SAMPMF GONHHFHL

Perfect

MATHEMATILS \& STATISTIES Bat-1

Elliptical Orbit

An ellipse is a collection of points in a plane, the sum of whose distances from two fixed points known as focal points (F_{1} and F_{2}) is a

Mr. Vinod Singh
M.Sc. (Mathematics)

Mrs. Swarada Kirloskar
M.Sc. (Applied Maths) M.Phil (Computer Applications)

Mr. Shantanu R. Pal
B.E. (Electronics)

PERFECT
 MATHEMATICS - I Std. XI Sci. \& Arts

Salient Features

- Written as per the latest textbook
- Exhaustive coverage of entire syllabus
- Precise theory for every topic
© Covers answers to all exercises and miscellaneous exercises given in the textbook.
e All derivations and theorems covered
- Includes additional problems for practice and MCQs
- Illustrative examples for selective problems
- Topic Test for every chapter
E. Recap of important formulae at the end of the book
- Tentative marks allocation for all problems
- Smart Check to enable easy rechecking of solutions
- 'Competitive Corner' presents questions from prominent Competitive Examinations
- Inclusion of QR Codes for students to access the 'Solutions' for the Topic Tests.

Printed at: Prabodhan Prakashan Pvt. Ltd., Navi Mumbai

[^0]"The only way to learn Mathematics is to do Mathematics" - Paul Halmos
"Mathematics - I : Std. XI" forms a part of 'Target Perfect Notes' prepared as per the Latest Textbook. It is a complete and thorough guide critically analysed and extensively drafted to boost the students' confidence.

The book provides answers to all textbook questions included in exercises as well as miscellaneous exercises. Apart from these questions, we have provided ample questions for additional practice to students based on every exercise of the textbook. Only the final answer has been provided for such additional practice questions.
Precise theory has been provided at the required places for better understanding of concepts. Further, all derivations and theorems have been covered wherever required. A recap of all important formulae has been provided at the end of the book for quick revision. We have newly introduced 'competitive corner' in this book wherein we have included questions from prominent competitive exams. It will help students to get an idea about the type of questions that are asked in Competitive Exams. We all know that there are certain sums that can be solved by multiple methods. Besides, there are also other ways to check your answer in Maths. 'Smart Check' has been included to help you understand how you can check the correctness of your answer. 'One Mark Questions' have been covered along with their answers.
Every chapter contains a 'Topic Test'. This test stands as a testimony to the fact that the child has understood the chapter thoroughly.
We have provided $\mathbf{Q R}$ Codes for students to access 'Solutions' for the given Topic Tests.
The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you. Pls write to us on: mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

Publisher
Edition: Fourth

Disclaimer

This reference book is transformative work based on textbook Mathematics - I; Third Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
© reserved with the Publisher for all the contents created by our Authors.
No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

KEY FEATURES

These questions require very short solutions with direct application of mathematical concepts.

Competitive Corner presents questions from prominent [JEE (Main), MHT CET] competitive exams based entirely on the syllabus covered in the chapter. This is our attempt to introduce students to MCQs asked in competitive exams.

QR code provides:
The solutions of the Topic tests

Smart Check is a technique to verify the answers. This is our attempt to cross-check the accuracy of the answer. Smart check is indicated by \checkmark symbol

Topic Test covers questions from the chapter for self-evaluation purpose.
This is our attempt to provide the students with revision and help them assess their knowledge of chapter.

In this section we have provided ample practice problems for students.
Solved examples from textbook are indicated by " + ".

CONTENTS

Chapter No.	Chapter Name	Page No.
1	Angle and its Measurement	1
2	Trigonometry - I	23
3	Trigonometry - II	64
4	Determinants and Matrices	104
5	Straight Line	177
6	Circle	223
7	Conic sections	255
8	Measures of Dispersion	318
9	Probability	354
	Important formulae	402

[Reference: Maharashtra State Board of Secondary and Higher Secondary Education, Pune - 04]
Solved examples from textbook are indicated by "+".
Smart check is indicated by \checkmark symbol.

Angle and its Measurement

SYLLABUS

- Directed angles
- Angles of different measurements
- Units of measure of an angle
- Length of an arc of a circle
- Area of a sector of a circle

LET'S STUDY

Directed Angles

Suppose OX is the initial position of a ray. This ray rotates about O from initial position OX and takes a finite position along ray OP. In such a case we say that rotating ray OX describes a directed angle XOP.
It is also denoted by $\angle \mathrm{XOP}$.

In figure (i), the point O is called the vertex. The ray OX is called the initial ray and ray OP is called the terminal ray of an angle XOP. The pair of rays are also called the arms of angle XOP.

In general, an angle can be defined as an ordered pair of initial and terminal rays or arms rotating from initial position to terminal position.

The directed angle includes two things:
i. Amount of rotation (magnitude of angle).
ii. Direction of rotation (sign of the angle).

Positive angle:

If a ray rotates about the vertex (the point) O from initial position OX in anticlockwise direction, then the angle described by the ray is a positive angle.

In the above figure, $\angle \mathrm{XOP}$ is obtained by the rotation of a ray in anticlockwise direction denoted by arrow. Hence, $\angle \mathrm{XOP}$ is positive, i.e., $+\angle \mathrm{XOP}$.

Negative angle:

If a ray rotates about the vertex (the point) O , from initial position OX in clockwise direction, then the angle described by the ray is a negative angle.

In the above figure, $\angle \mathrm{XOP}$ is obtained by the rotation of a ray in clockwise direction denoted by arrow. Hence, $\angle \mathrm{XOP}$ is negative, i.e., $-\angle \mathrm{XOP}$.

Angle of any magnitude:

i. Suppose a ray starts from the initial position OX in anticlockwise sense and makes complete rotation (revolution) about O and takes the final position along OX as shown in the figure (i), then the angle described by the ray is 360°.

In figure (ii), initial ray rotates about O in anticlockwise sense and completes two rotations (revolutions). Hence, the angle described by the ray is $2 \times 360^{\circ}=720^{\circ}$.

In figure (iii), initial ray rotates about O in clockwise sense and completes two rotations (revolutions). Hence, the angle described by the ray is $-2 \times 360^{\circ}=-720^{\circ}$

ii. Suppose a ray starting from the initial position OX makes one complete rotation in anticlockwise sense and takes the position OP as shown in figure, then the angle described by the revolving ray is $360^{\circ}+\angle \mathrm{XOP}$.

If $\angle \mathrm{XOP}=\theta$, then the traced angle is $360^{\circ}+\theta$.
If the rotating ray completes two rotations, then the angle described is $2 \times 360^{\circ}+\theta=720^{\circ}+\theta$ and so on.
iii. Suppose the initial ray makes one complete rotation about O in clockwise sense and attains its terminal position OP, then the described angle is $-\left(360^{\circ}+\angle \mathrm{XOP}\right)$.

If $\angle \mathrm{XOP}=\theta$, then the traced angle is $-\left(360^{\circ}+\theta\right)$.
If final position OP is obtained after $2,3,4, \ldots$ complete rotations in clockwise sense, then angle described are $-\left(2 \times 360^{\circ}+\theta\right)$, $-\left(3 \times 360^{\circ}+\theta\right),-\left(4 \times 360^{\circ}+\theta\right), \ldots .$.

Types of angles:

Zero angle:

If the initial ray and the terminal ray lie along same line and same direction, i.e., they coincide, then the angle obtained is of measure zero and is called zero angle.

One rotation angle:

After one complete rotation, if the initial ray OA coincides with the terminal ray OB , then the angle obtained is called one rotation angle. $\mathrm{m} \angle \mathrm{AOB}=360^{\circ}$.

Straight angle:

In the figure, OX is the initial position and OP is the final position of rotating ray. The rays OX and OP lie along the same line but in opposite direction. In this case $\angle \mathrm{XOP}$ is called a straight angle and $\mathrm{m} \angle \mathrm{XOP}=180^{\circ}$.

Right angle:

One fourth of one rotation angle is called as one right angle; it is also half of a straight angle. One complete rotation angle is four right angles.

In the figure, $\mathrm{m} \angle \mathrm{AOB}=90^{\circ}$ and $\mathrm{m} \angle \mathrm{AOB}^{\prime}=-90^{\circ}$.

Angles in standard position:

An angle which has vertex at origin and initial arm along positive X -axis is called standard angle or angle in standard position.

In the figure, $\angle \mathrm{XOP}, \angle \mathrm{XOQ}, \angle \mathrm{XOR}$ with vertex O and initial ray along positive X -axis are called standard angles or angles in standard position.

Angle in a Quadrant:

An angle is said to be in a particular quadrant, if the terminal ray of the angle in standard position lies in that quadrant.

In the figure, $\angle \mathrm{XOP}, \angle \mathrm{XOQ}$ and $\angle \mathrm{XOR}$ lie in first, second and third quadrants respectively.

Quadrantal Angles:

If the terminal arm of an angle in standard position lie along any one of the co-ordinate axes, then it is called as quadrantal angle.

In the figure, $\angle \mathrm{XOP}, \angle \mathrm{XOQ}$ and $\angle \mathrm{XOR}$ are quadrantal angles.

Note:

The quadrantal angles are integral multiples of 90°, i.e., $\pm \mathrm{n} \frac{\pi}{2}$, where $\mathrm{n} \in \mathrm{N}$.

Coterminal angles:

Two angles with different measures but having the same positions of initial ray and terminal ray are called as coterminal angles.

In the figure, the directed angles having measures 50°, $410^{\circ},-310^{\circ}$ have the same initial arm, ray OX and the same terminal arm, ray OP. Hence, these angles are coterminal angles.

Note:

If two directed angles are co-terminal angles, then the difference between measures of these two directed angles is an integral multiple of 360°.

Measures of Angles

There are two systems of measurement of an angle:
i. Sexagesimal system (Degree measure)
ii. Circular system (Radian measure)
i. Sexagesimal system (Degree Measure):

In this system, the unit of measurement of an angle is 'degree'.
Suppose a ray OP starts rotating in the anticlockwise sense about O and attains the original position for the first time, then the amount of rotation caused is called 1 revolution. Divide 1 revolution into 360 equal parts. Each part is called as one degree $\left(1^{\circ}\right)$.
i.e., 1 revolution $=360^{\circ}$

1 revolution

Divide 1° into 60 equal parts. Each part is called as one minute (1^{\prime}).
i.e., $1^{\circ}=60^{\prime}$

Divide 1' into 60 equal parts. Each part is called as one second ($1^{\prime \prime}$).
i.e., $1^{\prime}=60^{\prime \prime}$

Note:

The sexagesimal system is extensively used in engineering, astronomy, navigation and surveying.
ii. Circular system (Radian measure):

In this system, the unit of measurement of an angle is 'radian'.
Angle subtended at the centre of a circle by an arc whose length is equal to the radius is called as one radian denoted by 1^{c}.
Draw any circle with centre O and radius r . Take the points P and Q on the circle such that the length of arc PQ is equal to radius of the circle. Join OP and OQ.

Then by the definition, the measure of $\angle \mathrm{POQ}$ is 1 radian (1^{c}).

Note:

i. This system of measuring an angle is used in all the higher branches of mathematics.
ii. The radian is a constant angle, therefore radian does not depend on the circle, i.e., it does not depend on the radius of the circle as shown below.

In the figure, we draw two circles of different radii r_{1} and r_{2} and centres O and B respectively. Then the angle at the centre of both circles is equal to 1^{c}.
i.e., $\angle \mathrm{POQ}=1^{\mathrm{c}}=\angle \mathrm{ABC}$.

Theorem:

The radian is independent of the radius of the circle and $\pi^{\mathrm{c}}=180^{\circ}$.
Proof:
Let O be the centre and r be the radius of the circle. Take points P, Q and R on the circle such that $\operatorname{arc} \mathrm{PQ}=\mathrm{r}$ and $\angle \mathrm{POR}=90^{\circ}$.

