots [(i) and (ii)]$$

From fig., seg PQ || side BC, AP = x + 3, PB = x - 3, AQ = x + 5, QC = x - 2, then complete the acitivity to find the value of x.



#### Solution:



#### [3 Marks]

Solution:

i.

. .

ii

*.*..

There are two poles having heights 8m and 1. 4m on plane ground as shown in fig. Because of sunlight shadows of smaller pole is 6m long, then find the length of shadow of longer pole.



#### Solution:

Q.3. (B)

Here, AC and PR represents the bigger and smaller poles, and BC and QR represents their shadows respectively. Now,  $\triangle ACB \sim \triangle PRQ$ 

> $\dots$  [:: Vertical poles and their shadows form similar figures]

$$\therefore \qquad \frac{\text{CB}}{\text{RQ}} = \frac{\text{AC}}{\text{PR}}$$

...[Corresponding sides of similar triangles]

$$\therefore \qquad \frac{x}{\epsilon} = \frac{8}{4}$$

 $8 \times 6$ 

:. 
$$x = 12 \text{ m}$$

- The shadow of the bigger pole will be 12 metres . . long at that time.
- In  $\triangle ABC$ , B-D-C and BD = 7, BC = 20, then 2. find the following ratio.



$$\int_{B} \frac{1}{E} \frac{1}{D} \frac{1}{D$$

$$\frac{A(\Delta ADC)}{A(\Delta ABC)} = \frac{13}{20}$$

3. In given fig., quadrilateral PORS. side PQ || side SR, AR = 5 AP, then prove that, SR = 5PQ



#### **Proof:**

*.*..

*.*..

*.*..

side PQ || side SR and seg SQ is their transversal. ...[Given]  $\angle QSR \cong \angle SQP$  ...[Alternate angles]  $\angle ASR \cong \angle AQP \dots (i) [Q-A-S]$ In  $\Lambda$ ASR and  $\Lambda$ AOP.

$$\angle ASR \cong \angle AQP \dots [From (i)]$$

 $\angle$ SAR  $\cong \angle$ QAP ...[Vertically opposite angles]

 $\Delta ASR \sim \Delta AQP$  ... [AA test of similarity]

$$\therefore \qquad \frac{AR}{R} = \frac{SR}{R}$$

AP PQ

...(ii)[Corresponding sides of similar triangles]

#### **SSC: Board Question Bank**

But, $AR = 5 AP$	[Given]
$\frac{AR}{AP} = \frac{5}{1}$	(iii)

- $\frac{\mathrm{SR}}{\mathrm{PQ}} = \frac{5}{1}$ ...[From (ii) and (iii)] *.*..
- SR = 5 PO*.*..

....

4. In triangle ABC point D is on side BC (B-D-C) such that  $\angle BAC = \angle ADC$  then prove that  $CA^2 = CB \times CD$ 



#### **Proof:**

In  $\triangle$ BAC and  $\triangle$ ADC,  $\angle BAC \cong \angle ADC$ ...[Given]

- $\angle BCA \cong \angle ACD$ ...[Common angle]
- $\Delta BAC \sim \Delta ADC$ ...[AA test of similarity] *.*..
- CA CB *.*.. CD CA

...[Corresponding sides of similar triangles]

- $CA \times CA = CB \times CD$ *.*..
- $CA^2 = CB \times CD$ ÷
- In Quadrilateral ABCD, side AD || BC, 5. diagonal AC and BD intersect in point P, then prove that  $\frac{AP}{PD} = \frac{PC}{BP}$



#### **Proof:**

	seg AD    seg BC ar	nd
	BD is their transver	sal[Given]
<i>:</i> .	$\angle \text{DBC} \cong \angle \text{BDA}$	[Alternate angles]
<i>:</i> .	$\angle PBC \cong \angle PDA$	(i)[D–P–B]
	In $\triangle PBC$ and $\triangle PDA$	Α,
	$\angle PBC \cong \angle PDA$	[From (i)]
	$\angle BPC \cong \angle DPA$	
		[Vertically opposite angles]
:.	$\Delta PBC \sim \Delta PDA$	[AA test of similarity]
	$\frac{BP}{BP} = \frac{PC}{PC}$	
••	PD AP	
	[Correspond	ling sides of similar triangles]
	$\frac{AP}{AP} = \frac{PC}{PC}$	[By alternendo]
••	PD BP	[by atternendo]