By definition of radian,
$\angle \mathrm{POQ}=1^{\mathrm{c}}$
$l(\operatorname{arc} \mathrm{PQR})=\frac{1}{4} \times$ circumference of the circle

$$
\begin{aligned}
& =\frac{1}{4} \times 2 \pi \mathrm{r} \\
& =\frac{\pi \mathrm{r}}{2}
\end{aligned}
$$

By proportionality theorem, $\frac{\mathrm{m} \angle \mathrm{POQ}}{\mathrm{m} \angle \mathrm{POR}}=\frac{l(\operatorname{arc} \mathrm{PQ})}{l(\operatorname{arc} \mathrm{PQR})}$

$\therefore \quad \mathrm{m} \angle \mathrm{POQ}=\frac{l(\operatorname{arc} P Q)}{l(\operatorname{arcPQR})} \times \mathrm{m} \angle \mathrm{POR}$
$\therefore \quad 1^{\mathrm{c}}=\frac{\mathrm{r}}{\left(\frac{\pi \mathrm{r}}{2}\right)} \times 1$ right angle $=\frac{2}{\pi} \times(1$ right angle $)$ i.e., 1^{c} is a constant, which is independent of r . Also, $\pi^{\mathrm{c}}=2$ right angles $=180^{\circ}$
$\therefore \quad \pi^{\mathrm{c}}=180^{\circ}$

REMEMBER THIS

i. To convert degree measure into radian measure, multiply degree measure by $\frac{\pi}{180}$.
ii. To convert radian measure into degree measure, multiply radian measure by $\frac{180}{\pi}$.
iii. $\quad 1^{\mathrm{c}}=57^{\circ} 19^{\prime} 29^{\prime \prime}$ (approx.)
iv. Certain degree measures in terms of radians:

Degree	Radian
15	$\frac{\pi}{12}$
30	$\frac{\pi}{6}$
45	$\frac{\pi}{4}$
60	$\frac{\pi}{3}$
90	$\frac{\pi}{2}$

Degree	Radian
120	$\frac{2 \pi}{3}$
180	π
270	$\frac{3 \pi}{2}$
360	2π

v. Relation between angle and time in a clock. (R is rotation.):

Minute Hand
$1 \mathrm{R}=360^{\circ}$
$1 \mathrm{R}=60 \mathrm{~min}$.
$60 \mathrm{~min} .=360^{\circ}$
$1 \mathrm{~min} .=6^{\circ}$ rotation

Hour Hand

$1 \mathrm{R}=360^{\circ}$
$1 \mathrm{R}=12$ Hrs.
$12 \mathrm{Hrs} .=360^{\circ}$
$1 \mathrm{Hr} .=30^{\circ}$
$1 \mathrm{Hr} .=60 \mathrm{~min}$.
$60 \mathrm{~min}=30^{\circ}$
$1 \min =\left(\frac{1}{2}\right)^{\circ}$

1. (B) Draw the angles of the following measures and determine their quadrants.
[2 Marks Each]
i. -140°
ii. $\quad 250^{\circ}$
iii. $\mathbf{4 2 0}^{\circ}$
iv. $\quad 750^{\circ}$
v. $\quad \mathbf{9 4 5}^{\circ}$
vi. 1120°
vii. -80°
viii. -330°
ix. $\quad-\mathbf{5 0 0}{ }^{\circ}$
x. $\quad-820^{\circ}$

Solution:
i.

From the figure, the given angle terminates in quadrant III.
ii.

From the figure, the given angle terminates in quadrant III.
iii.

From the figure, the given angle terminates in quadrant I.
iv.

From the figure, the given angle terminates in quadrant I.
v.

From the figure, the given angle terminates in quadrant III.
vi.

From the figure, the given angle terminates in quadrant I.
vii.

From the figure, the given angle terminates in quadrant IV.
viii.

From the figure, the given angle terminates in quadrant I.
ix.

From the figure, the given angle terminates in quadrant III.
x.

From the figure, the given angle terminates in quadrant III.
2. Convert the following angles into radians.
i. $\quad 85^{\circ}$
ii. $\quad 250^{\circ}$
iii. -132°
[1 Mark Each]
iv. $65^{\circ} 30^{\prime}$
v. $\mathbf{7 5}^{\circ}{ }^{\circ} \mathbf{0}^{\prime}$
vi. $40^{\circ} 48^{\prime}$
[2 Marks Each]

Solution:

We know that $\theta^{\circ}=\left(\theta \times \frac{\pi}{180}\right)^{c}$
i. $\quad 85^{\circ}=\left(85 \times \frac{\pi}{180}\right)^{\mathrm{c}}=\left(\frac{17 \pi}{36}\right)^{\mathrm{c}}$
ii. $\quad 250^{\circ}=\left(250 \times \frac{\pi}{180}\right)^{\mathrm{c}}=\left(\frac{25 \pi}{18}\right)^{\mathrm{c}}$
iii. $\quad-132^{\circ}=\left(-132 \times \frac{\pi}{180}\right)^{\mathrm{c}}$

$$
=\left(-\frac{11 \pi}{15}\right)^{\mathrm{c}}
$$

iv. $65^{\circ} 30^{\prime}=65^{\circ}+30^{\prime}$

$$
\begin{aligned}
& =65^{\circ}+\left(\frac{30}{60}\right)^{\circ} \quad \cdots\left[\because 1^{\prime}=\left(\frac{1}{60}\right)^{\circ}\right] \\
& =65^{\circ}+\left(\frac{1}{2}\right)^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(65+\frac{1}{2}\right)^{\circ} \\
& =\left(\frac{131}{2}\right)^{\circ} \\
& =\left(\frac{131}{2} \times \frac{\pi}{180}\right)^{c}=\left(\frac{131 \pi}{360}\right)^{c}
\end{aligned}
$$

v. $75^{\circ} 30^{\prime}=75^{\circ}+30^{\prime}$

$$
\begin{aligned}
& =75^{\circ}+\left(\frac{30}{60}\right)^{\circ} \quad \cdots\left[\because 1^{\prime}=\left(\frac{1}{60}\right)^{\circ}\right] \\
& =75^{\circ}+\left(\frac{1}{2}\right)^{\circ} \\
& =\left(75+\frac{1}{2}\right)^{\circ} \\
& =\left(\frac{151}{2}\right)^{\circ} \\
& =\left(\frac{151}{2} \times \frac{\pi}{180}\right)^{\mathrm{o}} \\
& =\left(\frac{151 \pi}{360}\right)^{c}
\end{aligned}
$$

vi. $40^{\circ} 48^{\prime}=40^{\circ}+48^{\prime}$

$$
\begin{aligned}
& =40^{\circ}+\left(\frac{48}{60}\right)^{\circ} \quad \ldots\left[\because 1^{\prime}=\left(\frac{1}{60}\right)^{\circ}\right] \\
& =40^{\circ}+\left(\frac{4}{5}\right)^{\circ} \\
& =\left(40+\frac{4}{5}\right)^{\circ} \\
& =\left(\frac{204}{5}\right)^{\circ} \\
& =\left(\frac{204}{5} \times \frac{\pi}{180}\right)^{c}=\left(\frac{17 \pi}{75}\right)^{c}
\end{aligned}
$$

3. Convert the following angles in degrees.
[1 Mark Each]
i. $\quad \frac{7 \pi^{\mathrm{c}}}{12}$
ii. $\frac{-5 \pi^{\mathrm{c}}}{3}$
iii. $5^{\text {c }}$
iv. $\frac{11 \pi^{\mathrm{c}}}{18}$
v. $\left(\frac{-1}{4}\right)^{c}$

Solution:

We know that $\theta^{\mathrm{c}}=\left(\theta \times \frac{180}{\pi}\right)^{\circ}$
i. $\quad \frac{7 \pi^{\mathrm{c}}}{12}=\left(\frac{7 \pi}{12} \times \frac{180}{\pi}\right)^{\circ}=105^{\circ}$
ii. $\quad-\frac{5 \pi^{\mathrm{c}}}{3}=\left(-\frac{5 \pi}{3} \times \frac{180}{\pi}\right)^{\circ}=-300^{\circ}$
iii. $\quad 5^{\mathrm{c}}=\left(5 \times \frac{180}{\pi}\right)^{\circ}=\left(\frac{900}{\pi}\right)^{\circ}$
iv. $\frac{11 \pi^{\mathrm{c}}}{18}=\left(\frac{11 \pi}{18} \times \frac{180}{\pi}\right)^{\circ}=110^{\circ}$
v. $\left(-\frac{1}{4}\right)^{c}=\left(-\frac{1}{4} \times \frac{180}{\pi}\right)^{\circ}=\left(-\frac{45}{\pi}\right)^{\circ}$
4. Express the following angles in degrees, minutes and seconds.
i. $\quad(183.7)^{\circ}$
[1 Mark]
ii. $\quad(245.33)^{\circ}$
[1 Mark]
iii. $\left(\frac{1}{5}\right)^{c}$
[2 Marks]

Solution:

We know that $1^{\circ}=60^{\prime}$ and $1^{\prime}=60^{\prime \prime}$
i. $\quad(183.7)^{\circ}=183^{\circ}+(0.7)^{\circ}$

$$
\begin{aligned}
& =183^{\circ}+(0.7 \times 60)^{\prime} \\
& =183^{\circ}+42^{\prime} \\
& =183^{\circ} 42^{\prime}
\end{aligned}
$$

ii. $\quad(245.33)^{\circ}=245^{\circ}+(0.33)^{\circ}$

$$
\begin{aligned}
& =245^{\circ}+(0.33 \times 60)^{\prime} \\
& =245^{\circ}+(19.8)^{\prime} \\
& =245^{\circ}+19^{\prime}+(0.8)^{\prime} \\
& =245^{\circ} 19^{\prime}+(0.8 \times 60)^{\prime \prime} \\
& =245^{\circ} 19^{\prime}+48^{\prime \prime} \\
& =245^{\circ} 19^{\prime} 48^{\prime \prime}
\end{aligned}
$$

iii. We know that $\theta^{\mathrm{c}}=\left(\theta \times \frac{180}{\pi}\right)^{\circ}$

$$
\begin{aligned}
\therefore \quad\left(\frac{1}{5}\right)^{\circ} & =\left(\frac{1}{5} \times \frac{180}{\pi}\right)^{\circ} \\
& =\left(\frac{36}{\pi}\right)^{\circ} \\
& =\left(\frac{36}{3.14}\right)^{\circ} \quad \ldots[\because \pi=3.14] \\
& =(11.46)^{\circ} \\
& =11^{\circ}+(0.46)^{\circ} \\
& =11^{\circ}+(0.46 \times 60)^{\prime} \\
& =11^{\circ}+(27.6)^{\prime} \\
& =11^{\circ}+27^{\prime}+(0.6)^{\prime} \\
& =11^{\circ}+27^{\prime}+(0.6 \times 60)^{\prime \prime} \\
& =11^{\circ} 27^{\prime}+36^{\prime \prime} \\
& =11^{\circ} 27^{\prime} 36^{\prime \prime}(\text { approx. })
\end{aligned}
$$

5. In $\triangle \mathrm{ABC}$, if $\mathrm{m} \angle \mathrm{A}=\frac{7 \pi^{\mathrm{c}}}{36}, \mathrm{~m} \angle \mathrm{~B}=120^{\circ}$, find $\mathrm{m} \angle \mathrm{C}$ in degree and radian.
[2 Marks]

Solution:

We know that $\theta^{\mathrm{c}}=\left(\theta \times \frac{180}{\pi}\right)^{\circ}$

In $\triangle \mathrm{ABC}$,
$\mathrm{m} \angle \mathrm{A}=\frac{7 \pi^{\mathrm{c}}}{36}=\left(\frac{7 \pi}{36} \times \frac{180}{\pi}\right)^{\circ}=35^{\circ}$,
$\mathrm{m} \angle \mathrm{B}=120^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}=180^{\circ}$
...[Sum of the angles of a triangle is 180°]
$\therefore \quad 35^{\circ}+120^{\circ}+\mathrm{m} \angle \mathrm{C}=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{C}=180^{\circ}-35^{\circ}-120^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{C}=25^{\circ}$

$$
\begin{aligned}
& =\left(25 \times \frac{\pi}{180}\right)^{c} \quad \ldots\left[\because \theta^{\circ}=\left(\theta \times \frac{\pi}{180}\right)^{c}\right] \\
& =\left(\frac{5 \pi}{36}\right)^{c}
\end{aligned}
$$

$\therefore \quad \mathrm{m} \angle \mathrm{C}=25^{\circ}=\left(\frac{5 \pi}{36}\right)^{\circ}$

SMART CHECK

If the sum of the angles of $\triangle \mathrm{ABC}$ is 180°, then our answer is correct.
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=35^{\circ}+120^{\circ}+25^{\circ}=180^{\circ}$
Thus, our answer is correct.
6. Two angles of a triangle are $\frac{5 \pi^{c}}{9}$ and $\frac{5 \pi^{c}}{18}$.