#### Q.4 [4 Marks] 1. Side of equilateral triangle PQR is 8 cm then find the area of triangle whose side is half of the side of triangle PQR. **Given:** $\triangle PQR$ is an equilateral triangle with PQ = QR = PR = 8cm and $\Delta ABC$ is an equilateral triangle with AB = BC = AC = 4cm**To find:** $A(\Delta ABC)$ **Construction:** Draw seg AD $\perp$ BC; B-D-C Solution: 4 cm 4 cm In ΔABD, $\angle ADB = 90^{\circ}$ ...[construction] B D $\angle ABD = 60^{\circ}$ 4 cm ...[Angle of an equilateral triangle] $\angle BAD = 30^{\circ} \dots [Remaining angle of a triangle]$ $\triangle$ ABD is a 30° – 60° – 90° triangle. ÷ $AD = \frac{\sqrt{3}}{2} AB$ ...[side opposite to 60°] .**.**. $=\frac{\sqrt{3}}{2} \times 4 = 2\sqrt{3}$ Area of triangle = $\frac{1}{2}$ × base × height Area of $\triangle ABC = \frac{1}{2} \times AD \times BC$ ċ. $=\frac{1}{2}\times 2\sqrt{3}\times 4$ $= 2 \times 2\sqrt{3}$ $=4\sqrt{3}$ ...[From (i)] Area of the triangle whose side is half of the side

*.*.. of  $\triangle PQR$  is  $4\sqrt{3}$  sq.cm.

#### Areas of two similar triangles are equal then 2. prove that triangles are congruent.

**Given:**  $\triangle ABC \sim \triangle PQR$  and  $A(\triangle ABC) = A(\triangle PQR)$ **To prove:**  $\triangle ABC \cong \triangle PQR$ **Proof:** 

$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = 1 \qquad \dots(i) \text{ [Given]}$$

$$Also, \frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

$$\dots[Theorem of areas of similar triangles]$$

$$\therefore \quad 1 = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2} \quad \dots[From (i)]$$

$$\therefore \quad 1 = \frac{AB^2}{PQ^2}$$

$$\therefore \quad AB^2 = PQ^2$$

$$\therefore \quad AB^2 = PQ \quad \dots[Taking square root of both sides]$$

$$i.e., seg AB \cong seg PQ$$

$$Similarly, seg BC \cong seg QR$$
and seg AC  $\cong$  seg PR  

$$\therefore \quad \Delta ABC \cong \Delta PQR \quad \dots[SSS test of congruency]$$

....



oluti	ion:	
	In $\triangle PQR$ ,	
	line ST    side QR	[Given]
•	$\frac{PS}{SQ} = \frac{PT}{TR}$ [Bas	sic proportionality theorem]
•	$\frac{2}{6} = \frac{PT}{TR}$	[Given]
•	$\frac{1}{3} = \frac{x}{y}$	
•	y = 3x	(i)
	PR = PT + TR	[P-T-R]
•	PR = x + y In APOP PO + OP	(11)[Given]
	ш <u>л</u>	The sum of the lengths of any two sides of a triangle is greater than the third side
	(PS + SQ) + QR > P	R[P-S-Q]
•	2 + 6 + 5 > PR	[Given]
•	13 > PR	
•	x + y < 13	[From (ii)]
•	x + 3x < 13	[From (i)]
•	4x < 13	(11)
	1, 2, 3.	
	If $x = 1$ , we get $y = 3$ . If $x = 2$ , we get $y = 3$ . If $x = 3$ , we get $y = 3$ .	$\begin{array}{c} x = 3 \\ x = 6 \\ x = 9 \end{array}$ [From (i)]
	Some of the pairs	of values of $x$ and $y$ are
	(1, 3), (2, 6), (3, 9).	
•	An architecture fi Length of building i is 0.75cm. Then fi model building whe	ave model of building. is 1m then length of model and length and height of ose actual length is 22.5m
oluti	and height is fom.	
01111	Note that the dimensions	sions of the actual building of the model must be in
	same proportion.	
•	Length of model build	ing
	Height of huildir	ng 1
	= <u>Height of model built</u>	$\frac{12}{10} = \frac{1}{0.75}$ [Given]
	22 5	lung 0.75
•	Length of model build	ing
	10	1
	$=$ $\frac{10}{\text{Height of model builty}}$	$\frac{1}{1 \text{ ding}} = \frac{1}{0.75} \dots [\text{Given}]$
		1
•	ZZ.3	$\frac{1}{100} = \frac{1}{0.75}$
		$1 \cdot 1 \cdot 1 \cdot 22 = 0.75$
•	Length of the model	= 16.875 m
	Also, $\frac{10}{11 \times 14 \times 1}$	$\frac{1}{1 + \frac{1}{2} + \frac{1}{2}} = \frac{1}{2}$
	Height of mode	1 building 0.75
•	Height of the model Length and height 16 875m and 7 5m re	building = $10 \times 0.75 = 7.5$ m of the model building are espectively
	- 5.5 / c in ana / .5 in it	

**Mathematics - II** 

## Science and Technology Part - II

## Q.1. (A) Choose the correct option

*Note:* The R marked questions are the part of reduced/non-evaluative portion for academic year 2020-21 only.

1.	Transfer of information from molecules of DNA to mRNA is called process									
	(A)	translocation	(B)	translation						
	(C)	transcription	(D)	differentiation						
2.	Simil	arities in initial evidence.	stage	es indicate the						
	$\overline{(A)}$	Connecting links	(B)	Anatomical						
	(C)	Embryological	(D)	Palaeontological						
3.		is a vestigial or	gan in	human beings.						
	(A)	Wisdom teeth	(B)	Ear muscles						
	(C)	Body hairs	(D)	All of the above						
4.	Prote	in located in bones	is	<u> </u> .						
	(A)	myosin	(B)	melanin						
	(C)	haemoglobin	(D)	ossein						
5.	Which synth	h of the following v esis of NADH ₂ ?	vitamir	is is necessary for						
	(Å)	Vitamin B ₃	(B)	Vitamin C						
	(C)	Vitamin $B_2$	(D)	Vitamin K						
6.		cells divide by	mitosis	s.						
	(A)	Somatic								
	(B)	Gametes								
	(C)	Stem								
	(D)	Both (A) and (C)								
7.	The f	irst step of karyokin	nesis is	· · ·						
7.	The factor (A)	irst step of karyokin anaphase	nesis is (B)	telophase						
7.	The f (A) (C)	irst step of karyokin anaphase metaphase	nesis is (B) (D)	telophase prophase						
7. 8.	The f (A) (C)	irst step of karyokin anaphase metaphase is not a part of p	nesis is (B) (D) mitosis	telophase prophase						
7. 8.	The f (A) (C) $\overline{(A)}$	irst step of karyokin anaphase metaphase is not a part of n Anaphase	(B) (D) (D) (B)	telophase prophase Diplotene						
7. 8.	The f (A) (C) $\overline{(A)}$ (C)	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase	(B) (D) mitosis (B) (D)	telophase prophase s. Diplotene Cytokinesis						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> </ol>	The f (A) (C) $\overline{(A)}$ (C) We g	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy	(B) (D) mitosis (B) (D) from li	telophase prophase Diplotene Cytokinesis pids.						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> </ol>	The f (A) (C) $\overline{(A)}$ (C) We g (A)	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy : 4 cal / gm	nesis is (B) (D) mitosis (B) (D) from li (B)	telophase prophase 5. Diplotene Cytokinesis pids. 9 cal/ gm						
7. 8. 9.	The f (A) (C) $\overline{(A)}$ (C) We g (A) (C)	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy : 4 cal / gm 9 kcal/ gm	(B) (D) mitosis (B) (D) from li (B) (D)	telophase prophase Diplotene Cytokinesis pids. 9 cal/ gm 4 kcal/gm						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> </ol>	The f (A) (C) $\overline{(A)}$ (C) $\overline{(A)}$ (C) $\overline{(A)}$ (C) $\overline{(A)}$ (C) In h	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy 4 cal / gm 9 kcal/ gm umans, there ar	(B) (D) mitosis (B) (D) from li (B) (D) e	telophase prophase 5. Diplotene Cytokinesis pids. 9 cal/ gm 4 kcal/gm pairs of						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> </ol>	The f (A) (C) (A) (C) We g (A) (C) In h chron	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy 4 cal / gm 9 kcal/ gm umans, there ar nosomes.	(B) (D) mitosis (B) (D) from li (B) (D) e	telophase prophase Diplotene Cytokinesis pids. 9 cal/ gm 4 kcal/gm pairs of						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> </ol>	The f (A) (C) $\overline{(A)}$ (C) We g (A) (C) In h chron (A)	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy 1 4 cal / gm 9 kcal/ gm umans, there ar nosomes. 