Find the degree and radian measures of third angle.
[2 Marks]

Solution:

We know that $\theta^{\mathrm{c}}=\left(\theta \times \frac{180}{\pi}\right)^{\circ}$
The measures of two angles of a triangle are $\frac{5 \pi^{\mathrm{c}}}{9}, \frac{5 \pi^{\mathrm{c}}}{18}$,
i.e., $\left(\frac{5 \pi}{9} \times \frac{180}{\pi}\right)^{0},\left(\frac{5 \pi}{18} \times \frac{180}{\pi}\right)^{0}$,
i.e., $100^{\circ}, 50^{\circ}$

Let the measure of third angle of the triangle be x°.
$\therefore \quad 100^{\circ}+50^{\circ}+x^{\circ}=180^{\circ}$
...[Sum of the angles of a triangle is 180°]
$\therefore \quad x^{\circ}=180^{\circ}-100^{\circ}-50^{\circ}$
$\therefore \quad x^{\circ}=30^{\circ}$

$$
\begin{aligned}
& =\left(30 \times \frac{\pi}{180}\right)^{\mathrm{c}} \quad \ldots\left[\because \theta^{\mathrm{o}}=\left(\theta \times \frac{\pi}{180}\right)^{\mathrm{c}}\right] \\
& =\left(\frac{\pi}{6}\right)^{\mathrm{c}}
\end{aligned}
$$

$\therefore \quad$ The degree and radian measures of the third angle are 30° and $\left(\frac{\pi}{6}\right)^{c}$ respectively.
7. In a right angled triangle, the acute angles are in the ratio $4: 5$. Find the angles of the triangle in degrees and radians. [3 Marks]

Solution:

Since the triangle is a right angled triangle, one of the angles is 90°.
In the right angled triangle, the acute angles are in the ratio $4: 5$.
Let the measures of the acute angles of the triangle in degrees be 4 k and 5 k , where k is a constant.
$\therefore \quad 4 \mathrm{k}+5 \mathrm{k}+90^{\circ}=180^{\circ}$
\ldots [Sum of the angles of a triangle is 180°]
$\therefore \quad 9 \mathrm{k}=180^{\circ}-90^{\circ}$
$\therefore \quad 9 \mathrm{k}=90^{\circ}$
$\therefore \quad \mathrm{k}=10^{\circ}$
$\therefore \quad$ The measures of the angles in degrees are
$4 \mathrm{k}=4 \times 10^{\circ}=40^{\circ}$,
$5 \mathrm{k}=5 \times 10^{\circ}=50^{\circ}$
and 90°.
We know that $\theta^{\circ}=\left(\theta \times \frac{\pi}{180}\right)^{\mathrm{c}}$
$\therefore \quad$ The measures of the angles in radians are
$40^{\circ}=\left(40 \times \frac{\pi}{180}\right)^{c}=\left(\frac{2 \pi}{9}\right)^{c}$
$50^{\circ}=\left(50 \times \frac{\pi}{180}\right)^{c}=\left(\frac{5 \pi}{18}\right)^{c}$
$90^{\circ}=\left(90 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{2}\right)^{c}$
8. The sum of two angles is $5 \pi^{c}$ and their difference is 60°. Find their measures in degrees.
[3 Marks]

Solution:

Let the measures of the two angles in degrees be x and y.
Sum of two angles is $5 \pi^{\mathrm{c}}$.
$\therefore \quad x+y=5 \pi^{c}$
$\therefore \quad x+y=\left(5 \pi \times \frac{180}{\pi}\right)^{\circ}$
$\cdots\left[\because \theta^{\mathrm{c}}=\left(\theta \times \frac{180}{\pi}\right)^{\mathrm{o}}\right]$
$\therefore \quad x+y=900^{\circ}$
Difference of two angles is 60°.
$x-y=60^{\circ}$
Adding (i) and (ii), we get
$2 x=960^{\circ}$
$\therefore \quad x=480^{\circ}$
Substituting the value of x in (i), we get
$480^{\circ}+y=900^{\circ}$
$\therefore \quad y=900^{\circ}-480^{\circ}=420^{\circ}$
$\therefore \quad$ The measures of the two angles in degrees are 480° and 420°.

SMART CHECK

If the difference of the two angles is 60°, then our answer is correct.
Difference $=480^{\circ}-420^{\circ}=60^{\circ}$
Thus, our answer is correct.
9. The measures of the angles of a triangle are in the ratio $3: 7: 8$. Find their measures in degrees and radians.
[4 Marks]

Solution:

The measures of the angles of the triangle are in the ratio 3:7:8.
Let the measures of the angles of the triangle in degrees be $3 \mathrm{k}, 7 \mathrm{k}$ and 8 k , where k is a constant.
$\therefore \quad 3 \mathrm{k}+7 \mathrm{k}+8 \mathrm{k}=180^{\circ}$
\ldots [Sum of the angles of a triangle is 180°]
$\therefore \quad 18 \mathrm{k}=180^{\circ}$
$\therefore \quad \mathrm{k}=10^{\circ}$
$\therefore \quad$ The measures of the angles in degrees are
$3 \mathrm{k}=3 \times 10^{\circ}=30^{\circ}$,
$7 \mathrm{k}=7 \times 10^{\circ}=70^{\circ}$ and
$8 \mathrm{k}=8 \times 10^{\circ}=80^{\circ}$.
We know that $\theta^{\circ}=\left(\theta \times \frac{\pi}{180}\right)^{\text {c }}$
$\therefore \quad$ The measures of the angles in radians are
$30^{\circ}=\left(30 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{6}\right)^{c}$
$70^{\circ}=\left(70 \times \frac{\pi}{180}\right)^{c}=\left(\frac{7 \pi}{18}\right)^{c}$
$80^{\circ}=\left(80 \times \frac{\pi}{180}\right)^{c}=\left(\frac{4 \pi}{9}\right)^{c}$
10. The measures of the angles of a triangle are in A.P. and the greatest is 5 times the smallest (least). Find the angles in degrees and radians.
[4 Marks]

Solution:

Let the measures of the angles of the triangle in degrees be $a-d, a, a+d$, where $a>d>0$.
$\therefore \quad a-d+a+a+d=180^{\circ}$
\ldots [Sum of the angles of a triangle is 180°]
$\therefore \quad 3 \mathrm{a}=180^{\circ}$
$\therefore \quad \mathrm{a}=60^{\circ}$
According to the given condition, greatest angle is 5 times the smallest angle.
$\therefore \quad a+d=5(a-d)$
$\therefore \quad a+d=5 a-5 d$
$\therefore \quad 6 \mathrm{~d}=4 \mathrm{a}$
$\therefore \quad 3 \mathrm{~d}=2 \mathrm{a}$
$\therefore \quad 3 \mathrm{~d}=2\left(60^{\circ}\right)$
\ldots...[From (i)]
$\therefore \quad \mathrm{d}=\frac{120^{\circ}}{3}=40^{\circ}$
$\therefore \quad$ The measures of the angles in degrees are
$\mathrm{a}-\mathrm{d}=60^{\circ}-40^{\circ}=20^{\circ}$,
$\mathrm{a}=60^{\circ}$ and
$a+d=60^{\circ}+40^{\circ}=100^{\circ}$.
We know that $\theta^{\circ}=\left(\theta \times \frac{\pi}{180}\right)^{\mathrm{c}}$
$\therefore \quad$ The measures of the angles in radians are
$20^{\circ}=\left(20 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{9}\right)^{c}$
$60^{\circ}=\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}$
$100^{\circ}=\left(100 \times \frac{\pi}{180}\right)^{c}=\left(\frac{5 \pi}{9}\right)^{c}$

11. In a cyclic quadrilateral two adjacent angles

 are 40° and $\frac{\pi^{c}}{3}$. Find the angles of the quadrilateral in degrees.[3 Marks]
Solution:
Let $A B C D$ be the cyclic quadrilateral such that $\angle \mathrm{A}=40^{\circ}$ and
$\angle \mathrm{B}=\frac{\pi^{\mathrm{c}}}{3}=\left(\frac{\pi}{3} \times \frac{180}{\pi}\right)^{\circ} \quad \ldots\left[\because \theta^{\mathrm{c}}=\left(\theta \times \frac{180}{\pi}\right)^{\mathrm{o}}\right]$ $=60^{\circ}$

$$
\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}
$$

$\ldots\left[\begin{array}{l}\text { Opposite angles of a cyclic } \\ \text { quadrilateral are supplementary }\end{array}\right]$
$\therefore \quad 40^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\therefore \quad \angle \mathrm{C}=180^{\circ}-40^{\circ}=140^{\circ}$
Also, $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
$\left[\begin{array}{l}\text { Opposite angles of a cyclic } \\ \text { quadrilateral are supplementary }\end{array}\right]$
$\therefore \quad 60^{\circ}+\angle \mathrm{D}=180^{\circ}$
$\therefore \quad \angle \mathrm{D}=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \quad$ The angles of the quadrilateral in degrees are $40^{\circ}, 60^{\circ}, 140^{\circ}$ and 120°.
12. One angle of a quadrilateral has measure $\frac{2 \pi^{\mathrm{c}}}{5}$ and the measures of other three angles are in the ratio $2: 3: 4$. Find their measures in degrees and radians.
[4 Marks]

Solution:

We know that $\theta^{\mathrm{c}}=\left(\theta \times \frac{180}{\pi}\right)^{\circ}$

One angle of the quadrilateral has measure
$\frac{2 \pi^{\mathrm{c}}}{5}=\left(\frac{2 \pi}{5} \times \frac{180}{\pi}\right)^{\circ}=72^{\circ}$
Measures of other three angles are in the ratio 2:3:4.
Let the measures of the other three angles of the quadrilateral in degrees be $2 \mathrm{k}, 3 \mathrm{k}, 4 \mathrm{k}$, where k is a constant.
$\therefore \quad 72^{\circ}+2 \mathrm{k}+3 \mathrm{k}+4 \mathrm{k}=360^{\circ}$
\ldots [Sum of the angles of a quadrilateral is 360°]
$\therefore \quad 9 \mathrm{k}=288^{\circ}$
$\therefore \quad \mathrm{k}=32^{\circ}$
$\therefore \quad$ The measures of the angles in degrees are
$2 \mathrm{k}=2 \times 32^{\circ}=64^{\circ}$
$3 \mathrm{k}=3 \times 32^{\circ}=96^{\circ}$
$4 \mathrm{k}=4 \times 32^{\circ}=128^{\circ}$
We know that $\theta^{\circ}=\left(\theta \times \frac{\pi}{180}\right)^{\text {c }}$
$\therefore \quad$ The measures of the angles in radians are
$64^{\circ}=\left(64 \times \frac{\pi}{180}\right)^{c}=\left(\frac{16 \pi}{45}\right)^{c}$
$96^{\circ}=\left(96 \times \frac{\pi}{180}\right)^{c}=\left(\frac{8 \pi}{15}\right)^{c}$
$128^{\circ}=\left(128 \times \frac{\pi}{180}\right)^{c}=\left(\frac{32 \pi}{45}\right)^{c}$
13. Find the degree and radian measures of exterior and interior angles of a regular
[3 Marks Each]
i. pentagon
ii. hexagon
iii. heptagon
iv. octagon