22	(B) (D) mitosis (B) (D) from li (B) (D) e (B)	telophase prophase Diplotene Cytokinesis pids. 9 cal/ gm 4 kcal/gm pairs of 23						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> </ol>	The f (A) (C) $\overline{(A)}$ (C) We g (A) (C) In h chron (A) (C)	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy t 4 cal / gm 9 kcal/ gm umans, there ar nosomes. 22 44	(B) (D) mitosis (B) (D) from li (B) (D) e (B) (D)	telophase prophase Diplotene Cytokinesis pids. 9 cal/ gm 4 kcal/gm pairs of 23 46						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> </ol>	The f $(A)$ $(C)$ $\overline{(A)}$ $(C)$ We g $(A)$ $(C)$ In h chron $(A)$ $(C)$ Whice	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy is 4 cal / gm 9 kcal/ gm numans, there ar nosomes. 22 44 h of the following	(B) (D) mitosis (B) (D) from li (B) (D) e (B) (D) is not	telophase prophase Diplotene Cytokinesis pids. 9 cal/gm 4 kcal/gm pairs of 23 46 a type of asexual						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> </ol>	The f (A) (C) (A) (C) We g (A) (C) In h chron (A) (C) Which reprod	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy : 4 cal / gm 9 kcal/ gm umans, there ar nosomes. 22 44 h of the following duction in multicell	(B) (D) mitosis (B) (D) from li (B) (D) e (B) (D) is not ular or	telophase prophase Diplotene Cytokinesis pids. 9 cal/gm 4 kcal/gm pairs of 23 46 a type of asexual ganisms?						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> </ol>	The f (A) (C) (A) (C) We g (A) (C) In h chron (A) (C) Which reprod (A)	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase etenergy : 4 cal / gm 9 kcal/ gm umans, there ar nosomes. 22 44 h of the following duction in multicell Fragmentation	(B) (D) mitosis (B) (D) from li (B) (D) e (B) (D) is not ular or (B)	telophase prophase Diplotene Cytokinesis pids. 9 cal/gm 4 kcal/gm pairs of 23 46 a type of asexual ganisms? Regeneration						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> </ol>	The f (A) (C) $\overline{(A)}$ (C) $\overline{(A)}$ (C) $\overline{(A)}$ (C) In h chron (A) (C) Which reprod (A) (C)	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase et energy t 4 cal / gm 9 kcal/ gm umans, there ar nosomes. 22 44 h of the following duction in multicell Fragmentation Budding	(B) (D) mitosis (B) (D) from li (B) (D) e (B) (D) is not ular or (B) (D)	telophase prophase 5. Diplotene Cytokinesis pids. 9 cal/ gm 4 kcal/gm pairs of 23 46 a type of asexual ganisms? Regeneration Binary fission						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> <li>12.</li> </ol>	The f $(A)$ $(C)$ (A) $(C)(A)$ $(C)(A)$ $(C)(A)$ $(C)(C)(A)$ $(C)(C)(A)$ $(C)Find the set of the$	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase etenergy : 4 cal / gm 9 kcal/ gm umans, there ar nosomes. 22 44 h of the following duction in multicell Fragmentation Budding the odd one out:	(B) (D) mitosis (B) (D) from li (B) (D) e (B) (D) is not ular or (B) (D)	telophase prophase Diplotene Cytokinesis pids. 9 cal/gm 4 kcal/gm pairs of 23 46 a type of asexual ganisms? Regeneration Binary fission						
<ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> <li>12.</li> </ol>	The f (A) (C) (A) (C) We g (A) (C) In h chron (A) (C) Whic: reprod (A) (C) Find t	irst step of karyokin anaphase metaphase is not a part of n Anaphase Prophase etenergy : 4 cal / gm 9 kcal/ gm umans, there ar nosomes. 22 44 h of the following duction in multicell Fragmentation Budding the odd one out: Stigma	(B) (D) mitosis (B) (D) from li (B) (D) e (B) (D) is not ular or (B) (D) (B)	telophase prophase Diplotene Cytokinesis pids. 9 cal/ gm 4 kcal/gm pairs of 23 46 a type of asexual ganisms? Regeneration Binary fission Anther						

13.	At the time of birth, there are oocytes
	<ul> <li>(A) 1 to 2 million</li> <li>(B) 2 to 3 million</li> <li>(C) 2 to 4 million</li> <li>(D) none of these</li> </ul>
14.	modern remedial technique is used if there is a problem in implantation of embryo in the uterus. (A) Surrogacy (B) Sperm bank
	(C) In vitro fertilization (D) none of these
15.	Implantation of the embryo occurs in(A) uterus(B) ovary(C) oviduct(D) vagina
16.	In humans, sperm production occurs in the organ (A) testes (B) scrotum (C) prostate gland (D) ovaries
17.	Pregnant mother supplies nourishment to her foetus through
	(A)uterus(B)placenta(C)ovary(D)oviduct
18.	twins are formed from a single
	embryo.(A) Dizygotic(B) Monozygotic(C) Multiple zygote(D) Zygote
19.	Pollen grains are formed by division in locules of anthers.division in mitosis(A) meiosis(B) mitosis (C) amitosis(D) binary
20.	Asexual reproduction occurs by cell division. (A) mitotic (B) meiotic (C) fertilization (D) double fertilization
21.	<ul> <li>This method of asexual reproduction is seen in <i>Paramoecium.</i></li> <li>(A) Transverse binary fission</li> <li>(B) Longitudinal binary fission</li> <li>(C) Simple binary fission</li> <li>(D) Regeneration</li> </ul>
22.	In meiosis, the number of chromosomes becomes (A) multiple times (B) triple (C) half (D) double
23.	Generally, every month, ovum is released in the abdominal cavity alternately from each ovary.