Solution:

i. Pentagon:

Number of sides $=5$
Number of exterior angles $=5$
Sum of exterior angles $=360^{\circ}$
$\therefore \quad$ Each exterior angle $=\frac{360^{\circ}}{\text { no. of sides }}=\frac{360^{\circ}}{5}=72^{\circ}$

$$
=\left(72 \times \frac{\pi}{180}\right)^{c}=\left(\frac{2 \pi}{5}\right)^{c}
$$

Interior angle + Exterior angle $=180^{\circ}$
$\therefore \quad$ Each interior angle $=180^{\circ}-72^{\circ}=108^{\circ}$

$$
=\left(108 \times \frac{\pi}{180}\right)^{c}=\left(\frac{3 \pi}{5}\right)^{c}
$$

ii. Hexagon:

Number of sides $=6$
Number of exterior angles $=6$
Sum of exterior angles $=360^{\circ}$
$\therefore \quad$ Each exterior angle $=\frac{360^{\circ}}{\text { no. of sides }}=\frac{360^{\circ}}{6}=60^{\circ}$

$$
=\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}
$$

Interior angle + Exterior angle $=180^{\circ}$
$\therefore \quad$ Each interior angle $=180^{\circ}-60^{\circ}=120^{\circ}$

$$
=\left(120 \times \frac{\pi}{180}\right)^{c}=\left(\frac{2 \pi}{3}\right)^{c}
$$

iii. Heptagon:

Number of sides $=7$
Number of exterior angles $=7$
Sum of exterior angles $=360^{\circ}$
$\therefore \quad$ Each exterior angle $=\frac{360^{\circ}}{\text { no. of sides }}=\frac{360^{\circ}}{7}$

$$
\begin{aligned}
& =(51.43)^{\circ} \\
& =\left(\frac{360}{7} \times \frac{\pi}{180}\right)^{c}=\left(\frac{2 \pi}{7}\right)^{\mathrm{c}}
\end{aligned}
$$

Interior angle + Exterior angle $=180^{\circ}$
$\therefore \quad$ Each interior angle $=180^{\circ}-\left(\frac{360}{7}\right)^{\circ}$

$$
\begin{aligned}
& =\left(\frac{1260-360}{7}\right)^{\circ} \\
& =\left(\frac{900}{7}\right)^{\circ}=(128.57)^{\circ} \\
& =\left(\frac{900}{7} \times \frac{\pi}{180}\right)^{c}=\left(\frac{5 \pi}{7}\right)^{c}
\end{aligned}
$$

iv. Octagon:

Number of sides $=8$
Number of exterior angles $=8$
Sum of exterior angles $=360^{\circ}$
$\therefore \quad$ Each exterior angle $=\frac{360^{\circ}}{\text { no. of sides }}=\frac{360^{\circ}}{8}$

$$
\begin{aligned}
& =45^{\circ} \\
& =\left(45 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{4}\right)^{c}
\end{aligned}
$$

Interior angle + Exterior angle $=180^{\circ}$
$\therefore \quad$ Each interior angle $=180^{\circ}-45^{\circ}=135^{\circ}$

$$
=\left(135 \times \frac{\pi}{180}\right)^{c}=\left(\frac{3 \pi}{4}\right)^{c}
$$

14. Find the angle between hour-hand and minute-hand in a clock at [2 Marks Each]
i. ten past eleven
ii. twenty past seven
iii. thirty five past one
iv. quarter to six
v. 2:20
vi. 10:10

Solution:

i. At 11:10, the minute-hand is at mark 2 and hour-hand has crossed $\left(\frac{1}{6}\right)^{\text {th }}$ of the angle between 11 and 12 .

Angle between two consecutive marks $=\frac{360^{\circ}}{12}$

$$
=30^{\circ}
$$

Angle traced by hour-hand in 10 minutes $=\frac{1}{6}\left(30^{\circ}\right)$

$$
=5^{\circ}
$$

Angle between marks 11 and $2=3 \times 30^{\circ}=90^{\circ}$
$\therefore \quad$ Angle between two hands of the clock at ten past eleven $=90^{\circ}-5^{\circ}=85^{\circ}$

SMART CHECK

The angle between marks 11 and 2 is 90°.
But hour-hand has crossed 11.
Required angle will be less than 90°.
Angle made by hour-hand in one minute is $\left(\frac{1}{2}\right)^{0}$.
$\therefore \quad$ In 10 minutes it makes $\left(10 \times \frac{1}{2}\right)^{\circ}=5^{\circ}$
$\therefore \quad$ Required angle $=90^{\circ}-5^{\circ}=85^{\circ}$
ii. At $7: 20$, the minute-hand is at mark 4 and hour-hand has crossed $\left(\frac{1}{3}\right)^{\text {rd }}$ of angle between 7 and 8.

Angle between two consecutive marks $=\frac{360^{\circ}}{12}$

$$
=30^{\circ}
$$

Angle traced by hour-hand in 20 minutes $=\frac{1}{3}\left(30^{\circ}\right)=10^{\circ}$

Angle between marks 4 and $7=3 \times 30^{\circ}=90^{\circ}$
$\therefore \quad$ Angle between two hands of the clock at twenty past seven $=90^{\circ}+10^{\circ}=100^{\circ}$
iii. At 1:35, the minute-hand is at mark 7 and hourhand has crossed $\left(\frac{7}{12}\right)^{\text {th }}$ of the angle between 1 and 2.

Angle between two consecutive marks
$=\frac{360^{\circ}}{12}=30^{\circ}$
Angle traced by hour-hand in 35 minutes
$=\frac{7}{12}\left(30^{\circ}\right)=\left(\frac{35}{2}\right)^{\circ}=\left(17 \frac{1}{2}\right)^{\circ}$
Angle between marks 1 and $7=6 \times 30^{\circ}=180^{\circ}$
$\therefore \quad$ Angle between two hands of the clock at thirty five past one $=180^{\circ}-\left(17 \frac{1}{2}\right)^{\circ}=\left(162 \frac{1}{2}\right)^{\circ}$ $=162^{\circ}+\frac{1}{2}^{\circ}=162^{\circ} 30^{\prime}$
iv. At 5:45, the minute-hand is at mark 9 and hourhand has crossed $\left(\frac{3}{4}\right)^{\text {th }}$ of the angle between 5 and 6.

Angle between two consecutive marks
$=\frac{360^{\circ}}{12}=30^{\circ}$
Angle traced by hour-hand in 45 minutes
$=\frac{3}{4}\left(30^{\circ}\right)=(22.5)^{\circ}=\left(22 \frac{1}{2}\right)^{\circ}$
Angle between marks 5 and 9
$=4 \times 30^{\circ}=120^{\circ}$
$\therefore \quad$ Angle between two hands of the clock at quarter to $\operatorname{six}=120^{\circ}-\left(22 \frac{1}{2}\right)^{\circ}$

$$
=\left(97 \frac{1}{2}\right)^{\circ}
$$

$$
=97^{\circ}+\frac{1}{2}^{\circ}
$$

$=97^{\circ} 30^{\prime}$
v. At $2: 20$, the minute-hand is at mark 4 and hour-hand has crossed $\left(\frac{1}{3}\right)^{\text {rd }}$ of the angle between 2 and 3 .

Angle between two consecutive marks
$=\frac{360^{\circ}}{12}=30^{\circ}$
Angle traced by hour-hand in 20 minutes
$=\frac{1}{3}\left(30^{\circ}\right)=10^{\circ}$
Angle between marks 2 and $4=2 \times 30^{\circ}=60^{\circ}$
$\therefore \quad$ Angle between two hands of the clock at $2: 20=60^{\circ}-10^{\circ}=50^{\circ}$
vi. At 10:10, the minute-hand is at mark 2 and hour-hand has crossed $\left(\frac{1}{6}\right)^{\text {th }}$ of the angle between 10 and 11 .

Angle between two consecutive marks
$=\frac{360^{\circ}}{12}=30^{\circ}$
Angle traced by hour-hand in 10 minutes
$=\frac{1}{6}\left(30^{\circ}\right)=5^{\circ}$
Angle between marks 10 and $2=4 \times 30^{\circ}=120^{\circ}$
$\therefore \quad$ Angle between two hands of the clock at 10:10
$=120^{\circ}-5^{\circ}=115^{\circ}$

LET'S STUDY

Arc length and Area of a sector

Theorem:

If S is the length of an arc of a circle of radius r which subtends an angle θ^{c} at the centre of the circle, then $S=r \theta$.
Proof:
Let O be the centre and r be the radius of the circle.
Let $A B$ be an arc of the circle with length ' S ' units and $\mathrm{m} \angle \mathrm{AOB}=\theta^{\mathrm{c}}$.
Let AA^{\prime} be the diameter of the circle.

Now, $l(\operatorname{arc} A B) \propto \mathrm{m} \angle \mathrm{AOB}$ and $l\left(\operatorname{arc} \mathrm{ABA}^{\prime}\right) \propto \mathrm{m} \angle \mathrm{AOA}^{\prime}$
$\therefore \quad \frac{l(\operatorname{arc} A B)}{l\left(\operatorname{arc} \mathrm{ABA}^{\prime}\right)}=\frac{\theta^{\mathrm{c}}}{\pi}$
$\therefore \quad \frac{\mathrm{S}}{\frac{1}{2}(\text { circumference })}=\frac{\theta}{\pi}$

$\therefore \quad \frac{\mathrm{S}}{\pi \mathrm{r}}=\frac{\theta}{\pi}$
$\therefore \quad \mathrm{S}=\mathrm{r} \theta$
$\therefore \quad$ Length of an arc, $\mathrm{S}=\mathrm{r} \theta$.

Theorem:

If θ^{c} is an angle between two radii of the circle of radius r, then the area of the corresponding sector is $\frac{1}{2} r^{2} \theta$.

Proof:

Let O be the centre and r be the radius of the circle and $\mathrm{m} \angle \mathrm{AOB}=\theta^{\mathrm{c}}$.
Let AA^{\prime} be the diameter of the circle.
Now, Area of sector $\mathrm{AOB} \propto \mathrm{m} \angle \mathrm{AOB}$ and area of sector $\mathrm{ABA}^{\prime} \propto \mathrm{m} \angle \mathrm{AOA}^{\prime}$
$\therefore \quad \frac{\text { Area of sector } \mathrm{AOB}}{\text { Area of sector } \mathrm{ABA}^{\prime}}=\frac{\mathrm{m} \angle \mathrm{AOB}}{\mathrm{m} \angle \mathrm{AOA}^{\prime}}=\frac{\theta}{\pi}$

$\therefore \quad$ Area of sector $\mathrm{AOB}=$ Area of sector $\mathrm{ABA}^{\prime} \times \frac{\theta}{\pi}$

$$
=\frac{1}{2}\left(\pi r^{2}\right) \times \frac{\theta}{\pi}
$$

$\therefore \quad$ Area of sector $\mathrm{AOB}=\frac{1}{2} \mathrm{r}^{2} \theta$.

Note:

The above theorems are not asked in examination but are provided just for reference.