(B) 2

(A) 1

(C) 3

(D) 4

			Science and Technology Part - II
24.	is present in unisexual flower.(A)Both androecium and gynoecium(B)Only androecium(C)Only gynoecium	36.	Wind turbines with capacity arecommercially available.(A) 1 kW to 7 MW(B) 1 kW to 7 kW(C) 1 kW to 7000 W(D) 1 W to 7 MW
<b>R</b> 25.	<ul> <li>(D) Androecium or gynoecium</li> <li>is a chemical factor of abiotic components.</li> <li>(A) Air (B) water</li> <li>(C) Nutrients (D) sunlight</li> </ul>	37.	Solar photovoltaic cells convert the solarradiation energy directly into energy.(A) electrical(B) potential(C) kinetic(D) heat
<b>R</b> 26.	is an organic compound of abiotic components. (A) Protein (B) Iron (C) Serling (D) Organic	38.	A silicon solar cell of dimension 1 sq.cm.generates current of about(A) 50 mA(B) 30 mA(C) 50 A(D) 30 A
27.	(C)Sodium(D)Oxygenis a rare species.(A)Lesser florican(B)Tiger(C)Giant squirrel(D)Musk deer	39.	A silicon solar cell of dimension 1 sq.cm.generates potential difference.(A) 0.1 V(B) 0.5 V(C) 0.1 mV(D) 0.5 Mv
28.	is an indeterminate species. (A) Red panda (B) Lion (C) Lion tailed monkey (D) Giant squirrel	40.	In nuclear power plants, neutrons are bombarded on atoms of (A) Uranium-236. (B) Barium (C) Krypton. (D) Uranium -235.
29.	Occurrence of diversity among the organisms of the same species is called diversity. (A) species (B) genetic (C) accession (D) animal	41.	My body is soft and slimy, hence I am referredas(A) Mollusca(B) Echinodermata(C) Annelida(D) Arthropoda
30.	(C)       ecosystem       (D)       ammai         In modern civilization,	42.	Which of the following is a hermaphrodite animal?(A) Doliolum(B) Scorpion(C) Centipede(D) Cockroach
31.	Most electric power plants are based on the principle of (A) electro induction (B) magnetic induction	43.	Which of the following animals can regenerateits broken body parts?(A) Frog(B) Starfish(C) Sparrow(D) Pigeon
	<ul> <li>(C) electro-magnetic induction</li> <li>(D) electromagnet</li> </ul>	44.	<ul><li>Which of the following is a warm blooded (homeotherm) animal?</li><li>(A) Bat</li><li>(B) Tortoise</li></ul>
32.	Principle of Electromagnetic induction wasinvented by the scientist(A) Ohm(B) Michael Faraday(C) Joule(D) Newton	45.	<ul> <li>(C) Wall lizard</li> <li>(D) Crocodile</li> <li>My body is shaped to minimize water resistance.</li> <li>(A) (D) (D) (D)</li> </ul>
33.	In the power plant based on nuclear energy is used to rotate the generator. (A) Steam turbine (B) air turbine	<b>R</b> 46.	(A) pointed (B) spindle (C) cartilaginous (D) flat is called a friend of farmers. (A) Rabbit (B) Cat
34.	When a neutron is bombarded on an atom of uranium, neutrons are generated in this process.	47.	<ul><li>(A) Rabbit (D) Cat</li><li>(C) Leech (D) Earthworm</li><li>Which of the following animals has a hard calcareous shell?</li></ul>
35.	(A)1(B)2(C)3(D)4Kinetic energy in flowing water drivesto generate electricity.(A)watermill(B)windmill(C)turbines(D)generator	48.	<ul> <li>(A) Nereis</li> <li>(B) Shark</li> <li>(C) Bivalve</li> <li>(D) Herdmania</li> </ul> acid is used in production of vitamins. (A) Citric <ul> <li>(B) Gluconic</li> <li>(C) Lactic</li> <li>(D) Itaconic</li> </ul>

#### SSC: Board Question Bank



49.	Nowadays, are used for treatment of diarrhoea and treatment of poultry also.(A) yoghurt(B) probiotics(C) vinegar(D) cheese	60.	Methods like artificial insemination and embryo transplant are mainly used for (A) animal husbandry (B) wild life (C) pet animals (D) infertile women
50.	Yoghurt is a milk product produced with the help of (A) Lactobacilli (B) Azotobacter (C) Corynebacterium (D) Streptococcus.	61.	is the revolutionary event in biotechnology after cloning. (A) Human genome project (B) DNA discovery (C) Stem cell research
51.	is a powerful antibiotic against treatment of tuberculosis. (A) Penicillin (B) Rifamycin (C) Streptomycin (D) Bacitracin.	62.	<ul><li>(D) All of the above</li><li>Biotechnology integrated the toxin which is fatal for, was produced in leaves and</li></ul>
52.	is used in the commercial bakery industry. (A) Compressed yeast (B) Algae	(2)	bolls of cotton. (A) bollworm (B) caterpillar (C) sparrow (D) frog
53.	(C) Bacteria (D) Microbes is a substance obtained by microbial processing that functions as artificial sweetener	03.	Cellstarts from 14day of conception.(A)growth(B)differentiation(C)development(D)division
	(A) Nycin(B) Lysine(C) Xanthenes(D) Xylitol	64.	The Government of India has encouraged for improving the productivity by launching the program NKM-16.
54.	At the earliest stage of development, the organism is in the form of a mass of a cell, which are almost alike, those cells are called	<b>R</b> 65	<ul> <li>(A) aquaculture</li> <li>(B) poultry</li> <li>(C) piggery</li> <li>(D) apiculture</li> </ul>
	(A) stem cells(B) RBC(C) WBC(D) none of these		which the foetus is joined to the uterus of the mother.
55.	<ul> <li>Which of the following factors are considered or need to be paid attention during organ transplantation?</li> <li>(A) Blood group of recipient</li> <li>(B) Diseases of donor</li> <li>(C) Age of donor</li> <li>(D) All of the above</li> </ul>	66. 67.	<ul> <li>(A) Stell cells</li> <li>(B) Muscle cells</li> <li>(C) Neuron cells</li> <li>(D) Bone cells</li> <li>For the purpose of preservation stem cell samples are kept in</li> <li>(A) liquid oxygen</li> <li>(B) hydrogen</li> <li>(C) liquid chlorine</li> <li>(D) liquid nitrogen</li> <li>Phenylketonuria arises due to genetic changes in</li> </ul>
56.	Availability of is an important requirement in organ transplantation. (A) doctor (B) clinic (C) donor (D) ambulance	68	cells. (A) liver (B) intestine (C) pancreas (D) heart organism is used as biofertilizers
57.	The disease related with the synthesis of insulin is (A) cancer (B) arthritis	69	(A)Thiobacillus(B)Nostoc(C)Saccharomyces(D)EscherichiaAlcoholconsumptionmainlyaffectsthe
58.	<ul><li>(C) heart disease</li><li>(D) diabetes</li><li>(D) Transgenic raw potatoes generate the immunity</li></ul>	09.	Actionolconsumptionmannyartectsthe
	againstdisease.(A) plague(B) cholera(C) leprosy(D) TB	70.	Laughter club is a remedy to drive away
59.	have valuable contributions in the green revolution in the USA. (A) Dr. Norman Barlaus	71	<ul> <li>(A) addictions</li> <li>(B) stress</li> <li>(C) lethargy</li> <li>(D) epidemics</li> </ul>
	<ul> <li>(A) Dr. Norman Borlaug</li> <li>(B) Dr. Swaminathan</li> <li>(C) Dr. Verghese Kurien</li> <li>(D) Dr. Har Govind Khorana</li> </ul>	/1.	Interprete one concentration in thestudies.(A) Hobbies(B) Sports(C) Meditation(D) Eatables

Science and Technology Part - II

								1			
72.	- 1-1-	i	nfluen	ce is	stror	nger i	n cas	se of			
	(A)	escents Teac	hers		(B)	Fath	ers				
	(C) Relatives (D) Peer group										
73.	Our		ed to	some	extent						
	in the	e age o	of techr	nology							
	(A)	lifest	yle		(B)	habi	t				
	(C)	circu	mstanc	ce	(D)	passi	lon				
<b>R</b> 74.	Hobb	pies lik	e	p	et anir	nals h	elp to	create			
	a pos $(\Lambda)$	foodi	ninasei	Ι.	(B) transferring						
	$(\mathbf{C})$	rearin	ng		(D)	look	ing	5			
75	Cont	inuous	consu	motio	n of		cubet	ances			
75.	cause	es car	cinoge	nic ef	fects	especi	_subsi ally o	n the			
	mout	mouth and lung.									
	(A)	hot			(B)	swee	et				
	(C)	spicy	7		(D)	toba	cco lik	e			
76.	Alco	holic p	erson	lacks t	he	1	thinkir	ıg.			
	(A)	straig	ght		(B)	ratio	nal				
	(C)	unive	ersal		(D)	spiri	tual				
77.		n	nay ar	ise du	ie to	excess	sive u	se of			
	mobi	le pho	nes.								
	(A) (B)	Proh	lem in	vision							
	(D) (C)	Joint	pains	v151011							
	(D)	All o	f the a	bove							
78.	Liqu	or is pi	roduce	d from	l						
	(A)	alcol	nol		(B)	gluco	ose				
	(C)	acid			(D)	salt					
79.	Salaa	ım Mu	ımbai	Found	ation 1	runs p	rogran	ns for			
	$\overline{(\Lambda)}$	in	a slun	n area.							
	(A) (B)	tobac	ation								
	$(\mathbf{C})$	cybe	rcrime	s							
	(D)	dome	estic vi	olence	;						
Ansv	vers:										
	1.	(C)	2.	(C)	3.	(D)	4.	(D)			
	5.	(A)	6.	(D)	7.	(D)	8.	(B)			
	9.	(C)	10.	(B)	11.	(D)	12.	(B)			
	13.	(C)	14.	(A) (B)	15. 19	(A)	10. 20	(A)			
	21.	$(\mathbf{A})$	22.	(D) (C)	23.	(A)	20. 24.	$(\mathbf{D})$			
	25.	(C)	26.	(A)	27.	(D)	28.	(D)			
	29.	(B)	30.	(D)	31.	(C)	32.	(B)			
	33.	(A)	34.	(C)	35.	(C)	36.	(A)			
	57. 11	(A)	38. 12	(B)	39. 12	(B)	40. 11	(D)			
	41. 45	(A) (B)	+∠. 46	(A) (D)	43. 47	(D) (С)	44. 48	(A) (C)			
	49.	(B)	50.	(A)	51.	(B)	52.	(A)			
	53.	(D)	54.	(A)	55.	(D)	56.	(C)			
	57.	(D)	58.	(B)	59.	(A)	60.	(A)			