REMEMBER THIS

$$
\begin{aligned}
\mathrm{A}(\text { sector }) & =\frac{1}{2} \times \mathrm{r}^{2} \times \theta=\frac{1}{2} \times \mathrm{r} \times \mathrm{r} \theta \\
& =\frac{1}{2} \times \mathrm{r} \times \mathrm{S}
\end{aligned}
$$

EXERCISE 1.2

1. Find the length of an arc of a circle which subtends an angle of 108° at the centre, if the radius of the circle is 15 cm .
[1 Mark]

Solution:

Here, $r=15 \mathrm{~cm}$ and
$\theta=108^{\circ}=\left(108 \times \frac{\pi}{180}\right)^{c}=\left(\frac{3 \pi}{5}\right)^{c}$
Since $S=r . \theta$,
$\mathrm{S}=15 \times \frac{3 \pi}{5}$
$=9 \pi \mathrm{~cm}$.
2. The radius of a circle is 9 cm . Find the length of an are of this circle which cuts off a chord of length equal to length of radius. [2 Marks]

Solution:

Here, $\mathrm{r}=9 \mathrm{~cm}$
Let the arc AB cut off a chord equal to the radius of the circle.
Since $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$,
$\triangle \mathrm{OAB}$ is an equilateral triangle.
$\therefore \mathrm{m} \angle \mathrm{AOB}=60^{\circ}$

$\therefore \quad \theta=60^{\circ}$

$$
=\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}
$$

Since $S=r . \theta$,
$\mathrm{S}=9 \times \frac{\pi}{3}=3 \pi \mathrm{~cm}$.
3. Find the angle in degree subtended at the centre of a circle by an arc whose length is 15 cm , if the radius of the circle is 25 cm .
[1 Mark]

Solution:

Here, $\mathrm{r}=25 \mathrm{~cm}$ and $\mathrm{S}=15 \mathrm{~cm}$
Since $S=r . \theta$,
$15=25 \times \theta$
$\therefore \quad \theta=\left(\frac{15}{25}\right)^{c}$
$\therefore \quad \theta=\left(\frac{3}{5}\right)^{\mathrm{c}}=\left(\frac{3}{5} \times \frac{180}{\pi}\right)^{0}$
$=\left(\frac{108}{\pi}\right)^{0}=\left(\frac{108}{3.14}\right)^{0} \quad \ldots[\because \pi=3.14]$
$=(34.40)^{\circ}$ (approx. $)$
$\therefore \quad$ The required angle in degree is $\left(\frac{108}{\pi}\right)^{\circ}$ or $(34.40)^{\circ}($ approx. $)$.
4. A pendulum of length 14 cm oscillates through an angle of 18°. Find the length of its path.
[1 Mark]

Solution:

Here, $\mathrm{r}=14 \mathrm{~cm}$ and
$\theta=18^{\circ}=\left(18 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{10}\right)^{c}$
Since $S=r . \theta$,
S $=14 \times \frac{\pi}{10}$

$\therefore \quad \mathrm{S}=\frac{7 \pi}{5}=\frac{7(3.14)}{5}$
..$[\because \pi=3.14]$
$=\frac{21.98}{5}=4.4 \mathrm{~cm}$. (approx.)
5. Two arcs of the same length subtend angles of 60° and 75° at the centres of the two circles. What is the ratio of radii of two circles?
[3 Marks]

Solution:

Let r_{1} and r_{2} be the radii of the two circles and let their arcs of same length S subtend angles of 60° and 75° at their centres.
Angle subtended at the centre of the first circle,
$\theta_{1}=60^{\circ}=\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}$
$\therefore \quad \mathrm{S}=\mathrm{r}_{1} \theta_{1}=\mathrm{r}_{1}\left(\frac{\pi}{3}\right)$
Angle subtended at the centre of the second circle,
$\theta_{2}=75^{\circ}=\left(75 \times \frac{\pi}{180}\right)^{c}=\left(\frac{5 \pi}{12}\right)^{c}$
$\therefore \quad \mathrm{S}=\mathrm{r}_{2} \theta_{2}=\mathrm{r}_{2}\left(\frac{5 \pi}{12}\right)$
From (i) and (ii), we get
$\mathrm{r}_{1}\left(\frac{\pi}{3}\right)=\mathrm{r}_{2}\left(\frac{5 \pi}{12}\right)$
$\therefore \quad \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{15}{12}$
$\therefore \quad \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{5}{4}$
$\therefore \quad r_{1}: r_{2}=5: 4$.
6. The area of the circle is 25π sq.cm. Find the length of its are subtending an angle of 144° at the centre. Also find the area of the corresponding sector.
[3 Marks]
Solution:
Area of circle $=\pi \mathrm{r}^{2}$
But area is given to be 25π sq.cm
$\therefore \quad 25 \pi=\pi r^{2}$
$\therefore \quad r^{2}=25$
$\therefore \quad r=5 \mathrm{~cm}$
$\theta=144^{\circ}=\left(144 \times \frac{\pi}{180}\right)^{c}=\left(\frac{4 \pi}{5}\right)^{c}$

Since $S=r \theta$,
$S=5\left(\frac{4 \pi}{5}\right)=4 \pi \mathrm{~cm}$.
Also, $\mathrm{A}($ sector $)=\frac{1}{2} \times \mathrm{r} \times \mathrm{S}=\frac{1}{2} \times 5 \times 4 \pi$
$=10 \pi \mathrm{sq} . \mathrm{cm}$.
7. $O A B$ is a sector of the circle having centre at O and radius 12 cm . If $m \angle A O B=45^{\circ}$, find the difference between the area of sector $O A B$ and $\triangle A O B$.
[3 Marks]

Solution:

Here, $\mathrm{r}=12 \mathrm{~cm}$
$\theta=45^{\circ}=\left(45 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{4}\right)^{c}$
Draw AM \perp OB
In \triangle OAM,
$\sin 45^{\circ}=\frac{\mathrm{AM}}{12}$

$\therefore \quad \frac{1}{\sqrt{2}}=\frac{\mathrm{AM}}{12}$
$\therefore \quad \mathrm{AM}=\frac{12}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=6 \sqrt{2} \mathrm{~cm}$
$\therefore \quad \mathrm{A}($ sector OAB$)-\mathrm{A}(\triangle \mathrm{AOB})$
$=\frac{1}{2} r^{2} \theta-\frac{1}{2} \times O B \times A M$
$=\frac{1}{2} \times(12)^{2} \times \frac{\pi}{4}-\frac{1}{2} \times 12 \times 6 \sqrt{2}$
$=\frac{1}{2} \times 144 \times \frac{\pi}{4}-36 \sqrt{2}=18 \pi-36 \sqrt{2}$
$=18(\pi-2 \sqrt{2})$ sq.cm.
8. $O P Q$ is the sector of a circle having centre at O and radius 15 cm . If $\mathrm{m} \angle \mathrm{POQ}=3 \mathbf{3 0}^{\circ}$, find the area enclosed by arc $P Q$ and chord PQ.
[4 Marks]

Solution:

Here, $\mathrm{r}=15 \mathrm{~cm}$
$\mathrm{m} \angle \mathrm{POQ}=30^{\circ}$

$$
=\left(30 \times \frac{\pi}{180}\right)^{\mathrm{c}}
$$

$\therefore \quad \theta=\left(\frac{\pi}{6}\right)^{c}$
Draw $\mathrm{QM} \perp \mathrm{OP}$

In $\triangle \mathrm{OQM}$,
$\sin 30^{\circ}=\frac{\mathrm{QM}}{15}$
$\therefore \quad \frac{1}{2}=\frac{\mathrm{QM}}{15}$
$\therefore \quad \mathrm{QM}=15 \times \frac{1}{2}=\frac{15}{2}$
Shaded portion indicates the area enclosed by arc PQ and chord PQ.
$\therefore \quad \mathrm{A}$ (shaded portion)
$=\mathrm{A}($ sector OPQ$)-\mathrm{A}(\triangle \mathrm{OPQ})$
$=\frac{1}{2} \mathrm{r}^{2} \theta-\frac{1}{2} \times \mathrm{OP} \times \mathrm{QM}$
$=\frac{1}{2} \times(15)^{2} \times \frac{\pi}{6}-\frac{1}{2} \times 15 \times \frac{15}{2}$
$=\frac{225 \pi}{12}-\frac{225}{4}$
$=\frac{225}{4}\left(\frac{\pi}{3}-1\right) \mathrm{sq} . \mathrm{cm}$.
9. The perimeter of a sector of the circle of area $25 \pi \mathrm{sq} . \mathrm{cm}$ is 20 cm . Find the area of sector.
[3 Marks]

Solution:

Area of circle $=\pi r^{2}$
But area is given to be 25π sq.cm.
$\therefore \quad 25 \pi=\pi r^{2}$
$\therefore \quad r^{2}=25$
$\therefore \quad r=5 \mathrm{~cm}$
Perimeter of sector $=2 r+S$
But perimeter is given to be 20 cm .
$\therefore \quad 20=2(5)+\mathrm{S}$
$\therefore \quad 20=10+\mathrm{S}$
$\therefore \quad \mathrm{S}=10 \mathrm{~cm}$
Area of sector $=\frac{1}{2} \times r \times S$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 10 \\
& =25 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

10. The perimeter of a sector of the circle of area $64 \pi \mathrm{sq.cm}$ is 56 cm . Find the area of the sector.
[3 Marks]

Solution:

Area of circle $=\pi r^{2}$
But area is given to be 64π sq.cm.
$\therefore \quad 64 \pi=\pi r^{2}$
$\therefore \quad r^{2}=64$
$\therefore \quad r=8 \mathrm{~cm}$
Perimeter of sector $=2 r+S$
But perimeter is given to be 56 cm .
$\therefore \quad 56=2(8)+\mathrm{S}$
$\therefore \quad 56=16+\mathrm{S}$
$\therefore \quad S=40 \mathrm{~cm}$
Area of sector $=\frac{1}{2} \times r \times S$

$$
\begin{aligned}
& =\frac{1}{2} \times 8 \times 40 \\
& =160 \mathrm{sq} . \mathrm{cm} .
\end{aligned}
$$

MISCELLANEOUS EXERCISE - 1

I. Select the correct option from the given alternatives.
[2 Marks Each]

1. $\left(\frac{22 \pi}{15}\right)^{\mathrm{c}}$ is equal to
(A) 246°
(B) 264°
(C) 224°
(D) 426°
2. 156° is equal to
(A) $\left(\frac{17 \pi}{15}\right)^{\text {c }}$
(B) $\left(\frac{13 \pi}{15}\right)^{c}$
(C) $\left(\frac{11 \pi}{15}\right)^{\text {c }}$
(D) $\left(\frac{7 \pi}{15}\right)^{c}$
3. A horse is tied to a post by a rope. If the horse moves along a circular path, always keeping the rope tight and describes 88 metres when it traces the angle of 72° at the centre, then the length of the rope is
(A) 70 m
(B) 55 m
(C) 40 m
(D) 35 m
4. If a 14 cm long pendulum oscillates through an angle of 12°, then find the length of its path
(A) $\frac{13 \pi}{14}$
(B) $\frac{14 \pi}{13}$
(C) $\frac{15 \pi}{14}$
(D) $\frac{14 \pi}{15}$
5. Angle between hands of a clock when it shows the time $9: 45$ is
(A) $(7.5)^{\circ}$
(B) $(12.5)^{\circ}$
(C) $(17.5)^{\circ}$
(D) $(22.5)^{\circ}$
6. 20 metres of wire is available for fencing off a flower-bed in the form of a circular sector of radius 5 metres, then the maximum area (in sq. m.) of the flower-bed is
(A) 15
(B) 20
(C) 25
(D) 30
7. If the angles of a triangle are in the ratio $1: 2: 3$, then the smallest angle in radian is
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{9}$
8. A semicircle is divided into two sectors whose angles are in the ratio $4: 5$. Find the ratio of their areas?
(A) $5: 1$
(B) $4: 5$
(C) $5: 4$
(D) $3: 4$
9. Find the measure of the angle between hourhand and the minute hand of a clock at twenty minutes past two.
(A) 50°
(B) 60°
(C) 54°
(D) 65°
10. The central angle of a sector of circle of area 9π sq.cm is 60°, the perimeter of the sector is
(A) π
(B) $3+\pi$
(C) $6+\pi$
(D) 6

Answers:

1. (B)
2. (B)
3. (A)
4. (D)
5. (D)
6. (C)
7. (B)
8. (B)
9. (A)
10. (C)

Hints:

3. $\theta=72^{\circ}=\left(72 \times \frac{\pi}{180}\right)^{c}=\left(\frac{2 \pi}{5}\right)^{c}$
$\mathrm{S}=88 \mathrm{~m}$
$\mathrm{S}=\mathrm{r} \theta$
$\therefore \quad 88=r\left(\frac{2 \pi}{5}\right)$

$\therefore \quad r=88 \times \frac{5}{2 \pi}$
$=88 \times \frac{5}{2\left(\frac{22}{7}\right)}=70 \mathrm{~m}$
4. $r+r+r \theta=20 \mathrm{~m}$
$\therefore \quad 2 \mathrm{r}+\mathrm{r} \theta=20$
$\therefore \quad \theta=\frac{20-2 r}{r}$
$\mathrm{r}=5 \mathrm{~m}$

Area $=\frac{1}{2} r^{2} \theta$

$$
=\frac{1}{2} r^{2}\left(\frac{20-2 r}{r}\right)
$$

$$
=\frac{1}{2}(5)^{2}\left(\frac{20-10}{5}\right)
$$

$$
=25 \text { sq. } \mathrm{m}
$$

II. Answer the following.

1. Find the number of sides of a regular polygon, if each of its interior angles is $\frac{3 \pi^{\mathrm{c}}}{4}$.
[2 Marks]

Solution:

Each interior angle of a regular polygon
$=\frac{3 \pi^{\mathrm{c}}}{4}=\left(\frac{3 \pi}{4} \times \frac{180}{\pi}\right)^{\circ}=135^{\circ}$
Interior angle + Exterior angle $=180^{\circ}$
$\therefore \quad$ Exterior angle $=180^{\circ}-135^{\circ}=45^{\circ}$
Let the number of sides of the regular polygon be n.
But in a regular polygon,
exterior angle $=\frac{360^{\circ}}{\text { no.of sides }}$
$\therefore \quad 45^{\circ}=\frac{360^{\circ}}{n}$
$\therefore \quad \mathrm{n}=\frac{360^{\circ}}{45^{\circ}}=8$
$\therefore \quad$ Number of sides of a regular polygon $=8$.
2. Two circles each of radius 7 cm , intersect each other. The distance between their centres is $7 \sqrt{2} \mathrm{~cm}$. Find the area of the portion common to both the circles.
[4 Marks]

Solution:

Let O and O_{1} be the centres of two circles intersecting each other at A and B .
Then $\mathrm{OA}=\mathrm{OB}=\mathrm{O}_{1} \mathrm{~A}=\mathrm{O}_{1} \mathrm{~B}=7 \mathrm{~cm}$
and $\mathrm{OO}_{1}=7 \sqrt{2} \mathrm{~cm}$
$\therefore \quad \mathrm{OO}_{1}{ }^{2}=98$
Since $\mathrm{OA}^{2}+\mathrm{O}_{1} \mathrm{~A}^{2}=7^{2}+7^{2}$

$$
\begin{align*}
& =98 \tag{i}\\
& =\mathrm{OO}_{1}{ }^{2} \tag{i}
\end{align*}
$$

$\therefore \quad \mathrm{m} \angle \mathrm{OAO}_{1}=90^{\circ}$
$\therefore \quad \square \mathrm{OAO}_{1} \mathrm{~B}$ is a square.

$$
\mathrm{m} \angle \mathrm{AOB}=\mathrm{m} \angle \mathrm{AO}_{1} \mathrm{~B}=90^{\circ}
$$

$$
=\left(90 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{2}\right)^{c}
$$

Now, $A($ sector $O A B)=\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{2} \times 7^{2} \times \frac{\pi}{2} \\
& =\frac{49 \pi}{4} \text { sq.cm }
\end{aligned}
$$

and $\mathrm{A}\left(\right.$ sector $\left.\mathrm{O}_{1} \mathrm{AB}\right)=\frac{1}{2} \mathrm{r}^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{2} \times 7^{2} \times \frac{\pi}{2} \\
& =\frac{49 \pi}{4} \text { sq.cm }
\end{aligned}
$$

$\mathrm{A}\left(\square \mathrm{OAO}_{1} \mathrm{~B}\right)=(\text { side })^{2}=(7)^{2}=49$ sq.cm
$\therefore \quad$ Required area $=$ area of shaded portion
$=\mathrm{A}($ sector OAB$)+\mathrm{A}\left(\right.$ sector $\left.\mathrm{O}_{1} \mathrm{AB}\right)$

$$
-\mathrm{A}\left(\square \mathrm{OAO}_{1} \mathrm{~B}\right)
$$

$=\frac{49 \pi}{4}+\frac{49 \pi}{4}-49$
$=\frac{49 \pi}{2}-49$
$=49\left(\frac{\pi}{2}-1\right) \mathrm{sq} . \mathrm{cm}$
3. $\triangle P Q R$ is an equilateral triangle with side 18 cm . A circle is drawn on segment QR as diameter. Find the length of the arc of this circle within the triangle.
[3 Marks]

Solution:

Let ' O ' be the centre of the circle drawn on $Q R$ as a diameter.

Let the circle intersect seg PQ and seg PR at points M and N respectively.
Since $l(\mathrm{OQ})=l(\mathrm{OM})$,
$\mathrm{m} \angle \mathrm{OMQ}=\mathrm{m} \angle \mathrm{OQM}=60^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{MOQ}=60^{\circ}$
Similarly, $\mathrm{m} \angle \mathrm{NOR}=60^{\circ}$ Given, $\mathrm{QR}=18 \mathrm{~cm}$.
$\therefore \quad r=9 \mathrm{~cm}$
$\therefore \quad \theta=60^{\circ}=\left(60 \times \frac{\pi}{180}\right)^{c}$

$$
=\left(\frac{\pi}{3}\right)^{c}
$$

$\therefore \quad l(\operatorname{arc} \mathrm{MN})=\mathrm{S}=\mathrm{r} \theta=9 \times \frac{\pi}{3}=3 \pi \mathrm{~cm}$.
4. Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm .
[2 Marks]

Solution:

Let S be the length of the arc and r be the radius of the circle.
$\theta=60^{\circ}=\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}$
$\mathrm{S}=37.4 \mathrm{~cm}$
Since $S=r \theta$,
$37.4=r \times \frac{\pi}{3}$
$\therefore \quad 3 \times 37.4=\mathrm{r} \times \frac{22}{7}$
$\ldots\left[\because \pi=\frac{22}{7}\right]$
$\therefore \quad \mathrm{r}=\frac{3 \times 37.4 \times 7}{22}$
$\therefore \quad r=35.7 \mathrm{~cm}$
5. A wire of length 10 cm is bent so as to form an arc of a circle of radius 4 cm . What is the angle subtended at the centre in degrees?
[2 Marks]

Solution:

$\mathrm{S}=10 \mathrm{~cm}$ and $\mathrm{r}=4 \mathrm{~cm}$
Since $S=r \theta$,

$$
10=4 \times \theta
$$

$\therefore \quad \theta=\left(\frac{5}{2}\right)^{c}=\left(\frac{5}{2} \times \frac{180}{\pi}\right)^{\circ}$

$$
=\left(\frac{450}{\pi}\right)^{\circ}
$$

6. If two arcs of the same length in two circles subtend angles 65° and 110° at the centre. Find the ratio of their radii.
[3 Marks]

Solution:

Let r_{1} and r_{2} be the radii of the two circles and let their arcs of same length S subtend angles of 65° and 110° at their centres.

Angle subtended at the centre of the first circle,
$\theta_{1}=65^{\circ}=\left(65 \times \frac{\pi}{180}\right)^{c}=\left(\frac{13 \pi}{36}\right)^{c}$
$\therefore \quad \mathrm{S}=\mathrm{r}_{1} \theta_{1}=\mathrm{r}_{1}\left(\frac{13 \pi}{36}\right)$
Angle subtended at the centre of the second circle,
$\theta_{2}=110^{\circ}=\left(110 \times \frac{\pi}{180}\right)^{c}=\left(\frac{11 \pi}{18}\right)^{c}$
$\therefore \quad \mathrm{S}=\mathrm{r}_{2} \theta_{2}=\mathrm{r}_{2}\left(\frac{11 \pi}{18}\right)$
From (i) and (ii), we get
$\mathrm{r}_{1}\left(\frac{13 \pi}{36}\right)=\mathrm{r}_{2}\left(\frac{11 \pi}{18}\right)$
$\therefore \quad \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{22}{13}$
$\therefore \quad r_{1}: r_{2}=22: 13$
7. The area of a circle is $81 \pi \mathrm{sq} . \mathrm{cm}$. Find the length of the arc subtending an angle of 300° at the centre and also the area of corresponding sector.
[3 Marks]

Solution:

Area of circle $=\pi \mathrm{r}^{2}$
But area is given to be 81π sq.cm
$\therefore \quad \pi r^{2}=81 \pi$
$\therefore \quad r^{2}=81$
$\therefore \quad r=9 \mathrm{~cm}$
$\theta=300^{\circ}=\left(300 \times \frac{\pi}{180}\right)^{c}=\left(\frac{5 \pi}{3}\right)^{c}$
Since $S=r \theta$,
$\mathrm{S}=9 \times \frac{5 \pi}{3}=15 \pi \mathrm{~cm}$
Area of sector $=\frac{1}{2} \times \mathrm{r} \times \mathrm{S}$

$$
=\frac{1}{2} \times 9 \times 15 \pi=\frac{135 \pi}{2} \text { sq.cm }
$$

8. Show that minute-hand of a clock gains $5^{\circ} 30^{\prime}$ on the hour-hand in one minute.
[2 Marks]
Solution:
Angle made by hour-hand in one minute
$=\frac{360^{\circ}}{12 \times 60}=\left(\frac{1}{2}\right)^{\circ}$
Angle made by minute-hand in one minute
$=\frac{360^{\circ}}{60}=6^{\circ}$
$\therefore \quad$ Gain by minute-hand on the hour-hand in one minute

$$
=6^{\circ}-\left(\frac{1}{2}\right)^{\circ}=\left(5 \frac{1}{2}\right)^{\circ}=5^{\circ} 30^{\prime}
$$

[Note: The question has been modified.]
9. A train is running on a circular track of radius 1 km at the rate of 36 km per hour. Find the angle to the nearest minute, through which it will turn in 30 seconds. [3 Marks]
Solution:

$$
\begin{aligned}
& \mathrm{r}=1 \mathrm{~km}=1000 \mathrm{~m} \\
& l \text { (Arc covered by train in } 30 \text { seconds) } \\
& =30 \times \frac{36000}{60 \times 60} \mathrm{~m} \\
& \therefore \quad \mathrm{~S}=300 \mathrm{~m} \\
& \text { Since } S=r \theta \text {, } \\
& 300=1000 \times \theta \\
& \therefore \quad \theta=\left(\frac{3}{10}\right)^{c}=\left(\frac{3}{10} \times \frac{180}{\pi}\right)^{\circ} \\
& =\left(\frac{54}{\pi}\right)^{\circ} \\
& =\left(\frac{54 \times 7}{22}\right)^{\circ} \quad \ldots\left[\because \pi=\frac{22}{7}\right] \\
& =(17.18)^{\circ} \\
& =17^{\circ}+(0.18)^{\circ} \\
& =17^{\circ}+(0.18 \times 60)^{\prime}=17^{\circ}+(10.8)^{\prime} \\
& \therefore \quad \theta=17^{\circ} 11^{\prime} \text { (approx.) }
\end{aligned}
$$

10. In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord.
[2 Marks]
Solution:
Let ' O ' be the centre of the circle and $A B$ be the chord of the circle.
Here, $\mathrm{d}=40 \mathrm{~cm}$
$\therefore \quad r=\frac{40}{2}=20 \mathrm{~cm}$

Since $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$,
$\triangle \mathrm{OAB}$ is an equilateral triangle.
$\therefore \quad$ The angle subtended at the centre by the minor $\operatorname{arc} \mathrm{AOB}$ is $\theta=60^{\circ}=\left(60 \times \frac{\pi}{180}\right)^{\mathrm{c}}=\left(\frac{\pi}{3}\right)^{\mathrm{c}}$
$\therefore \quad l($ minor arc of chord AB$)=\mathrm{r} \theta=20 \times \frac{\pi}{3}$

$$
=\frac{20 \pi}{3} \mathrm{~cm} .
$$

11. The angles of a quadrilateral are in A.P. and the greatest angle is double the least. Find angles of the quadrilateral in radians.
[4 Marks]

Solution:

Let the measures of the angles of the quadrilateral in degrees be
$a-3 d, a-d, a+d, a+3 d$, where $a>d>0$
$\therefore \quad(a-3 d)+(a-d)+(a+d)+(a+3 d)=360^{\circ}$
\ldots [Sum of the angles of a quadrilateral is 360°]
$\therefore \quad 4 \mathrm{a}=360^{\circ}$
$\therefore \quad \mathrm{a}=90^{\circ}$

According to the given condition, the greatest angle is double the least.
$\therefore \quad a+3 d=2 .(a-3 d)$
$\therefore \quad 90^{\circ}+3 \mathrm{~d}=2 .\left(90^{\circ}-3 \mathrm{~d}\right)$
$\therefore \quad 90^{\circ}+3 \mathrm{~d}=180^{\circ}-6 \mathrm{~d}$
$\therefore \quad 9 \mathrm{~d}=90^{\circ}$
$\therefore \quad \mathrm{d}=10^{\circ}$
$\therefore \quad$ The measures of the angles in degrees are
$\mathrm{a}-3 \mathrm{~d}=90^{\circ}-3\left(10^{\circ}\right)=90^{\circ}-30^{\circ}=60^{\circ}$,
$a-d=90^{\circ}-10^{\circ}=80^{\circ}$,
$\mathrm{a}+\mathrm{d}=90^{\circ}+10^{\circ}=100^{\circ}$,
$\mathrm{a}+3 \mathrm{~d}=90^{\circ}+3\left(10^{\circ}\right)=90^{\circ}+30^{\circ}=120^{\circ}$
We know that $\theta^{\circ}=\left(\theta \times \frac{\pi}{180}\right)^{\mathrm{c}}$
$\therefore \quad$ The measures of the angles in radians are
$60^{\circ}=\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}$
$80^{\circ}=\left(80 \times \frac{\pi}{180}\right)^{c}=\left(\frac{4 \pi}{9}\right)^{c}$
$100^{\circ}=\left(100 \times \frac{\pi}{180}\right)^{c}=\left(\frac{5 \pi}{9}\right)^{c}$
$120^{\circ}=\left(120 \times \frac{\pi}{180}\right)^{c}=\left(\frac{2 \pi}{3}\right)^{c}$

ONE MARK QUESTIONS

1. Find the degree measure of an angle traced by the hour-hand in 15 minutes.
2. Check whether the given pair of angles is co-terminal or not.
45° and -315°
3. Find the length of an arc of a circle of radius rcm which subtends an angle θ^{c} at the centre of the circle.
4. Determine the quadrant of angle 1105°.
5. Express the angle $(0.13)^{\circ}$ in seconds.

ADDITIONAL PROBLEMS FOR PRACTICE

Based on Exercise 1.1

1. i. Determine which of the following pairs of angles are coterminal:
[1 Mark Each]
a. $420^{\circ},-300^{\circ}$
b. $330^{\circ},-45^{\circ}$
c. $330^{\circ},-60^{\circ}$
d. $1230^{\circ},-930^{\circ}$
ii. Draw the angles of the following measures and determine their quadrants.
[2 Marks Each]
a. -120°
b. 300°
c. 650°
d. 820°
e. 225°
f. -640°
g. -60°
h. 660°
i. -690°
j. $\quad 1200^{\circ}$
+2 . Convert the following degree measures in the radian measures.
[1 Mark Each]
i. $\quad 70^{\circ}$
ii. -120°
iii. $\left(\frac{1}{4}\right)^{\circ}$
2. Express the following angles in radians:
[1 Mark Each]
i. $\quad 150^{\circ}$
ii. 340°
iii. -225°
iv. $-\left(\frac{1}{4}\right)^{\circ}$
+4 . Convert the following radian measures in the degree measures.
[1 Mark Each]
i. $\left(\frac{7 \pi}{3}\right)^{\mathrm{c}}$
ii. $\left(-\frac{\pi}{18}\right)^{\mathrm{c}}$
iii. $\left(\frac{4}{7}\right)^{\text {c }}$
3. Express the following angles in degrees:
[1 Mark Each]
i. $\left(\frac{5 \pi}{8}\right)^{c}$
ii. $\left(-\frac{5 \pi}{6}\right)^{\text {c }}$
iii. $6^{\text {c }}$
iv. $\left(\frac{1}{4}\right)^{c}$
v. $\quad(1.1)^{\mathrm{c}}$
+6 . Express the following angles in degree, minute and second.
[2 Marks Each]
i. $\quad 74.87^{\circ}$
ii. $\quad-30.6947^{\circ}$
4. Express the following angles in degrees, minutes and seconds form: [2 Marks Each]
i. $\quad(125.3)^{\circ}$
ii. $\quad(50.9)^{\circ}$
iii. $\left(\frac{11}{16}\right)^{\text {c }}$
5. The sum of two angles is $3 \pi^{\mathrm{c}}$ and their difference is 40°. Find the angles in degrees.
[2 Marks]
6. Two angles of a triangle are $\frac{3 \pi^{\mathrm{c}}}{5}$ and $\frac{4 \pi^{\mathrm{c}}}{15}$.

Find the degree and radius measures of third angle.
[2 Marks]
10. In a right angled triangle, the acute angles are in the ratios $7: 11$. Find the angles of the triangle in degree and radian.
[3 Marks]
+11 . The difference between two acute angles of a right angled triangle is $\frac{7 \pi^{\mathrm{c}}}{30}$.
Find the angles of the triangle in degrees.
[3 Marks]
12. The measures of angles of a triangle are in the ratio $2: 6: 7$. Find their measures in degrees.
[3 Marks]
+13 . The measures of the angles of the triangle are in A. P. The smallest angle is 40 . Find the angles of the triangle in degree and in radian.
[4 Marks]
+14 . One angle of a quadrilateral is $\frac{2 \pi}{9}$ radians and the measures of the other three angles are in the ratio $3: 5: 8$, find their measures in degree.
[3 Marks]
+15 . Find the number of sides of a regular polygon if each of its interior angle is $\left(\frac{4 \pi}{5}\right)^{c}$. [3 Marks]
16. Find the radian measure of the interior angle of a regular heptagon.
[3 Marks]
+17 . Find the angle between hour hand and minute hand of a clock at
i. Quarter past five ii. Quarter to twelve
[2 Marks]

Based on Exercise 1.2

1. Find the length of an arc of a circle which subtends an angle of 144° at the centre, if the radius of the circle is 5 cm .
[1 Mark]
+2 . The diameter of a circle is 14 cm . Find the length of the arc, subtending an angle of 54° at the centre.
[1 Mark]
2. The radius of a circle is 7 cm . Find the length of an arc of this circle which cuts off a chord of length equal to radius.
[2 Marks]
+4 . A pendulum of length 21 cm oscillates through an angle of 36°. Find the length of its path.
[2 Marks]
3. Two arcs of the same length subtend angles of 60° and 80° at the centre of the circles. What is the ratio of radii of two circles?
[2 Marks]
+6 . The area of a circle is 225π sq. cm. Find the length of its arc subtending an angle of 120° at the centre. Also find the area of the corresponding sector.
[3 Marks]
4. OAB is a sector of the circle with centre O and radius 12 cm . If $\mathrm{m} \angle \mathrm{AOB}=60^{\circ}$, find the difference between the areas of sector AOB and $\triangle \mathrm{AOB}$.
[3 Marks]
+8 . In a circle of radius 12 cms , an arc PQ subtends an angle of 30° at the centre. Find the area between the arc PQ and chord PQ. [4 Marks]
5. Find the area of the sector of circle which subtends an angle of 60° at the centre, if the radius of the circle is 3 cm .
[2 Marks]
6. The perimeter of a sector of a circle, of area 49π sq. cm , is 44 cm . Find the area of sector.
[3 Marks]
+11 . The perimeter of a sector is equal to half of the circumference of a circle. Find the measure of the angle of the sector at the centre in radian.
[2 Marks]
+12 . ABCDEFGH is a regular octagon inscribed in a circle of radius 9 cm . Find the length of minor arc $A B$.
[2 Marks]

Based on Miscellaneous Exercise - 1

1. Find the number of sides of a regular polygon, if each of its interior angles is $\frac{2 \pi^{\mathrm{c}}}{3}$.
[2 Marks]
2. Two circles each of radius 5 cm intersect each other. The distance between their centres is $5 \sqrt{2} \mathrm{~cm}$. Find the area common to both the circles.
[4 Marks]
3. $\triangle \mathrm{ABC}$ is an equilateral triangle with side 6 cm . A circle is drawn on segment BC as diameter. Find the length of the arc of this circle intercepted within $\triangle \mathrm{ABC}$.
[3 Marks]
4. Find the radius of the circle in which a central angle of 60° intercepts an arc of length 28.6 cm . (Use $\pi=\frac{22}{7}$)
[3 Marks]
5. A wire of length 96 cm is bent so as to form an arc of a circle of radius 180 cm . What is the angle subtended at the centre in degrees?
[2 Marks]
6. If the arcs of the same lengths in two circles subtend angles 75° and 140° at the centre, then find the ratio of their radii.
[3 Marks]
7. In a circle of diameter 66 cm , the length of a chord is 33 cm . Find the length of minor arc of the chord.
[2 Marks]

MULTIPLE CHOICE QUESTIONS

1. The angle subtended at the centre of a circle of radius 3 metres by an arc of length 1 metre is equal to
(A) 20°
(B) 60°
(C) $\frac{1}{3}$ radian
(D) 3 radians
2. A wire that can cover a circle of radius 7 cm is bent again into an arc of a circle of radius 12 cm . The angle subtended by the arc at the centre is
(A) 50°
(B) 210°
(C) 100°
(D) 60°
3. The radius of the circle whose arc of length 15 cm makes an angle of $\frac{3}{4}$ radian at the centre is
(A) 10 cm
(B) 20 cm
(C) $11 \frac{1}{4} \mathrm{~cm}$
(D) $22 \frac{1}{2} \mathrm{~cm}$
4. $\frac{4 \pi^{\mathrm{c}}}{5}=$
(A) 144°
(B) 60°
(C) 120°
(D) 135°
5. $\frac{8 \pi^{\mathrm{c}}}{3}=$
(A) 144°
(B) 80°
(C) 480°
(D) 180°
6. $36^{\circ}=$
(A) $\frac{\pi^{\mathrm{c}}}{6}$
(B) $\frac{\pi^{\mathrm{c}}}{5}$
(C) $\frac{\pi^{\mathrm{c}}}{3}$
(D) $\frac{\pi^{\mathrm{c}}}{2}$
7. $-520^{\circ}=$
(A) $\frac{24}{9} \pi^{\mathrm{c}}$
(B) $\frac{25}{9} \pi^{\text {c }}$
(C) $\frac{23}{9} \pi^{\text {c }}$
(D) $\frac{-26}{9} \pi^{\mathrm{c}}$
8. The angles of a triangle are in A. P. such that greatest is 5 times the least. The angles in degrees are
(A) $30^{\circ}, 60^{\circ}, 100^{\circ}$
(B) $30^{\circ}, 45^{\circ}, 90^{\circ}$
(C) $20^{\circ}, 45^{\circ}, 180^{\circ}$
(D) $20^{\circ}, 60^{\circ}, 100^{\circ}$
9. The angles of a quadrilateral are in the ratio $2: 3: 3: 4$. Then the least angle in degrees is
(A) 90°
(B) 45°
(C) 30°
(D) 60°
10. The angles of a triangle are in the ratio $3: 7: 8$. Then the greatest angle in radians is
(A) $\frac{4 \pi^{\mathrm{c}}}{9}$
(B) $\frac{5 \pi^{\mathrm{c}}}{9}$
(C) $\frac{7 \pi^{\mathrm{c}}}{18}$
(D) $\frac{\pi^{\mathrm{c}}}{6}$
11. The difference between two acute angles of a right angled triangle is $\frac{\pi}{9}$. Then the angles in degrees are
(A) $30^{\circ}, 35^{\circ}$
(B) $45^{\circ}, 55^{\circ}$
(C) $55^{\circ}, 35^{\circ}$
(D) $60^{\circ}, 75^{\circ}$
12. Angle between the hour hand and minute hand of a clock at quarter past eleven in degrees is
(A) $\left(\frac{15 \pi}{24}\right)^{c}$
(B) $112^{\circ} 30^{\prime}$
(C) $107^{\circ} 73^{\prime \prime}$
(D) $\left(\frac{2 \pi}{3}\right)^{\text {c }}$
13. The interior angle of a regular polygon of 15 sides in radians is
(A) $\frac{13 \pi^{\mathrm{c}}}{15}$
(B) $\frac{9 \pi^{\mathrm{c}}}{20}$
(C) 156°
(D) 135°
14. The length of arc of a circle of radius 9 cm subtending an angle of 40° at the centre is
(A) $2 \pi \mathrm{~cm}$
(B) $12 \pi \mathrm{~cm}$
(C) $\frac{2 \pi}{9} \mathrm{~cm}$
(D) $\frac{4 \pi}{5} \mathrm{~cm}$
15. OA and OB are two radii of a circle of radius 10 such that $\mathrm{m} \angle \mathrm{AOB}=144^{\circ}$. Then area of the sector AOB is
(A) 8π sq.cm.
(B) $20 \pi \mathrm{sq} . \mathrm{cm}$.
(C) $30 \pi \mathrm{sq} . \mathrm{cm}$.
(D) 40π sq.cm.
16. The perimeter of a sector of a circle of area 36π sq. cm is 24 cm . Then the area of sector is
(A) 40 sq.cm.
(B) $36 \mathrm{sq} . \mathrm{cm}$.
(C) $46 \mathrm{sq} . \mathrm{cm}$.
(D) $26 \mathrm{sq} . \mathrm{cm}$.
17. A semicircle is divided into two sectors, whose angles are in the ratio $1: 2$. Then the ratio of their areas is
(A) $1: 3$
(B) $1: 4$
(C) $2: 3$
(D) $1: 2$
18. If θ^{c} is the angle between two radii of a circle of radius r, then the area of corresponding sector is
(A) $r^{2} \theta$
(B) $\frac{1}{2} \mathrm{r}^{2} \theta$
(C) $\mathrm{r} \theta$
(D) $2 \pi r$
19. A wire 121 cm . long is bent so as to lie along the arc of a circle of 180 cm radius. The angle subtended at the centre of the arc in degrees is
(A) $35^{\circ} 37^{\prime}$
(B) $36^{\circ} 30^{\prime}$
(C) $37^{\circ} 30^{\prime}$
(D) $38^{\circ} 30^{\prime}$

Time: 1 Hour

SECTION A

Q.1. Select and write the correct answer.
i. $\quad 5^{\circ} 37^{\prime} 30^{\prime \prime}=$
(A) $\left(\frac{\pi}{4}\right)^{c}$
(B) $\left(\frac{\pi}{8}\right)^{c}$
(C) $\left(\frac{\pi}{16}\right)^{\text {c }}$
(D) $\left(\frac{\pi}{32}\right)^{\text {c }}$
ii. The measures of angles of a triangle are in the ratio $2: 3: 5$. Their measures in radians are
(A) $\frac{\pi^{\mathrm{c}}}{5}, \frac{3 \pi^{\mathrm{c}}}{10}, \frac{\pi^{\mathrm{c}}}{2}$
(B) $\frac{\pi^{\mathrm{c}}}{5}, \frac{3 \pi^{\mathrm{c}}}{10}, \frac{\pi^{\mathrm{c}}}{3}$
(C) $\frac{\pi^{\mathrm{c}}}{6}, \frac{5 \pi^{\mathrm{c}}}{12}, \frac{3 \pi^{\mathrm{c}}}{4}$
(D) $\frac{\pi^{\mathrm{c}}}{4}, \frac{3 \pi^{\mathrm{c}}}{10}, \frac{\pi^{\mathrm{c}}}{2}$
Q.2. Answer the following.
i. Find the angle traced by the hour-hand in 23 minutes.
ii. Check whether the given pair of angles is co-terminal or not. 173° and 543°

SECTION B

Attempt any two of the following:
Q.3. The sum of two angles is $5 \pi^{\mathrm{c}}$ and their difference is 60°. Find their measures in degrees.
Q.4. Find the degree and radian measures of exterior and interior angles of a regular pentagon.
Q.5. The radius of a circle is 9 cm . Find the length of an arc of this circle which cuts off a chord of length equal to length of radius.

SECTION C

Attempt any two of the following:
Q.6. Find the angle between hour-hand and minute-hand of a clock at quarter to twelve.
Q.7. One angle of a quadrilateral has measure $\frac{2 \pi^{\mathrm{c}}}{5}$ and the measures of other three angles are in the ratio $2: 3: 4$. Find their measures in degrees and radians.
Q.8. A train is running on a circular track of radius 1 km at the rate of 36 km per hour. Find the angle to the nearest minute, through which it will turn in 30 seconds.

SECTION D

Attempt any one of the following:
Q.9. Two circles each of radius 7 cm , intersect each other. The distance between their centres is $7 \sqrt{2} \mathrm{~cm}$. Find the area common to both the circles.
Q.10. The angles of a quadrilateral are in A.P. and the greatest angle is double the least. Find angles of the quadrilateral in radians.

ANSWERS

ONE MARK QUESTIONS

1. $(7.5)^{\circ}$
2. Co-terminal
3. $\mathrm{r} \theta \mathrm{cm}$
4. I quadrant
5. $468^{\prime \prime}$

ADDITIONAL PROBLEMS FOR PRACTICE

Based on Exercise 1.1

1.

i. a. coterminal b. not coterminal
c. not coterminal
d. coterminal
ii. a. III quadrant
b. IV quadrant
c. IV quadrant
d. II quadrant
e. III quadrant
f. I quadrant
g. IV quadrant
h. IV quadrant
i. I quadrant
j. II quadrant
2. i. $\left(\frac{7 \pi}{18}\right)^{c}$
ii. $-\left(\frac{2 \pi}{3}\right)^{\circ}$
iii. $\left(\frac{\pi}{720}\right)^{c}$
3. i. $\left(\frac{5 \pi}{6}\right)^{\text {c }}$
ii. $\quad\left(\frac{17 \pi}{9}\right)^{c}$
iii. $\left(-\frac{5 \pi}{4}\right)^{c}$
iv. $\left(-\frac{\pi}{720}\right)^{c}$
4. i. 420°
ii. $\quad-10^{\circ}$
iii. $\left(\frac{360}{11}\right)^{\circ}$
5. i. $\left(\frac{225}{2}\right)^{\circ}$
ii. -150°
iii. $\left(\frac{1080}{\pi}\right)^{\circ}$
iv. $\left(\frac{45}{\pi}\right)^{0}$
v. 63°
6. i. $74^{\circ} 52^{\prime} 12^{\prime \prime}$
ii. $\quad-30^{\circ} 41^{\prime} 41^{\prime \prime}$ approximately
7. i. $125^{\circ} 18^{\prime}$
ii. $\quad 50^{\circ} 54^{\prime}$
iii. $39^{\circ} 22^{\prime} 30^{\prime \prime}$
$8 \quad 290^{\circ}, 250^{\circ}$
9. $24^{\circ}, \frac{2 \pi}{15}$
10. $35^{\circ}, 55^{\circ}, \frac{7 \pi}{36}, \frac{11 \pi}{36}$
11. The angles of a triangle are $66^{\circ}, 90^{\circ}$ and 24°.
12. $24^{\circ}, 72^{\circ}, 84^{\circ}$
13. The angles of a triangle in degrees are $40^{\circ}, 60^{\circ}$ and 80° and in radians $\frac{2 \pi^{\mathrm{c}}}{9^{\mathrm{c}}}, \frac{\pi^{\mathrm{c}}}{3}$ and $\frac{4 \pi^{\mathrm{c}}}{9}$
14. The measures of three angles are $60^{\circ}, 100^{\circ}$ and 160°
15. Number of sides of the regular polygon is 10 .
16. $\left(\frac{5 \pi}{7}\right)^{c}$
17. i.
67.5°.
ii. 82.5°.

Based on Exercise 1.2

1. $4 \pi \mathrm{~cm}$
2. 6.6 cm
3. $\frac{7 \pi}{3} \mathrm{~cm}$
4. $\quad 13.2 \mathrm{~cm}$
5. $4: 3$
6. $10 \pi \mathrm{~cm}, 75 \pi \mathrm{sq} . \mathrm{cm}$.
7. $12(2 \pi-3 \sqrt{3}) \mathrm{sq} . \mathrm{cm}$
8. $12(\pi-3) \mathrm{sq} . \mathrm{cm}$
9. $\frac{3 \pi}{2} \mathrm{sq} . \mathrm{cm}$
10. $\quad 105$ sq. cm .
11. $(\pi-2)^{\mathrm{C}}$
12. $9\left(\frac{\pi}{4}\right) \mathrm{cm}$

Based on Miscellaneous Exercise - 1

1. 6 .
2. $\frac{25}{2}(\pi-2)$ sq. cm.
3. $\pi \mathrm{cm}$.
4. 27.3 cm
5. $\left(\frac{96}{\pi}\right)^{\circ}$
6. $28: 15$
7. $11 \pi \mathrm{~cm}$

MULTIPLE CHOICE QUESTIONS

1.	(C)	2.	(B)	3.	(B)	4.	(A)
5.	(C)	6.	(B)	7.	(D)	8.	(D)
9.	(D)	10.	(A)	11.	(C)	12.	(B)
13.	(A)	14.	(A)	15.	(D)	16.	(B)
17.	(D)	18.	(B)	19.	(D)		

TOPIC TEST

1. i. (D)
ii. (A)
2. i. $(11.5)^{\circ}$
ii. not co-terminal
3. 480° and 420°
4. Exterior angle $=72^{\circ}=\left(\frac{2 \pi}{5}\right)^{\mathrm{c}}$

Interior angle $=108^{\circ}=\left(\frac{3 \pi}{5}\right)^{\mathrm{c}}$
5. $3 \pi \mathrm{~cm}$
6. $82^{\circ} 30^{\prime}$
7. Degree: $64^{\circ}, 96^{\circ}, 128^{\circ}$

Radian: $\left(\frac{16 \pi}{45}\right)^{c},\left(\frac{8 \pi}{15}\right)^{c},\left(\frac{32 \pi}{45}\right)^{c}$
8. $17^{\circ} 11^{\prime}$ (approx.)
9. $49\left(\frac{\pi}{2}-1\right) \mathrm{sq} . \mathrm{cm}$
10. Degree: $60^{\circ}, 80^{\circ}, 100^{\circ}, 120^{\circ}$

Radian: $\left(\frac{\pi}{3}\right)^{\mathrm{c}},\left(\frac{4 \pi}{9}\right)^{\mathrm{c}},\left(\frac{5 \pi}{9}\right)^{\mathrm{c}},\left(\frac{2 \pi}{3}\right)^{\mathrm{c}}$

Scan the given Q. R. Code in Quill - The Padhai App to view the solutions of the Topic Test.

Give your $\mathrm{XI}^{\text {th }}$ exam preparation the HECHNOLOGY BOOST!

Practice more than 4,500 MCQs for just ₹ 499/-

Use Coupon Code QUILLPADHAI2023

Also available for X $^{\text {th }}$, XII $^{\text {th }}$, MHT-CET, NEET \& JEE

- Practice chapter-wise \& full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Visit our website to know more about our range of books for

X $^{\text {th }}$, XII ${ }^{\text {th }}$, MHT-CET, NEET $\&$ JEE

Visit Our Website

Transforming lives through learning.
 \section*{Address:}

$2^{\text {nd }}$ floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400080
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org
Email: mail@targetpublications.org

[^0]: © Target Publications Pvt. Ltd.
 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