61.

(C)

62.

(A)

63.

(B)

64.

(A)

65.	(A)	66.	(D)	67.	(A)	68.	(B)
69.	(A)	70.	(B)	71.	(C)	72.	(D)
73.	(A)	74.	(C)	75.	(D)	76.	(B)
77.	(D)	78.	(A)	79.	(A)		

[Note: 55. The question has been modified as per the information provided in the textbook.

79. Salaam Mumbai Foundation organization runs programs in various schools in Mumbai to empower the children living in slum area in the field of education, sports, arts and business. It has made some districts in Maharashtra completely tobacco-free.]

## AVAILABLE NOTES FOR STD. X: (ENG., MAR. & SEMI ENG. MEDIUM)

## PERFECT SERIES

- -• English Kumarbharati
- 🕂 मराठी अक्षरभारती
- 🗕 हिंदी लोकभारती
- 🗕 हिंदी लोकवाणी
- आमोदः सम्पूर्ण-संस्कृतम्
- -• आनन्दः संयुक्त-संस्कृतम्
- -• History and Political Science
- -• Geography
- -• Mathematics (Part I)
- -• Mathematics (Part II)
- -• Science and Technology (Part 1)
- -• Science and Technology (Part 2)

## **PRECISE SERIES**

- My English Coursebook
- 🗝 मराठी कुमारभारती
- 🗕 हिंदी लोकभारती
- 🗕 हिंदी लोकवाणी
- आमोदः सम्पूर्ण-संस्कृतम्
- -• आनन्दः संयुक्त-संस्कृतम्
- 🛥 इतिहास व राज्यशास्त्र
- → भूगोल
- गणित (भाग ।)
- -• गणित (भाग ॥)
- विज्ञान आणि तंत्रज्ञान (भाग १)
- -• विज्ञान आणि तंत्रज्ञान (भाग २)

## **ADDITIONAL TITLES FOR STD. X**

- SSC Question Papers Set (Eng., Mar. & Semi Eng. Med.)
- आमोद: (समूर्ण-संस्कृतम्) SSC Question Papers Set
- हिंदी लोकवाणी (संयुक्त), संस्कृत-आनन्द: (संयुक्तम्) SSC Question Papers Set
- Mathematics Challenging Questions
- Geography Map & Graph Practice Book (Eng. & Mar. Med.)
- Hindi Grammar Worksheets, Grammar books & Writing Skills books for Marathi & Hindi

## WORKBOOK

- -• English Kumarbharati
- मराठी अक्षरभारती
- * हिंदी लोकभारती
- My English Coursebook
- 🗝 मराठी कुमारभारती

## **GRAMMAR & WRITING SKILLS**

- → हिंदी लोकभारती (Grammar Worksheets with Answers)
- 🗕 हिंदी (LL) व्याकरण व शब्दसंपदा
- 🗕 हिंदी (LL) उपयोजित लेखन
- मराठी (LL) व्याकरण-भाषाभ्यास व उपयोजित लेखन
- 🛶 मराठी (HL) उपयोजित लेखन
- 🕕 मराठी (HL) व्याकरण-भाषाभ्यास



Scan the QR code to buy e-book version of Target's Notes on Quill -The Padhai App



## Visit Our Website



Transforming lives through learning.

2nd floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400 080 **Tel:** 88799 39712 / 13 / 14 / 15 **Website:** www.targetpublications.org **Email:** mail@targetpublications.org

Address:





