SAMPLEGONTENT

PFiflifir

mayisangugs Phir-II

BASED ON LATEST BOARD PAPER PATTERN

Application of Co-ordinate Geometry:

Slope of a line is used to determine the length of conveyor belt. If the slope of the belt is more, the material will slide down instead of being carried up.

Mr. Biju B.
B.Sc. (Maths)

Mr. Vinod Singh M.Sc. (Mathematics)

Ms. Suchitra Yadav M.Sc. (Mathematics) B.Ed.
(Eng. Med.)

Target Publications ${ }^{\circ}$ Pvt. Ltd.

PERFECT Mathematics part-n

Salient Features

- Written as per the Latest Textbook and Board Paper Pattern
- Complete coverage of the entire syllabus, which includes:
- Solutions to all Practice Sets and Problem Sets
- Intext and Activity/Project based questions from the textbook
- Exclusive Practice includes:
- Additional problems, Activities, Multiple Choice Questions (MCQs) and One mark questions
- 'Chapter Assessment' at the end of each chapter
- Tentative marks allocation for all problems
- Constructions drawn with accurate measurements
- Relevant Previous Years' Board Questions till July 2023
- At the end of the book:
- A separate section of 'Challenging Questions' is provided
- 'Important Theorems and Formulae' for quick reference are provided
- 'Model Question Paper' in accordance with the latest paper pattern
- Includes Important Features for holistic learning:

$$
\text { - Illustrative Example } \quad-\quad \text { Smart Check }
$$

- Q.R. codes provide:
- Answer Keys of Chapter Assessment
- Solution of Model Question Paper
- Includes Board Question Paper of March 2024 (Solution in pdf format through QR code)

Printed at: India Printing Works, Mumbai

[^0]
PREFACE

Creation of the 'Perfect Mathematics Part - II, Std. X' book was a rollercoaster ride. We had a plethora of ideas, suggestions and decisions to ponder over. However, our primary objective was to align book with the latest syllabus and provide students with ample practice material.

This book covers several topics including Similarity of Triangles, Pythagoras Theorem, Circles, Geometric Constructions, Co-ordinate Geometry, Trigonometry and Mensuration. The study of these topics requires a deep and intrinsic understanding of concepts, terms and formulae. Hence, to ease this task, we present 'Perfect Mathematics Part - II, Std. X' a complete and thorough guide, extensively drafted to boost the confidence of students.

Before each Practice Set, a short and easy explanation of various concepts with the help of 'Illustrative Examples' is provided. A detailed problem solving process is explained step by step in 'Illustrative Examples'. Detailed solution of the problems has been provided for student's understanding and is not expected in the examination. We have also included Solutions and Answers to Textual Questions and Examples in an extremely lucid manner.

Moreover, the inclusion of 'Smart Check' enables students to verify their answers. 'Textual Activities' covers all the Textual Activities along with their answers. 'Additional Problems for Practice' include multiple problems to help students revise and enhance their problem solving skills. 'Solved Examples' from textbook are also a part of this book. 'Activities for Practice' includes additional activities along with their answers for students to practice.
'One Mark Questions' include 'Type A: Multiple Choice Questions', 'Type B: Solve the Following Questions' along with their answers. Every chapter ends with a 'Chapter Assessment'. This test stands as a testimony to the fact that the child has understood the chapter thoroughly. 'Challenging Questions' include questions that are not a part of the textbook, yet are core to the concerned subject. These questions would provide students enough practice to tackle Challenging Questions in their examination.

Questions from Board papers of March 2019, July 2019, March 2020, November 2020, March 2022, July 2022, March 2023 and July 2023 have been included as that would help students to prepare better for board exam.

We have provided a tentative mark allocation for the problems in this book. However, marks mentioned are indicative and are subject to change as per the Maharashtra State Board's discretion.
'Model Question Paper' based on latest paper pattern is provided along with solution which can be accessed through QR code to help students assess their preparedness for final board examination.

A book affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

Publisher
Edition: Fourth
The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on : mail@targetpublications.org

Disclaimer

[^1] solving a problem.

Smart Check: Smart Check is a technique to verify the answers. This is our attempt to cross-check the accuracy of the answer. Smart check is indicated by \checkmark symbol.

Activities for Practice: In this section we have provided multiple activities for practice in accordance with the latest paper pattern.

One Mark Questions: Type A consists of Multiple Choice Questions (which either require short solutions or direct application of mathematical concepts).
Type B consists of questions that require very short solutions with direct application of mathematical concepts.

Additional Problems for Practice: In this section we have provided ample practice problems for students. It also has Solved examples from the textbook, which are indicated by "+".

Chapter Assessment: This section covers questions from the chapter for self-evaluation purpose. This is our attempt to offer students with revision and help them assess their knowledge of each chapter.

Challenging Questions: In light of the importance of specific questions in board examination, we have created a separate section of Challenging Questions for additional practice to boost the exam score

Important Theorems and Formulae: Important Theorems and Formulae given at the end of the book include all the key formulae and theorems in the chapter. It offers students a handy tool to solve problems and ace the last minute revision.

Question Paper: Model Question Paper is provided for the students to know about the types of questions that are asked in the Board Examinations.

QR Codes:

- Answer Keys of Chapter Assessment
- Solution of Model Question Paper.
- Solution to Board Question Paper of March 2024

Evaluation Scheme

Academic year 2019-2020 and onwards

Mathematics - Part I
Mathematics - Part II
Internal Evaluation
Total

40 Marks	Written Examination	Time: 2 hours
40 Marks	Written Examination	Time: 2 hours

The scheme of internal evaluation will be as follows:

- 2 Homework assignments [one based on Mathematics Part - I and one based on Mathematics Part - II (5 Marks each) - 10 Marks]
- Practical Exam / MCQ Test (Part I - 10 Marks and Part II - 10 Marks) - These 20 marks are to be converted into 10 Marks.

PAPER PATTERN

Question No.	Type of Questions	Total Marks	Marks with option
1.	(A) Solve 4 out of 4 MCQ (1 mark each)	04	04
	(B) Solve 4 out of 4 subquestions (1 mark each)	04	04
2.	(A) Solve 2 activity based subquestions out of 3 (2 marks each)	04	06
	(B) Solve any 4 out of 5 subquestions (2 marks each)	08	10
3.	(A) Solve 1 activity based subquestion out of 2 (3 marks each)	03	06
	(B) Solve any 2 out of 4 subquestions (3 marks each)	06	12
4.	Solve any 2 out of 3 subquestions (4 marks each) [Out of textbook]	08	12
5.	Solve any 1 out of 2 subquestions (3 marks each)	03	06
	Total Marks	40	60

The division of marks in question papers as per objectives will be as follows:

Distribution of Marks	
Easy Questions	40%
Medium Questions	40%
Difficult Questions	20%

Objectives	Maths - II
Knowledge	20%
Understanding	30%
Application	40%
Skill	10%

[Maharashtra State Board of Secondary and Higher Secondary Education, Pune - 04]

Topic-wise weightage of marks

S. No.	Topic Name	Marks with option	
1	Similarity		10
2	Pythagoras Theorem	07	
3	Circle	12	
4	Geometric Constructions		07
5	Co-ordinate Geometry		07
6	Trigonometry		07
7	Mensuration		10
		Total	$\mathbf{6 0}$

Note: In the topic-wise weightage of marks given in the above table, flexibility of maximum 2 marks is permissible.

CONTENTS

No.	Topic Name	Page No.
1	Similarity	1
2	Pythagoras Theorem	30
3	Circle	53
4	Geometric Constructions	103
5	Co-ordinate Geometry	131
6	Trigonometry	165
7	Mensuration	186
	Challenging Questions	214
	Important Theorems and Formulae	232
	Answers	241
	Model Question Paper Part - II	249
	Board Question Paper: March 2024 (Solution in pdf format through QR code)	253

Note: - Smart check is indicated by \checkmark symbol.

- Solved examples from textbook are indicated by "+".
- Intext and Activity/Project based questions from the textbook are indicated by "\#".
- Steps of construction are provided in Chapters for the students' understanding.

Practicing model papers is the best way to self-assess your preparation for the exam Scan the adjacent QR Code to know more about our "SSC 54 Question Papers \& Activity Sheets With Solutions."

Going through the entire book in the last minute seems to be a daunting task? Go for our "Important Question Bank (IQB)" books for quickly revising important questions Scan the adjacent QR Code to know more.

Need more practice for Challenging Questions in Maths?
Scan the adjacent QR code to know more about our "Mathematics Challenging Questions" Book.

Once you solve 1000+ MCQs in a subject, you are going to become a pro in it.
Go for our "Mathematics MCQs (Part - 1 \& 2)" Book \& become a pro in the subject. Scan the adjacent QR code to know more.

Scan the adjacent QR Code to know more about our "Board Questions with Solutions" book for Std. X and Learn about the types of questions that are asked in the X Board Examination.

Page no. 1 to 29 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes

Pythagoras Theorem

Let's Study

- Pythagorean triplet
- Similarity and right angled triangles
- Theorem of geometric mean
- Pythagoras theorem
- Application of Pythagoras theorem
- Apollonius theorem

Let's Recall

Pythagoras theorem:

In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the remaining two
 sides.
In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$

Pythagorean Triplet:

In a triplet of natural numbers, if the square of the largest number is equal to the sum of the squares of the remaining two numbers, then the triplet is called a Pythagorean triplet.
\# Example: Verify that (3, 4, 5), (5, 12, 13), (8, 15, 17), (24, 25, 7) are Pythagorean triplets.
(Textbook pg. no. 30)

Solution:

i. Here, $5^{2}=25$
$3^{2}+4^{2}=9+16=25$
$\therefore \quad 5^{2}=3^{2}+4^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad 3,4,5$ is a Pythagorean triplet.
ii. Here, $13^{2}=169$
$5^{2}+12^{2}=25+144=169$
$\therefore \quad 13^{2}=5^{2}+12^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad 5,12,13$ is a Pythagorean triplet.
iii. Here, $17^{2}=289$
$8^{2}+15^{2}=64+225=289$
$\therefore \quad 17^{2}=8^{2}+15^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad 8,15,17$ is a Pythagorean triplet.
iv. Here, $25^{2}=625$
$7^{2}+24^{2}=49+576=625$
$\therefore \quad 25^{2}=7^{2}+24^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad 24,25,7$ is a Pythagorean triplet.

4 Something More

Formula for Pythagorean triplet:

If a, b, c are natural numbers and $a>b$, then $\left[\left(a^{2}+b^{2}\right)\right.$, $\left.\left(a^{2}-b^{2}\right),(2 a b)\right]$ is a Pythagorean triplet.

Proof:

$$
\begin{align*}
& \left(a^{2}+b^{2}\right)^{2}=a^{4}+2 a^{2} b^{2}+b^{4} \tag{i}\\
& \left(a^{2}-b^{2}\right)^{2}=a^{4}-2 a^{2} b^{2}+b^{4} \tag{ii}
\end{align*}
$$

$(2 \mathrm{ab})^{2}=4 \mathrm{a}^{2} \mathrm{~b}^{2}$
Now, $\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)=\left(a^{4}-2 a^{2} b^{2}+b^{4}\right)+4 a^{2} b^{2}$
$\therefore \quad\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2}+(2 \mathrm{ab})^{2}$
\ldots...From (i), (ii) and (iii)]
$\therefore \quad\left[\left(\mathbf{a}^{2}+\mathrm{b}^{2}\right),\left(\mathbf{a}^{2}-\mathrm{b}^{2}\right),(2 \mathrm{ab})\right]$ is a Pythagorean triplet.

The above formula can be used to get various Pythagorean triplets.
\# Assign different values to a and b and obtain 5 Pythagorean triplets.
(Textbook pg. no. 31)

Solution:

i. Let $\mathrm{a}=2, \mathrm{~b}=1$
$a^{2}+b^{2}=2^{2}+1^{2}=4+1=5$
$a^{2}-b^{2}=2^{2}-1^{2}=4-1=3$
$2 \mathrm{ab}=2 \times 2 \times 1=4$
$\therefore \quad(5,3,4)$ is a Pythagorean triplet.
ii. Let $a=4, b=3$
$a^{2}+b^{2}=4^{2}+3^{2}=16+9=25$
$\mathrm{a}^{2}-\mathrm{b}^{2}=4^{2}-3^{2}=16-9=7$
$2 \mathrm{ab}=2 \times 4 \times 3=24$
$\therefore \quad(25,7,24)$ is a Pythagorean triplet.
iii. Let $\mathrm{a}=5, \mathrm{~b}=2$
$\mathrm{a}^{2}+\mathrm{b}^{2}=5^{2}+2^{2}=25+4=29$
$\mathrm{a}^{2}-\mathrm{b}^{2}=5^{2}-2^{2}=25-4=21$
$2 \mathrm{ab}=2 \times 5 \times 2=20$
$\therefore \quad(29,21,20)$ is a Pythagorean triplet.
iv. Let $a=4, b=1$
$a^{2}+b^{2}=4^{2}+1^{2}=16+1=17$
$a^{2}-b^{2}=4^{2}-1^{2}=16-1=15$
$2 \mathrm{ab}=2 \times 4 \times 1=8$
$\therefore \quad(17,15,8)$ is a Pythagorean triplet.
v. Let $a=9, b=7$

$$
\begin{aligned}
& \mathrm{a}^{2}+\mathrm{b}^{2}=9^{2}+7^{2}=81+49=130 \\
& \mathrm{a}^{2}-\mathrm{b}^{2}=9^{2}-7^{2}=81-49=32 \\
& 2 \mathrm{ab}=2 \times 9 \times 7=126
\end{aligned}
$$

$\therefore \quad(130,32,126)$ is a Pythagorean triplet.
[Note: Numbers in Pythagorean triplet can be written in any order.]

Let's Recall

- Theorem of $\mathbf{3 0} 0^{\circ}-\mathbf{6 0}-90^{\circ}$ triangle:

If the acute angles of a right angled triangle are 30° and 60°, then the side opposite to 30° angle is half of the hypotenuse and the side opposite to 60° angle is $\frac{\sqrt{3}}{2}$ times the hypotenuse.

If in $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=30^{\circ}$, then $A B=\frac{1}{2} B C$ and $A C=\frac{\sqrt{3}}{2} B C$.

- Converse of $\mathbf{3 0}{ }^{\circ}-\mathbf{6 0}{ }^{\circ}-90^{\circ}$ theorem:

In a right angled triangle, if one side is half of the hypotenuse, then the angle opposite to that side is 30°. If in $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$,
 $\mathrm{AB}=\frac{1}{2} \mathrm{AC}$, then $\angle \mathrm{ACB}=30^{\circ}$

- Theorem of $\mathbf{4 5}{ }^{\circ}-\mathbf{4 5}^{\circ}-\mathbf{9 0}$ triangle:

If the acute angles of a right angled triangle are 45° and 45°, then each of the perpendicular sides is $\frac{1}{\sqrt{2}}$ times the hypotenuse.

If in $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{A}=\angle \mathrm{C}=45^{\circ}$, then $\mathrm{AB}=\mathrm{BC}=\frac{1}{\sqrt{2}} \mathrm{AC}$.

\# Activity:

Take two congruent right angled triangles. Take another isosceles right angled triangle whose congruent sides are equal to the hypotenuse of the two congruent right angled triangles. Join these triangles to form a trapezium.
Area of the trapezium $=\frac{1}{2} \times$ (sum of the lengths of parallel sides) \times height
Using this formula, equating the area of trapezium with the sum of areas of the three right angled triangles prove the theorem of Pythagoras.
(Textbook pg. no. 32)
Proof:

In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
$\therefore \quad \mathrm{A}(\triangle \mathrm{ABC})=\frac{1}{2} \times y \times x$
$\therefore \quad \mathrm{A}(\triangle \mathrm{ABC})=\frac{1}{2} x y$
Similarly, $\mathrm{A}(\triangle \mathrm{EDC})=\frac{1}{2} x y$
In $\triangle \mathrm{ACE}, \angle \mathrm{C}=90^{\circ}$
$\therefore \quad \mathrm{A}(\triangle \mathrm{ACE})=\frac{1}{2} \times \mathrm{z} \times \mathrm{z}$
$\therefore \quad \mathrm{A}(\triangle \mathrm{ACE})=\frac{1}{2} \mathrm{z}^{2}$
$\square \mathrm{ABDE}$ is a trapezium.
$\therefore \quad \mathrm{A}(\square \mathrm{ABDE})=\frac{1}{2} \times(\mathrm{AB}+\mathrm{ED}) \times(\mathrm{BD})$

$$
\begin{equation*}
=\frac{1}{2} \times(x+y) \times(x+y) \tag{iv}
\end{equation*}
$$

$\therefore \quad \mathrm{A}(\square \mathrm{ABDE})=\frac{1}{2}(x+y)^{2}$
But, $\mathrm{A}(\square \mathrm{ABDE})$
$=\mathrm{A}(\triangle \mathrm{ABC})+\mathrm{A}(\triangle \mathrm{EDC})+\mathrm{A}(\triangle \mathrm{ACE})$
$\therefore \quad \frac{1}{2}(x+y)^{2}=\frac{1}{2} x y+\frac{1}{2} x y+\frac{1}{2} z^{2}$
\ldots...[From (i), (ii), (iii) and (iv)]
$\therefore \quad(x+y)^{2}=x y+x y+z^{2}$
$\therefore \quad x^{2}+2 x y+y^{2}=2 x y+z^{2}$
$\therefore \quad x^{2}+y^{2}=z^{2}$
$\therefore \quad$ The theorem of Pythagoras is proved.

Let's Learn

Similarity and right angled triangle
Theorem: In a right angled triangle, if an altitude is drawn to the hypotenuse, then the two triangles formed will be similar to the original triangle and to each other.
[Mar 2013]
Given: \quad In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$, seg $\mathrm{BD} \perp$ hypotenuse $\mathrm{AC}, \mathrm{A}-\mathrm{D}-\mathrm{C}$.
To prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$, $\triangle \mathrm{ABC} \sim \triangle \mathrm{BDC}$, $\triangle \mathrm{ADB} \sim \triangle \mathrm{BDC}$,

Proof:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$,
 $\angle \mathrm{ABC} \cong \angle \mathrm{ADB}$
\ldots [Each angle is of measure 90°]
$\angle \mathrm{BAC} \cong \angle \mathrm{DAB}$
...[Common angle]
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$
...(i)[AA test of similarity]
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$,
$\angle \mathrm{ABC} \cong \angle \mathrm{BDC}$
.. [Each angle is of measure 90°]
$\angle \mathrm{ACB} \cong \angle \mathrm{BCD}$
...[Common angle]
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC}$
...(ii) [AA test of similarity]
$\therefore \quad \triangle \mathrm{ADB} \sim \triangle \mathrm{BDC}$
...(iii)[From (i) and (ii)]
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB} \sim \triangle \mathrm{BDC}$
\ldots...From (i), (ii) and (iii)] [Transitivity]
Theorem of geometric mean
Theorem: In a right angled triangle, the perpendicular segment to the hypotenuse from the opposite vertex is the geometric mean of the segments into which the hypotenuse is divided.
Given:
In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$,
seg QS \perp hypotenuse PR.
To prove: $\mathrm{QS}^{2}=\mathrm{PS} \times \mathrm{SR}$

Proof:

In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$
seg QS \perp hypotenuse PR
\}...[Given]
$\therefore \quad \triangle \mathrm{RSQ} \sim \Delta \mathrm{QSP}$
...[Similarity of right angled triangles]
$\therefore \quad \frac{\mathrm{QS}}{\mathrm{PS}}=\frac{\mathrm{RS}}{\mathrm{QS}}$
$\ldots\left[\begin{array}{l}\text { Corresponding sides } \\ \text { of similar triangles }\end{array}\right]$
$\therefore \quad \mathrm{QS}^{2}=\mathrm{PS} \times \mathrm{SR}$
$\therefore \quad$ seg QS is the geometric mean of seg PS and seg SR.

Pythagoras Theorem

Theorem: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the remaining two sides.
[Mar 2013, 2018; July 2023]
Given: \quad In $\triangle A B C, \angle A B C=90^{\circ}$.
To prove: $A C^{2}=A B^{2}+B C^{2}$
Construction: Draw seg $\mathrm{BD} \perp$ hypotenuse AC , A-D-C.

Proof:
In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
...[Given]
seg $\mathrm{BD} \perp$ hypotenuse AC
...[Construction]
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$
....[Similarity of right angled triangles]

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AB}} \\
\therefore & \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC} \\
& \mathrm{Also}, \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC} \tag{i}
\end{array}
$$

...[Similarity of right angled triangles]

$$
\begin{array}{rlrl}
\therefore & \frac{\mathrm{BC}}{\mathrm{DC}} & =\frac{\mathrm{AC}}{\mathrm{BC}} \quad \ldots\left[\begin{array}{l}
\text { Corresponding sides } \\
\text { of similar triangles }
\end{array}\right] \\
\therefore \quad \mathrm{BC}^{2}=\mathrm{DC} & \times \mathrm{AC} \\
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AD} \times \mathrm{AC}+\mathrm{DC} \times \mathrm{AC} \\
& \ldots[\text { Adding (i) and (ii) }] \\
& =\mathrm{AC}(\mathrm{AD}+\mathrm{DC}) \\
& =\mathrm{AC} \times \mathrm{AC}
\end{array}
$$

$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
i.e. $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Converse of Pythagoras theorem

Theorem: In a triangle, if the square of one side is equal to the sum of the squares of the remaining two sides, then the triangle is a right angled triangle.
Given: \quad In $\triangle \mathrm{ABC}, \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$.
To prove: $\angle \mathrm{ABC}=90^{\circ}$

Construction: Draw $\triangle P Q R$ such that,

$$
\mathrm{PQ}=\mathrm{AB}, \mathrm{QR}=\mathrm{BC} \text { and } \angle \mathrm{PQR}=90^{\circ}
$$

Proof:

In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
...
(i)

But, $\mathrm{PQ}=\mathrm{AB}$ and $\mathrm{QR}=\mathrm{BC}$
...(ii)[Construction]
$\therefore \quad \mathrm{PR}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
...(iii)[From (i) and (ii)]
But, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
...(iv) [Given]
$\therefore \quad \mathrm{AC}^{2}=\mathrm{PR}^{2}$
...[From (iii) and (iv)]
$\therefore \quad \mathrm{AC}=\mathrm{PR} \ldots(\mathrm{v})[$ Taking square root of both sides] In $\triangle A B C$ and $\triangle P Q R$,
$\operatorname{seg} A B \cong \operatorname{seg} P Q$
$\operatorname{seg} B C \cong \operatorname{seg} Q R$ $\} \quad \ldots$ [Construction $]$ $\operatorname{seg} \mathrm{AC} \cong \operatorname{seg} P R$
...[From (v)]
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
...[SSS test of congruency]
$\therefore \quad \angle \mathrm{ABC} \cong \angle \mathrm{PQR}$
But, $\angle \mathrm{PQR}=90^{\circ}$
$\therefore \quad \angle \mathrm{ABC}=90^{\circ}$

Practice Set 2.1

1. Identify, with reason, which of the following are Pythagorean triplets. [1 Mark each]
i. $(3,5,4)$
ii. $(4,9,12)$
iii. $(5,12,13)$
iv. $(24,70,74)$
v. $(10,24,27)$
vi. $(11,60,61)$

Solution:

i. Here, $5^{2}=25$
$3^{2}+4^{2}=9+16=25$
$\therefore \quad 5^{2}=3^{2}+4^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad(3,5,4)$ is a Pythagorean triplet.
ii. Here, $12^{2}=144$
$4^{2}+9^{2}=16+81=97$
$\therefore \quad 12^{2} \neq 4^{2}+9^{2}$
The square of the largest number is not equal to the sum of the squares of the other two numbers.
$\therefore \quad(4,9,12)$ is not a Pythagorean triplet.
iii. Here, $13^{2}=169$
$5^{2}+12^{2}=25+144=169$
$\therefore \quad 13^{2}=5^{2}+12^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad(5,12,13)$ is a Pythagorean triplet.
iv. Here, $74^{2}=5476$
$24^{2}+70^{2}=576+4900=5476$
$\therefore \quad 74^{2}=24^{2}+70^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad(\mathbf{2 4}, \mathbf{7 0}, \mathbf{7 4})$ is a Pythagorean triplet.
v. \quad Here, $27^{2}=729$
$10^{2}+24^{2}=100+576=676$
$\therefore \quad 27^{2} \neq 10^{2}+24^{2}$
The square of the largest number is not equal to the sum of the squares of the other two numbers.
$\therefore \quad(10,24,27)$ is not a Pythagorean triplet.
vi. Here, $61^{2}=3721$
$11^{2}+60^{2}=121+3600=3721$
$\therefore \quad 61^{2}=11^{2}+60^{2}$
The square of the largest number is equal to the sum of the squares of the other two numbers.
$\therefore \quad(11,60,61)$ is a Pythagorean triplet.
2. In the adjoining figure, $\angle \mathrm{MNP}=90^{\circ}$, seg NQ \perp seg MP, $\mathrm{MQ}=9, \mathrm{QP}=4$, find NQ .

[Mar 2020; July 2023][2 Marks]

Solution:

In $\triangle \mathrm{MNP}, \angle \mathrm{MNP}=90^{\circ}$ and
seg NQ \perp seg MP
...[Given]
$\therefore \quad \mathrm{NQ}^{2}=\mathrm{MQ} \times \mathrm{QP}$
...[Theorem of geometric mean]
$\therefore \quad \mathrm{NQ}=\sqrt{\mathrm{MQ} \times \mathrm{QP}}$
...[Taking square root of both sides]

$$
=\sqrt{9 \times 4}=3 \times 2
$$

$\therefore \quad \mathrm{NQ}=\mathbf{6}$ units
3. In the adjoining figure,
$\angle \mathrm{QPR}=90^{\circ}$, $\operatorname{seg} \mathrm{PM} \perp \operatorname{seg} \mathrm{QR}$ and
$\mathrm{Q}-\mathrm{M}-\mathrm{R}, \mathrm{PM}=\mathbf{1 0}$, $\mathbf{Q M}=8$, find $\mathbf{Q R}$.

Solution:

In $\triangle \mathrm{PQR}, \angle \mathrm{QPR}=90^{\circ}$ and $\operatorname{seg} \mathrm{PM} \perp \operatorname{seg} \mathrm{QR}$
...[Given]
$\therefore \quad \mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$
...[Theorem of geometric mean]
$\therefore \quad 10^{2}=8 \times \mathrm{MR}$
$\therefore \quad \mathrm{MR}=\frac{100}{8}=12.5$ units

$$
\text { Now, } \begin{align*}
\mathrm{QR} & =\mathrm{QM}+\mathrm{MR} \tag{Q-M-R}\\
& =8+12.5
\end{align*}
$$

$\therefore \quad \mathrm{QR}=\mathbf{2 0 . 5}$ units
4. See adjoining figure. Find RP and PS using the information given 6 in $\triangle P S R$.

Solution:

In $\triangle \mathrm{PSR}, \angle \mathrm{S}=90^{\circ}, \angle \mathrm{P}=30^{\circ}$
...[Given]
$\therefore \quad \angle \mathrm{R}=60^{\circ} \quad \ldots$ [Remaining angle of a triangle]
$\therefore \quad \triangle \mathrm{PSR}$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
$R S=\frac{1}{2} R P$
\ldots. [Side opposite to 30°]
$\therefore \quad 6=\frac{1}{2} \mathrm{RP}$
$\therefore \quad \mathrm{RP}=6 \times 2=12$ units
Also, $\mathrm{PS}=\frac{\sqrt{3}}{2} \mathrm{RP} \quad \ldots\left[\right.$ Side opposite to $\left.60^{\circ}\right]$

$$
=\frac{\sqrt{3}}{2} \times 12=6 \sqrt{3} \text { units }
$$

$\therefore \quad R P=12$ units, $P S=6 \sqrt{3}$ units
5. For finding $A B$ and BC with the help of information given in the adjoining figure, complete the following activity.

Solution:

$\mathrm{AB}=\mathrm{BC}$
[Given]
$\therefore \quad \angle \mathrm{BAC}=\angle \mathrm{BCA} \ldots$. [Isosceles triangle theorem]
Let $\angle \mathrm{BAC}=\angle \mathrm{BCA}=x$
In $\triangle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

$$
\cdot\left[\begin{array}{l}
\text { Sum of the measures of the } \tag{i}\\
\text { angles of a triangle is } 180^{\circ}
\end{array}\right]
$$

$\therefore \quad x+90^{\circ}+x=180^{\circ}$
$\ldots[$ From (i)]
$\therefore \quad 2 x=90^{\circ}$
$\therefore \quad x=\frac{90^{\circ}}{2}$
$\ldots[$ From (i)]
$\therefore \quad x=45^{\circ}$
$\therefore \quad \angle \mathrm{BAC}=\angle \mathrm{BCA}=45^{\circ}$
$\therefore \quad \triangle \mathrm{ABC}$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

$$
\begin{aligned}
\therefore \quad \mathrm{AB}=\mathrm{BC} & =\frac{1}{\sqrt{2}} \\
& \times \mathrm{AC} \ldots\left[\text { Side opposite to } 45^{\circ}\right] \\
& =\frac{1}{\sqrt{2}} \\
& \times \sqrt{8} \\
& =\frac{1}{\sqrt{2}} \times 2 \sqrt{2}=2 \text { units }
\end{aligned}
$$

6. Find the side and perimeter of a square whose diagonal is 10 cm .
[2 Marks]

Solution:

Let $\square \mathrm{ABCD}$ be the given square.
$l($ diagonal AC$)=10 \mathrm{~cm}$
Let the side of the square
be ' x ' cm .

In $\triangle \mathrm{ABC}$,
$\angle \mathrm{B}=90^{\circ}$
...[Angle of a square]
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \ldots$ [Pythagoras theorem $]$
$\therefore \quad 10^{2}=x^{2}+x^{2}$
$\therefore \quad 100=2 x^{2}$
$\therefore \quad x^{2}=\frac{100}{2}$
$\therefore \quad x^{2}=50$
$\therefore \quad x=\sqrt{50} \quad \ldots$ [Taking square root of both sides]

$$
=\sqrt{25 \times 2}=5 \sqrt{2}
$$

$\therefore \quad$ Side of square is $5 \sqrt{2} \mathrm{~cm}$.
Perimeter of square $=4 \times$ side $=4 \times 5 \sqrt{2}$
$\therefore \quad$ Perimeter of square $=20 \sqrt{2} \mathrm{~cm}$
7. In the adjoining figure,

iii. EF
[3 Marks]

Solution:

i. In $\triangle \mathrm{DEF}, \angle \mathrm{DFE}=90^{\circ}$ and $\mathrm{FG} \perp \mathrm{ED}$
...[Given]
$\therefore \quad \mathrm{FG}^{2}=\mathrm{GD} \times \mathrm{EG}$
...[Theorem of geometric mean]
$\therefore \quad 12^{2}=8 \times \mathrm{EG}$
$\therefore \quad \mathrm{EG}=\frac{144}{8}$
$\therefore \quad E G=18$ units
ii. In $\triangle \mathrm{FGD}, \angle \mathrm{FGD}=90^{\circ}$
$\therefore \quad \mathrm{FD}^{2}=\mathrm{FG}^{2}+\mathrm{GD}^{2} \quad \ldots$ [Pythagoras theorem]

$$
\begin{equation*}
=12^{2}+8^{2}=144+64=208 \tag{Given}
\end{equation*}
$$

$\therefore \quad \mathrm{FD}=\sqrt{208}$
...[Taking square root of both sides]
$\therefore \quad F D=4 \sqrt{13}$ units
iii. In $\triangle \mathrm{EGF}, \angle \mathrm{EGF}=90^{\circ}$
...[Given]
$\begin{aligned} \therefore \quad \mathrm{EF}^{2} & \left.=\mathrm{EG}^{2}+\mathrm{FG}^{2} \quad \ldots \text { [Pythagoras theorem }\right] \\ & =18^{2}+12^{2}=324+144=468\end{aligned}$
$\therefore \quad \mathrm{EF}=\sqrt{468}$
...[Taking square root of both sides]
$\therefore \quad E F=6 \sqrt{13}$ units
8. Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm .
[Mar 2023][2 Marks]

Solution:

Let $\square \mathrm{ABCD}$ be the given rectangle.
$\mathrm{AB}=12 \mathrm{~cm}$,
$\mathrm{BC}=35 \mathrm{~cm}$
In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$

$$
\begin{aligned}
\therefore \quad \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =12^{2}+35^{2} \\
& =144+1225 \\
& =1369 \\
& \\
& \therefore \mathrm{AC}
\end{aligned}=\sqrt{1369} 8
$$

...[Taking square root of both sides]

$$
=37 \mathrm{~cm}
$$

$\therefore \quad$ The diagonal of the rectangle is $\mathbf{3 7} \mathbf{c m}$.
9. In the adjoining figure, M is the midpoint of QR .
$\angle \mathrm{PRQ}=90^{\circ}$.
Prove that,

$P Q^{2}=4 \mathbf{P M}^{2}-3 P^{2}$.
[3 Marks]
Proof:

$$
\begin{align*}
& \mathrm{RM}=\frac{1}{2} \mathrm{QR} \quad \ldots[\mathrm{M} \text { is the midpoint of } \mathrm{QR}] \\
& \therefore \quad 2 \mathrm{RM}=\mathrm{QR} \tag{i}\\
& \text { In } \triangle \mathrm{PQR}, \angle \mathrm{PRQ}=90^{\circ} \\
& \text { [Given] } \\
& \therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2} \quad \ldots[\text { Pythagoras theorem] } \\
& \therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+(2 \mathrm{RM})^{2} \\
& \text {..[From (i)] } \\
& \therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+4 \mathrm{RM}^{2} \tag{ii}\\
& \text { Now, in } \triangle \mathrm{PRM}, \angle \mathrm{PRM}=90^{\circ} \tag{Given}\\
& \therefore \quad \mathrm{PM}^{2}=\mathrm{PR}^{2}+\mathrm{RM}^{2} \quad \ldots \text { [Pythagoras theorem] } \\
& \therefore \quad \mathrm{RM}^{2}=\mathrm{PM}^{2}-\mathrm{PR}^{2} \tag{iii}\\
& \therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+4\left(\mathrm{PM}^{2}-\mathrm{PR}^{2}\right) \\
& \text {...[From (ii) and (iii)] } \\
& \therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+4 \mathrm{PM}^{2}-4 \mathrm{PR}^{2} \\
& \therefore \quad P^{2}=4 \mathbf{P M}^{2}-3 \mathbf{P R}^{2}
\end{align*}
$$

10. Walls of two buildings on either side of a street are parallel to each other. A ladder $5.8 \mathbf{~ m}$ long is placed on the street such that its top just reaches the window of a building at the height of 4 m . On turning the ladder over to the other side of the street, its top touches the window of the other building at a height 4.2 m . Find the width of the street.
[3 Marks]

Solution:

Let AC and CE represent the ladder of length 5.8 m , and A and E represent windows of the buildings on the opposite sides of the street. BD is the width of the street.

$\mathrm{AB}=4 \mathrm{~m}$ and $\mathrm{ED}=4.2 \mathrm{~m}$

$$
\text { In } \triangle \mathrm{ABC}, \angle \mathrm{~B}=90^{\circ}
$$

.[Given]
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \ldots$ [Pythagoras theorem]
$\therefore \quad 5.8^{2}=4^{2}+\mathrm{BC}^{2}$
$\therefore \quad 5.8^{2}-4^{2}=\mathrm{BC}^{2}$
$\therefore \quad(5.8-4)(5.8+4)=\mathrm{BC}^{2}$
$\therefore \quad 1.8 \times 9.8=\mathrm{BC}^{2}$
$\therefore \quad \frac{18 \times 98}{100}=\mathrm{BC}^{2}$
$\therefore \quad \frac{9 \times 2 \times 49 \times 2}{100}=\mathrm{BC}^{2}$
$\therefore \quad \frac{9 \times 4 \times 49}{100}=\mathrm{BC}^{2}$
$\therefore \quad \mathrm{BC}=\frac{3 \times 2 \times 7}{10}$
...[Taking square root of both sides]
$\therefore \quad \mathrm{BC}=\frac{42}{10}=4.2 \mathrm{~cm}$
In $\triangle \mathrm{CDE}, \angle \mathrm{CDE}=90^{\circ}$
...[Given]
$\mathrm{CE}^{2}=\mathrm{CD}^{2}+\mathrm{DE}^{2} \quad \ldots$ [Pythagoras theorem $]$
$\therefore \quad 5.8^{2}=\mathrm{CD}^{2}+4.2^{2}$
$\therefore \quad 5.8^{2}-4.2^{2}=\mathrm{CD}^{2}$
$\therefore \quad(5.8-4.2)(5.8+4.2)=\mathrm{CD}^{2}$
$\therefore \quad 1.6 \times 10=\mathrm{CD}^{2}$
$\therefore \quad \mathrm{CD}^{2}=16$
$\therefore \quad C D=4 \mathrm{~m}$
...(ii) [Taking square root of both sides]
Now, $\mathrm{BD}=\mathrm{BC}+\mathrm{CD}$

$$
\begin{equation*}
=4.2+4 \tag{B-C-D}
\end{equation*}
$$

$\ldots[$ From (i) and (ii)]

$$
=8.2 \mathrm{~m}
$$

$\therefore \quad$ The width of the street is $\mathbf{8 . 2}$ metres.

Let's Learn

Application of Pythagoras theorem
In a triangle, relation between the side opposite to acute angle and remaining two sides, and relation between the side opposite to obtuse angle and the remaining two sides can be determined with the help of Pythagoras theorem.

Pythagoras theorem can be applied to acute angled triangle and obtuse angled triangle as shown below:
\# Example: In $\triangle \mathrm{ABC}, \angle \mathrm{C}$ is an acute angle, $\operatorname{seg} \mathrm{AD} \perp \operatorname{seg} \mathrm{BC}$.
Prove that: $A B^{2}=B C^{2}+A C^{2}-2 B C \times D C$.
(Textbook pg. no. 40)
Given: $\quad \angle \mathrm{C}$ is an acute angle, seg $\mathrm{AD} \perp \operatorname{seg} \mathrm{BC}$.
To prove: $\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}-2 \mathrm{BC} \times \mathrm{DC}$

$$
\begin{align*}
& \text { To prove: } \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}-2 \mathrm{BC} \times \mathrm{DC} \\
& \text { Proof: } \\
& \\
& \text { Let } \mathrm{AB}=\mathrm{c}, \mathrm{AC}=\mathrm{b}, \mathrm{AD}=\mathrm{p}, \\
& \\
& \mathrm{BC}=\mathrm{a}, \mathrm{DC}=x \\
& \\
& \mathrm{BD}+\mathrm{DC}=\mathrm{BC} \tag{B-D-C}\\
& \therefore \quad \\
& \mathrm{BD}=\mathrm{BC}-\mathrm{DC} \\
& \therefore \quad \\
& \mathrm{BD}=\mathrm{a}-x \\
& \\
& \\
& \text { In } \triangle \mathrm{ABD}, \angle \mathrm{D}-\mathrm{C}]
\end{align*}
$$

$\mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$
...[Pythagoras theorem]
$\therefore \quad \mathrm{c}^{2}=(\mathrm{a}-x)^{2}+\mathbf{p}^{2}$
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2}-2 \mathrm{a} x+x^{2}+\mathbf{p}^{2}$
In $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
...[Given]
$\therefore \quad \mathrm{b}^{2}=\mathrm{p}^{2}+\boldsymbol{x}^{2}$
$\therefore \quad \mathrm{p}^{2}=\mathrm{b}^{2}-\boldsymbol{x}^{2}$
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2}-2 \mathrm{a} x+x^{2}+\mathrm{b}^{2}-x^{2}$
...[Substituting (ii) in (i)]
$\therefore \quad c^{2}=a^{2}+b^{2}-2 a x$
$\therefore \quad A B^{2}=B C^{2}+A C^{2}-2 B C \times D C$
\# Example: In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}$ is an obtuse angle, $\operatorname{seg} A D \perp \operatorname{seg} B C$. Prove that:
$A B^{2}=B C^{2}+A C^{2}+2 B C \times C D$.
(Textbook pg. no. 40 and 41)
Given: $\angle \mathrm{ACB}$ is an obtuse angle, seg $\mathrm{AD} \perp \operatorname{seg} \mathrm{BC}$.
To prove: $\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}+2 \mathrm{BC} \times \mathrm{CD}$
Proof:

Let $\mathrm{AD}=\mathrm{p}, \mathrm{AC}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$,
$\mathrm{BC}=\mathrm{a}, \mathrm{DC}=x$
$\mathrm{BD}=\mathrm{BC}+\mathrm{DC}$
$\therefore \quad \mathrm{BD}=\mathrm{a}+x$
In $\triangle \mathrm{ADB}, \angle \mathrm{D}=90^{\circ}$
...[Given]
$\mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$
...[Pythagoras theorem]
$\therefore \quad \mathrm{c}^{2}=(\mathrm{a}+x)^{2}+\mathrm{p}^{2}$
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2}+2 \mathrm{a} x+x^{2}+\mathrm{p}^{2}$
Also, in $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$
...[Given]
$\mathrm{AC}^{2}=\mathrm{CD}^{2}+\mathrm{AD}^{2}$
..[Pythagoras theorem]
$\therefore \quad \mathrm{b}^{2}=x^{2}+\mathrm{p}^{2}$
$\therefore \quad \mathrm{p}^{2}=\mathrm{b}^{2}-x^{2}$
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2}+2 \mathrm{a} x+x^{2}+\mathrm{b}^{2}-x^{2}$
...[Substituting (ii) in (i)]
$\therefore \quad c^{2}=a^{2}+b^{2}+2 a x$
$\therefore \quad \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}+2 \mathrm{BC} \times \mathrm{CD}$
Apollonius theorem
Apollonius theorem shows relation between median and sides of a triangle.
In $\triangle A B C$, if M is the midpoint of side $B C$, then $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 A \mathbf{M}^{2}+2 B \mathbf{M}^{2}$.
Given: In $\triangle A B C, M$ is the midpoint of side $B C$.
To prove: $A B^{2}+A C^{2}=2 A M^{2}+2 \mathrm{BM}^{2}$
Construction: Draw seg $\mathrm{AD} \perp \operatorname{seg} \mathrm{BC}, \mathrm{B}-\mathrm{D}-\mathrm{C}$.

Proof:
Lets consider seg AM is not perpendicular to side $B C$, then out of $\angle A M B$ and $\angle A M C$ one is obtuse and other is acute. In the figure, $\angle \mathrm{AMB}$ is obtuse and $\angle \mathrm{AMC}$ is acute.
In $\triangle \mathrm{AMB}$,
$\angle \mathrm{AMB}$ is an obtuse angle,
...[Given]
$\operatorname{seg} \mathrm{AD} \perp \operatorname{seg} \mathrm{BC}$
.. [Construction]

$\therefore \quad \mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{BM}^{2}+2 \mathrm{BM} \cdot \mathrm{MD}$
...(i)[Application of Pythagoras theorem] In $\triangle \mathrm{AMC}$,
$\angle \mathrm{AMC}$ is an acute angle,
...[Given] $\operatorname{seg} \mathrm{AD} \perp \operatorname{seg} \mathrm{MC}$
...[Construction]

$\therefore \quad \mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MC}^{2}-2 \mathrm{MC} . \mathrm{MD}$
...(ii)[Application of Pythagoras theorem] $\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{BM}^{2}+2 \mathrm{BM} \cdot \mathrm{MD}+\mathrm{AM}^{2}$
$+\mathrm{MC}^{2}-2 \mathrm{MC} . \mathrm{MD}$
...[Adding (i) and (ii)]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+\mathrm{BM}^{2}+\mathrm{BM}^{2}$
+2 BM.MD - 2 BM.MD
$\ldots[\because \mathrm{BM}=\mathrm{MC}(\mathrm{M}$ is the midpoint of BC$)]$
$\therefore \quad A B^{2}+A C^{2}=2 A M^{2}+2 B M^{2}$
\#
Apollonius theorem: In $\triangle \mathrm{ABC}$, if M is the midpoint of side $B C$ and seg $A M \perp$ seg $B C$, then prove that $\mathrm{AB}^{2}+\mathbf{A C} \mathbf{C}^{2}=\mathbf{A} \mathbf{A M}^{2}+2 \mathbf{B M}^{2}$.
(Textbook pg. no. 41)
Given: \quad In $\triangle A B C, M$ is the midpoint of side $B C$ and $\operatorname{seg} \mathrm{AM} \perp \operatorname{seg} \mathrm{BC}$.
To prove: $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{BM}^{2}$
Proof:

In $\triangle \mathrm{AMB}, \angle \mathrm{M}=90^{\circ}$
$\ldots[\operatorname{seg} \mathrm{AM} \perp \operatorname{seg} \mathrm{BC}]$
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{BM}^{2}$
...(i)[Pythagoras theorem]
Also, in $\triangle \mathrm{AMC}$,
$\angle \mathrm{M}=90^{\circ}$
...[seg AM $\perp \operatorname{seg} \mathrm{BC}]$
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MC}^{2} \ldots$ (ii) [Pythagoras theorem]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{BM}^{2}+\mathrm{AM}^{2}+\mathrm{MC}^{2}$
\ldots [Adding (i) and (ii)]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+\mathrm{BM}^{2}+\mathrm{BM}^{2}$
$\ldots[\because \mathrm{BM}=\mathrm{MC}(\mathrm{M}$ is the midpoint of BC$)]$
$\therefore \quad \mathbf{A B} \mathbf{B}^{2}+\mathbf{A C}=2 \mathbf{A} \mathbf{M}^{2}+2 \mathbf{B} \mathbf{M}^{2}$

Practice Set 2.2

1. In $\triangle P Q R$, point S is the midpoint of side $Q R$. If $P Q=11, P R=17, P S=13$, find $Q R$.
[Mar 2020] [3 Marks]

Solution:

In $\triangle \mathrm{PQR}$, point S is the midpoint of side QR .
...[Given]
$\therefore \quad$ seg PS is the median.
$\therefore \quad \mathrm{PQ}^{2}+\mathrm{PR}^{2}=2 \mathrm{PS}^{2}+2 \mathrm{SR}^{2}$
$\therefore \ldots$ [Apollonius theorem]
$\therefore \quad 11^{2}+17^{2}=2(13)^{2}+2 \mathrm{SR}^{2}$
$\therefore \quad 121+289=2(169)+2 \mathrm{SR}^{2}$
$\therefore \quad 410=338+2 \mathrm{SR}^{2}$
$\therefore \quad 2 \mathrm{SR}^{2}=410-338$
$\therefore \quad 2 \mathrm{SR}^{2}=72$
$\therefore \quad \mathrm{SR}^{2}=\frac{72}{2}=36$
$\therefore \quad \mathrm{SR}=\sqrt{36} \ldots$ [Taking square root of both sides]

$$
=6 \text { units }
$$

Now, $\mathrm{QR}=2 \mathrm{SR} \quad \ldots[\mathrm{S}$ is the midpoint of QR$]$

$$
=2 \times 6
$$

$\therefore \quad \mathrm{QR}=12$ units
2. In $\triangle \mathrm{ABC}, \mathrm{AB}=10, \mathrm{AC}=7, \mathrm{BC}=9$, then find the length of the median drawn from point C to side AB.
[2 Marks]
Solution:
Let CD be the median drawn from the vertex C to side AB .
$\mathrm{BD}=\frac{1}{2} \mathrm{AB} \quad \ldots[\mathrm{D}$ is the midpoint of AB$]$

$$
=\frac{1}{2} \times 10=5 \text { units }
$$

In $\triangle \mathrm{ABC}$, seg CD is the median.
...[Given]
$\therefore \quad \mathrm{AC}^{2}+\mathrm{BC}^{2}=2 \mathrm{CD}^{2}+2 \mathrm{BD}^{2}$
$\therefore \quad 7^{2}+9^{2}=2 \mathrm{CD}^{2}+2(5)^{2}$
$\therefore \quad 49+81=2 \mathrm{CD}^{2}+2(25)$
$\therefore \quad 130=2 \mathrm{CD}^{2}+50$
$\therefore \quad 2 \mathrm{CD}^{2}=130-50$
$\therefore \quad 2 \mathrm{CD}^{2}=80$
$\therefore \quad \mathrm{CD}^{2}=\frac{80}{2}=40$
\ldots [Apollonius theorem]
$\therefore \quad \mathrm{CD}=\sqrt{40} \ldots[$
[Taking square root of both sides]

$$
=2 \sqrt{10} \text { units }
$$

$\therefore \quad$ The length of the median drawn from point C to side $A B$ is $2 \sqrt{10}$ units.
3. In the adjoining figure, seg $P S$ is the median of $\triangle P Q R$ and $P T \perp Q R$.
Prove that,
i. $\quad \mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$
ii. $\mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$

Proof:

i. $\quad \mathrm{QS}=\mathrm{SR}=\frac{1}{2} \mathrm{QR}$
\ldots (i) $\left[\begin{array}{l}\mathrm{S} \text { is the midpoint } \\ \text { of side } \mathrm{QR}\end{array}\right]$

In $\triangle \mathrm{PSR}, \angle \mathrm{PSR}$ is an obtuse angle and $\mathrm{PT} \perp \mathrm{SR}$

$\therefore \quad \mathrm{PR}^{2}=\mathrm{SR}^{2}+\mathrm{PS}^{2}+2 \mathrm{SR} \times \mathrm{ST}$
...(ii)[Application of Pythagoras theorem]
$\therefore \quad \mathrm{PR}^{2}=\left(\frac{1}{2} \mathrm{QR}\right)^{2}+\mathrm{PS}^{2}+2\left(\frac{1}{2} \mathrm{QR}\right) \times \mathrm{ST}$
$\ldots[$ From (i) and (ii)]
$\therefore \quad \mathrm{PR}^{2}=\left(\frac{\mathrm{QR}}{2}\right)^{2}+\mathrm{PS}^{2}+\mathrm{QR} \times \mathrm{ST}$
$\therefore \quad \mathbf{P R}^{2}=\mathbf{P S}^{2}+\mathbf{Q R} \times \mathbf{S T}+\left(\frac{\mathbf{Q R}}{2}\right)^{2}$
ii. In $\triangle \mathrm{PQS}, \angle \mathrm{PSQ}$ is an acute angle and $\mathrm{PT} \perp \mathrm{QS}$

$\therefore \quad \mathrm{PQ}^{2}=\mathrm{QS}^{2}+\mathrm{PS}^{2}-2 \mathrm{QS} \times \mathrm{ST}$
...(iii)[Application of Pythagoras theorem]
$\therefore \quad \mathrm{PQ}^{2}=\left(\frac{1}{2} \mathrm{QR}\right)^{2}+\mathrm{PS}^{2}-2\left(\frac{1}{2} \mathrm{QR}\right) \times \mathrm{ST}$
...[From (i) and (iii)]
$\therefore \quad \mathrm{PQ}^{2}=\left(\frac{\mathrm{QR}}{2}\right)^{2}+\mathrm{PS}^{2}-\mathrm{QR} \times \mathrm{ST}$
$\therefore \quad \mathbf{P Q}^{2}=\mathbf{P S}^{2}-\mathbf{Q R} \times \mathbf{S T}+\left(\frac{\mathbf{Q R}}{2}\right)^{2}$
4. In $\triangle \mathrm{ABC}$, point M is the midpoint of side BC . If $A B^{2}+A C^{2}=290 \mathrm{~cm}, A M=8 \mathrm{~cm}$, find $B C$.

Solution:

In $\triangle A B C$, point M is the midpoint of side $B C$.
...[Given]
$\therefore \quad$ seg AM is the median.
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{MC}^{2}$
...[Apollonius theorem]
$\therefore \quad 290=2(8)^{2}+2 \mathrm{MC}^{2}$
$\therefore \quad 145=64+\mathrm{MC}^{2} \quad \ldots$ [Dividing both sides by 2]
$\therefore \quad \mathrm{MC}^{2}=145-64$
$\therefore \quad \mathrm{MC}^{2}=81$
$\therefore \quad \mathrm{MC}=\sqrt{81} \quad \ldots$ [Taking square root of both sides]
$\therefore \quad \mathrm{MC}=9 \mathrm{~cm}$
Now, $\mathrm{BC}=2 \mathrm{MC} \quad \ldots[\mathrm{M}$ is the midpoint of BC$]$ $=2 \times 9$
$\therefore \quad \mathrm{BC}=\mathbf{1 8} \mathrm{cm}$
5. In the given figure, point T is in the interior of rectangle PQRS. Prove that, $\mathrm{TS}^{2}+\mathrm{TQ}^{2}=\mathrm{TP}^{2}+\mathrm{TR}^{2}$. (As shown in the figure, draw seg $A B \|$ side $S R$ and $A-T-B$)

[4 Marks]

Given: $\quad \square \mathrm{PQRS}$ is a rectangle.
Point T is in the interior of $\square \mathrm{PQRS}$.
To prove: $\mathrm{TS}^{2}+\mathrm{TQ}^{2}=\mathrm{TP}^{2}+\mathrm{TR}^{2}$
Construction: Draw seg $\mathrm{AB} \|$ side SR such that $\mathrm{A}-\mathrm{T}-\mathrm{B}$.
Proof:
$\square \mathrm{PQRS}$ is a rectangle.
...[Given]
$\therefore \quad \mathrm{PS}=\mathrm{QR} \quad \ldots$ (i) [Opposite sides of a rectangle] In \square ASRB,
$\angle \mathrm{S}=\angle \mathrm{R}=90^{\circ}$
...(ii) [Angles of rectangle PQRS] side $\mathrm{AB} \|$ side SR
...[Construction]
Also $\left.\angle \mathrm{A}=\angle \mathrm{S}=90^{\circ} \quad \begin{array}{l}\angle \mathrm{B}=\angle \mathrm{R}=90^{\circ}\end{array}\right\} \quad \ldots\left[\begin{array}{l}\text { Interior angle theorem, } \\ \text { from (ii) }\end{array}\right]$
$\therefore \quad \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{S}=\angle \mathrm{R}=90^{\circ}$
$\therefore \quad \square \mathrm{ASRB}$ is a rectangle.
$\therefore \quad \mathrm{AS}=\mathrm{BR} \quad \ldots$ (iv)[Opposite sides of a rectangle] In $\triangle \mathrm{PTS}, \angle \mathrm{PST}$ is an acute angle and
seg $\mathrm{AT} \perp$ side PS
...[From (iii)]

$\therefore \quad \mathrm{TP}^{2}=\mathrm{PS}^{2}+\mathrm{TS}^{2}-2$ PS.AS
...(v) [Application of Pythagoras theorem]
In $\triangle \mathrm{TQR}, \angle \mathrm{TRQ}$ is an acute angle and
seg $\mathrm{BT} \perp$ side QR
...[From (iii)]

$\therefore \quad \mathrm{TQ}^{2}=\mathrm{RQ}^{2}+\mathrm{TR}^{2}-2 \mathrm{RQ} \cdot \mathrm{BR}$
...(vi) [Application of Pythagoras theorem]
$\mathrm{TP}^{2}-\mathrm{TQ}^{2}=\mathrm{PS}^{2}+\mathrm{TS}^{2}-2$ PS.AS
$-R^{2}-T^{2}+2 R Q \cdot B R$
$\ldots[$ Subtracting (vi) from (v)]
$\therefore \quad \mathrm{TP}^{2}-\mathrm{TQ}^{2}=\mathrm{TS}^{2}-\mathrm{TR}^{2}+\mathrm{PS}^{2}$

$$
-\mathrm{RQ}^{2}-2 \text { PS.AS }+2 \mathrm{RQ} . \mathrm{BR}
$$

$\therefore \quad \mathrm{TP}^{2}-\mathrm{TQ}^{2}=\mathrm{TS}^{2}-\mathrm{TR}^{2}+\mathrm{PS}^{2}$

$$
-\mathrm{PS}^{2}-2 \mathrm{PS} . \mathrm{BR}+2 \mathrm{PS} . \mathrm{BR}
$$

$\ldots[$ From (i) and (iv)]
$\therefore \quad \mathrm{TP}^{2}-\mathrm{TQ}^{2}=\mathrm{TS}^{2}-\mathrm{TR}^{2}$
$\therefore \quad \mathbf{T S}^{2}+\mathbf{T Q}^{2}=\mathbf{T P}^{2}+\mathbf{T R}^{2}$

Problem Set - 2

1. Some questions and their alternative answers are given. Select the correct alternative.
[1 Mark each]
i. Out of the following which is the Pythagorean triplet?
[Mar 2020]
(A) $(1,5,10)$
(B) $(3,4,5)$
(C) $(2,2,2)$
(D) $(5,5,2)$
ii. In a right angled triangle, if sum of the squares of the sides making right angle is 169 , then what is the length of the hypotenuse?
(A) 15
(B) 13
(C) 5
(D) 12
iii. Out of the dates given below which date constitutes a Pythagorean triplet?
(A) $15 / 08 / 17$
(B) $16 / 08 / 16$
(C) $3 / 5 / 17$
(D) $4 / 9 / 15$
iv. If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of the triangle.
[Mar 2023]
(A) Obtuse angled triangle
(B) Acute angled triangle
(C) Right angled triangle
(D) Equilateral triangle
v. Find perimeter of a square if its diagonal is $10 \sqrt{2} \mathrm{~cm}$.
[July 2023]
(A) 10 cm
(B) $40 \sqrt{2} \mathrm{~cm}$
(C) 20 cm
(D) 40 cm
vi. Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm . Find the length of the altitude.
(A) 9 cm
(B) 4 cm
(C) 6 cm
(D) $2 \sqrt{6} \mathrm{~cm}$
vii. Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenuse.
(A) 24 cm
(B) 30 cm
(C) 15 cm
(D) 18 cm
viii. In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$, $B C=6 \mathrm{~cm}$. Find measure of $\angle A$.
(A) 30°
(B) 60°
(C) 90°
(D) 45°

Answers:
i. (B)
(B) iii.
(A) iv. (C)
v.
(D)
vi.
(C) vii.
(B) viii. (A)

Hints:

i. Refer Practice Set 2.1 Q. 1 (i)
ii.

In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}$
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
...[Pythagoras theorem]
$\therefore \quad \mathrm{PR}^{2}=169$
$\therefore \quad \mathrm{PR}=\sqrt{169}=13$
iii. Consider Option A.

Here, $15^{2}+8^{2}=225+64=289$, and $17^{2}=289$
$\therefore \quad 15^{2}+8^{2}=17^{2}$
v. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$, and $\angle \mathrm{BAC}=\angle \mathrm{BCA}=45^{\circ}$
$\therefore \quad \mathrm{AB}=\frac{1}{\sqrt{2}} \mathrm{AC}$

$$
\begin{aligned}
& \cdots\left[\begin{array}{l}
\text { Theorem of } \\
45^{\circ}-45^{\circ}-90^{\circ} \text { triangle }
\end{array}\right] \\
= & \frac{1}{\sqrt{2}} \times 10 \sqrt{2}
\end{aligned}
$$

$\therefore \quad \mathrm{AB}=10 \mathrm{~cm}$
$\therefore \quad$ Perimeter of square $=4(\mathrm{AB})=4 \times 10=40 \mathrm{~cm}$
vi. In $\triangle \mathrm{ABC}$,
$\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{DC} \ldots$ [Theorem of geometric mean]
$\therefore \quad \mathrm{BD}^{2}=4 \times 9$
$\therefore \quad \mathrm{BD}=\sqrt{36}$

$$
=6 \mathrm{~cm}
$$

vii. In $\triangle P Q R, \angle Q=90^{\circ}$
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$...[Pythagoras theorem]

$$
\begin{aligned}
& =24^{2}+18^{2} \\
& =576+324 \\
& =900 \\
\therefore \quad \mathrm{PR} & =\sqrt{900} \\
& =30 \mathrm{~cm}
\end{aligned}
$$

viii. We know that, $6=\frac{1}{2}(12)$ and

$$
\begin{equation*}
6 \sqrt{3}=\frac{\sqrt{3}}{2} \tag{12}
\end{equation*}
$$

$\therefore \quad \mathrm{BC}=\frac{1}{2} \mathrm{AC}$ and $\mathrm{AB}=\frac{\sqrt{3}}{2} \mathrm{AC}$

$\therefore \quad \angle \mathrm{A}=30^{\circ}$
\ldots [Converse of $30^{\circ}-60^{\circ}-90^{\circ}$ theorem]

2. Solve the following examples.

[2 Marks each]
i. Find the height of an equilateral triangle having side 2 a .
ii. Do sides $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ form a right angled triangle? Give reason.
[July 2017]
iii. Find the length of a diagonal of a rectangle having sides 11 cm and 60 cm .
[July 2022]
iv. Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm .
v. A side of an isosceles right angled triangle is x. Find its hypotenuse.
vi. In $\triangle \mathrm{PQR}, \mathrm{PQ}=\sqrt{8}, \mathrm{QR}=\sqrt{5}, \mathrm{PR}=\sqrt{3}$. Is $\triangle \mathrm{PQR}$ a right angled triangle? If yes, which angle is of 90° ?

Page no. 40 to 45 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes
$\therefore \quad 40^{2}+42^{2}=2(29)^{2}+2 \mathrm{MR}^{2}$
$\therefore \quad 1600+1764=2(841)+2 \mathrm{MR}^{2}$
$\therefore \quad 3364=2(841)+2 M R^{2}$
$\therefore \quad 1682=841+$ MR $^{2} \ldots$ [Dividing both sides by 2]
$\therefore \quad \mathrm{MR}^{2}=1682-841$
$\therefore \quad \mathrm{MR}^{2}=841$
$\therefore \quad \mathrm{MR}=\sqrt{841} \ldots$ [Taking square root of both sides] $=29$ units
Now, $\mathrm{QR}=2 \mathrm{MR} \ldots[\mathrm{M}$ is the midpoint of QR$]$ $=2 \times 29$
$\therefore \quad \mathrm{QR}=\mathbf{5 8}$ units
18. $\operatorname{Seg} \mathbf{A M}$ is a median of $\triangle \mathrm{ABC}$. If $\mathrm{AB}=22$, $A C=34, B C=24$, find $A M$.
[2 Marks]

Solution:

In $\triangle \mathrm{ABC}$, seg AM is the median.
...[Given]
$\therefore \quad \mathrm{M}$ is the midpoint of side BC .
$\therefore \quad \mathrm{MC}=\frac{1}{2} \quad \mathrm{BC}$
$=\frac{1}{2} \times 24$
$=12$ units
Now, $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{MC}^{2}$
...[Apollonius theorem]
$\therefore \quad 22^{2}+34^{2}=2 \mathrm{AM}^{2}+2(12)^{2}$
$\therefore \quad 484+1156=2 \mathrm{AM}^{2}+2(144)$
$\therefore \quad 1640=2 \mathrm{AM}^{2}+2(144)$
$\therefore \quad 820=\mathrm{AM}^{2}+144 \ldots$ [Dividing both sides by 2]
$\therefore \quad \mathrm{AM}^{2}=820-144$
$\therefore \quad \mathrm{AM}^{2}=676$
$\therefore \quad \mathrm{AM}=\sqrt{676}$
.[Taking square root of both sides]
$\therefore \quad \mathrm{AM}=\mathbf{2 6}$ units

Activities for Practice

1. In $\triangle P Q R$, point M is the midpoint of side $Q R$. If $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=362 \mathrm{~cm}, \mathrm{PM}=9 \mathrm{~cm}$, find QR .
[2 Marks]

In $\triangle P Q R$, point M is the midpoint of side QR .
...[Given]
$\therefore \quad \square+\mathrm{PR}^{2}=\square+2 \mathrm{MR}^{2}$
[Apollonius theorem]
$\therefore \quad 362=2(9)^{2}+2 \mathrm{MR}^{2}$
$\therefore \quad \mathrm{MR}=\square$
Now, $\mathrm{QR}=2 \mathrm{MR} \quad \ldots[\mathrm{M}$ is the midpoint of QR$]$
$\therefore \quad \mathrm{QR}=$
2. In the given figure, $\square \mathrm{ABCD}$ is a rectangle. If $\mathrm{AB}=5, \mathrm{AC}=13$, then complete the following activity to find $B C$.

[Mar 2022][2 Marks]

Activity:

$\triangle \mathrm{ABC}$ is \square triangle.
$\therefore \quad$ By Pythagoras theorem,

$$
\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}
$$

$\therefore \quad 25+\mathrm{BC}^{2}=\square$
$\therefore \quad \mathrm{BC}^{2}=\square$
$\therefore \quad \mathrm{BC}=\square$
3. In the given figure, $\angle \mathrm{QRS}=90^{\circ}, \mathrm{RP} \perp \mathrm{SQ}$. If $P Q=16, R P=10$, find
i. $\quad \mathrm{SP}$
ii. RQ and
iii. SR

[3 Marks]
i. \quad In $\triangle \mathrm{QSR}, \angle \mathrm{QRS}=90^{\circ}$
and $\mathrm{RP} \perp \mathrm{SQ}$
\ldots [Given]
$\therefore \quad \mathrm{RP}^{2}=\square \times \mathrm{SP}$
...[Theorem of geometric mean]
$\therefore \quad \mathrm{SP}=$ \qquad
ii. \quad In $\triangle \mathrm{RPQ}, \angle \mathrm{RPQ}=90^{\circ}$
$\therefore \quad \mathrm{RQ}^{2}=\mathrm{RP}^{2}+\mathrm{PQ}^{2} \quad \ldots$ [\square
$\therefore \quad \mathrm{RQ}=$ \qquad
iii. \quad In $\triangle \mathrm{SPR}, \angle \mathrm{SPR}=90^{\circ}$
$\therefore \quad \mathrm{SR}^{2}=\square$
...[Pythagoras theorem]
$\therefore \quad \mathrm{SR}=$ \square
4.

In $\triangle \mathrm{PQR}$, seg $\mathrm{PS} \perp$ side QR , then complete the activity to prove $\mathrm{PQ}^{2}+\mathrm{RS}^{2}=\mathrm{PR}^{2}+\mathrm{QS}^{2}$.
[Nov 2020] [3 Marks]
In $\triangle \mathrm{PSQ}, \angle \mathrm{PSQ}=90^{\circ}$
$\therefore \quad \mathrm{PS}^{2}+\mathrm{QS}^{2}=\mathrm{PQ}^{2}$
...[Pythagoras theorem]
$\therefore \quad \mathrm{PS}^{2}=\mathrm{PQ}^{2}-\square$
Similarly,
In $\triangle \mathrm{PSR}, \angle \mathrm{PSR}=90^{\circ}$
$\therefore \quad \mathrm{PS}^{2}+\square$ \square $=\mathrm{PR}^{2}$...[Pythagoras theorem]
$\therefore \quad \mathrm{PS}^{2}=\mathrm{PR}^{2}-\square$
\square
$\therefore \mathrm{PQ}^{2}-\square=\square-\mathrm{RS}^{2} \quad \ldots[$ From (i) and (ii)]
$\therefore \quad \mathrm{PQ}^{2}+\square=\mathrm{PR}^{2}+\mathrm{QS}^{2}$
5. In $\triangle \mathrm{PQR}$, seg $\mathrm{PS} \perp \operatorname{seg} \mathrm{QR}$ and $\mathrm{SQ}=3 \mathrm{RS}$.

Prove that : $2 \mathrm{PQ}^{2}=2 \mathrm{PR}^{2}+\mathrm{QR}^{2} \quad[3$ Marks]

Proof:

In $\triangle \mathrm{PSR}, \angle \mathrm{PSR}=90^{\circ}$
...[Given]
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{RS}^{2}$
\ldots...Pythagoras theorem]
$\therefore \quad \mathrm{PS}^{2}=\mathrm{PR}^{2}-\mathrm{RS}^{2}$
...(i)

Also, in $\triangle \mathrm{PSQ}, \angle \mathrm{PSQ}=90^{\circ}$
...[Given]

$$
\therefore \quad \mathrm{PQ}^{2}=\mathrm{PS}^{2}+
$$

\square

$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PS}^{2}+(3 \mathrm{RS})^{2}$
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PS}^{2}+9 \mathrm{RS}^{2}$
$\therefore \quad \mathrm{PQ}^{2}=\square-\mathrm{RS}^{2}+9 \mathrm{RS}^{2} \quad \ldots[$ From (i)]
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+8 \mathrm{RS}^{2}$
But, $\mathrm{QR}=\mathrm{QS}+\mathrm{RS}$
$\ldots[\mathrm{Q}-\mathrm{S}-\mathrm{R}]$
$\therefore \quad \mathrm{QR}=3 \mathrm{RS}+\mathrm{RS}$...[Given]
$\therefore \quad \mathrm{QR}=4 \mathrm{RS}$
$\therefore \quad \mathrm{RS}=\square \mathrm{QR}$
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+8\left(\frac{1}{4} \mathrm{QR}\right)^{2} \quad \ldots[$ From (ii) and (iii)]
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+8 \times \frac{\mathrm{QR}^{2}}{16}$
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+\square$
$\therefore \quad 2 \mathrm{PQ}^{2}=2 \mathrm{PR}^{2}+\mathrm{QR}^{2}$

One Mark Questions

Type A: Multiple Choice Questions

1. Out of the following which is a Pythagorean triplet?
[Mar 2019]
(A) $(5,12,14)$
(B) $(3,4,2)$
(C) $(8,15,17)$
(D) $(5,5,2)$
2. Which of the following triplets will not form a right angled triangle?
(A) $50,30,40$
(B) $15,20,25$
(C) $20,29,21$
(D) $12,16,11$
3. If in $\triangle \mathrm{ABC}, \mathrm{AB}=15 \mathrm{~cm}, \mathrm{BC}=17 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$, then which of the following will be a right angle?
(A) $\angle \mathrm{A}$
(B) $\quad \angle \mathrm{B}$
(C) $\angle \mathrm{C}$
(D) none of these
4. From the figure given below, the lengths of PQ and PR are \qquad and \qquad respectively.
(A) $8 \mathrm{~cm}, 8 \sqrt{2} \mathrm{~cm}$
(B) $8 \sqrt{2} \mathrm{~cm}, 8 \mathrm{~cm}$
(C) $8 \mathrm{~cm}, 8 \sqrt{3} \mathrm{~cm}$
(D) $8 \sqrt{3} \mathrm{~cm}, 8 \mathrm{~cm}$

5. The length of the longest segment which can be drawn in a rectangle of length 84 cm and breadth 13 cm is \qquad .
(A) 84 cm
(B) 85 cm
(C) 86 cm
(D) 97 cm
6. If the diagonal of a square is $25 \sqrt{2} \mathrm{~cm}$, then the length of its side is \qquad .
(A) 50 cm
(B) 25 cm
(C) 5 cm
(D) $5 \sqrt{2} \mathrm{~cm}$
7. If the length of the hypotenuse of an isosceles right angled triangle is 10 cm , then the length of the equal sides will be \qquad .
(A) 10 cm
(B) $10 \sqrt{2} \mathrm{~cm}$
(C) 5 cm
(D) $5 \sqrt{2} \mathrm{~cm}$
8. If the lengths of the diagonals of a rhombus are 12 cm and 16 cm , then what is the length of its side?
(A) 10 cm
(B) 20 cm
(C) $10 \sqrt{2} \mathrm{~cm}$
(D) $20 \sqrt{2} \mathrm{~cm}$
9. The diagonal of a square of side 8 cm is
(A) 8 cm
(B) $4 \sqrt{2} \mathrm{~cm}$
(C) $8 \sqrt{2} \mathrm{~cm}$
(D) $8 \sqrt{3} \mathrm{~cm}$
10. In an isosceles triangle $A B C$, if $A C=B C$ and $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$, then $\angle \mathrm{ACB}=$
(A) 30°
(B) 45°
(C) 60°
(D) 90°
11. ABC is an isosceles triangle in which $\angle A C B=90^{\circ}$. If $\mathrm{AC}=2 \mathrm{~cm}$, then the value of AB is
(A) $\sqrt{2} \mathrm{~cm}$
(B) $2 \sqrt{2} \mathrm{~cm}$
(C) $3 \sqrt{2} \mathrm{~cm}$
(D) $4 \sqrt{2} \mathrm{~cm}$
12. In an equilateral triangle ABC , if $\mathrm{AD} \perp \mathrm{BC}$, $B-D-C$ and $A B=12 \mathrm{~cm}$, then the value of $A D$ is
(A) 6 cm
(B) $6 \sqrt{3} \mathrm{~cm}$
(C) 4 cm
(D) $4 \sqrt{3} \mathrm{~cm}$
13. A man goes 9 m due east and then 40 m due north. How far is he from the starting point?
(A) 35 m
(B) 39 m
(C) 41 m
(D) 45 m
14. A ladder 25 m long reaches a window of a building 20 m above the ground. The distance of foot of the ladder from the building is
(A) 10 m
(B) 12 m
(C) 15 m
(D) 18 m
15. In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$ and
seg $\mathrm{QS} \perp$ hypotenuse $\mathrm{PR}, \mathrm{P}-\mathrm{S}-\mathrm{R}$, then
(A) $\mathrm{PR}^{2}=\mathrm{PQ} \times \mathrm{PR}$
(B) $\mathrm{QS}^{2}=\mathrm{PS} \times \mathrm{SR}$
(C) $\mathrm{PR}^{2}=\mathrm{PS} \times \mathrm{SR}$
(D) $\mathrm{QS}^{2}=\mathrm{PQ} \times \mathrm{QR}$
16. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{BD} \perp \mathrm{AC}, \mathrm{A}-\mathrm{D}-\mathrm{C}$. If $\mathrm{CD}=2 \mathrm{~cm}$ and $\mathrm{AD}=8 \mathrm{~cm}$, then BD is equal to
(A) 2 cm
(B) 4 cm
(C) 6 cm
(D) 8 cm
17. For the figure given below, which of the following relations is correct?
(A) $\mathrm{p}^{2}=\mathrm{qr}$
(B) $\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{q}^{2}+\mathrm{r}^{2}$
(C) $\mathrm{p}^{2}=\mathrm{q}^{2}+\mathrm{r}^{2}$
(D) $\mathrm{p}^{2}=\mathrm{mn}$

18. In $\triangle \mathrm{PQR}, \mathrm{PS}$ is the median. If $\mathrm{PQ}=12 \mathrm{~cm}$, $P R=16 \mathrm{~cm}, \mathrm{PS}=10 \mathrm{~cm}$, then $\mathrm{QR}=$ \qquad .

(A) 10 cm
(B) $10 \sqrt{2} \mathrm{~cm}$
(C) 20 cm
(D) $20 \sqrt{2} \mathrm{~cm}$
19. In $\triangle A B C$, seg $C D$ is the median.

If $\mathrm{AC}^{2}+\mathrm{BC}^{2}=416$ and $\mathrm{CD}=12$, then $\mathrm{AD}=$
(A) 6
(B) 7
(C) 8
(D) 9

Type B: Solve the Following Questions

1. Find the diagonal of a square whose side is 10 cm .
[Mar 2015, 2020]
2. In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$, $\angle \mathrm{BAC}=\angle \mathrm{BCA}=45^{\circ}$. If $\mathrm{AC}=9 \sqrt{2}$, then find the value of AB .

[Mar 2022]
3. In a right angled triangle, if sum of the squares of the sides making right angle is 289 , then what is the length of the hypotenuse?
4. If the lengths of the diagonals of a rhombus are 6 cm and 8 cm , then what is the length of its side?
5. If the sides of a triangle are $12 \mathrm{~cm}, 35 \mathrm{~cm}$ and 37 cm respectively, determine whether the triangle is right angle triangle or not.
6. Is $(10,10,20)$ the Pythagorean triplet?
7. A man goes 30 m due east and then 40 m due north. How far is he from the starting point?
8. In an isosceles triangle PQR , if $\mathrm{PR}=\mathrm{QR}$ and $\mathrm{PQ}^{2}=2 \mathrm{PR}^{2}$, then $\angle \mathrm{PRQ}=$?
9. A ladder 29 m long reaches a window of a building 21 m above the ground then what is the distance of foot of the ladder from the building?
10. Find the side of a square whose diagonal is $35 \sqrt{2} \mathrm{~cm}$.

Additional Problems for Practice

Based on Practice Set 2.1

1. Identify the Pythagorean triplets from the following:
[1 Mark each]
i. $(15,10,35)$
ii. $(28,45,53)$
iii. $(10,10,20)$
iv. $(16,63,65)$
v. $(20,21,29)$
vi. $(9,20,21)$
+2 . See the given figure. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$, $\angle \mathrm{A}=30^{\circ}, \mathrm{AC}=14$, then find
i. $\quad \mathrm{AB}$ and
ii. BC [July 2022]

2. In $\triangle \mathrm{PQR}, \angle \mathrm{P}=30^{\circ}, \angle \mathrm{Q}=60^{\circ}, \angle \mathrm{R}=90^{\circ}$ and $P Q=12 \mathrm{~cm}$, then find $P R$ and $Q R$.
[July 2017] [2 Marks]
3. In $\triangle \mathrm{PQR}, \angle \mathrm{P}=60^{\circ}, \angle \mathrm{Q}=90^{\circ}$ and $\mathrm{QR}=6 \sqrt{3} \mathrm{~cm}$, then find the values of PR and PQ.
[Nov 2020] [2 Marks]
+5 . See the given figure,
In $\triangle A B C$,
$\operatorname{seg} \mathrm{AD} \perp \operatorname{seg} \mathrm{BC}$,
$\angle \mathrm{C}=45^{\circ}, \quad \mathrm{BD}=5$ and $\mathrm{AC}=8 \sqrt{2}$, then find $A D$ and $B C$.

[2 Marks]
4. Find the length of the altitude of an equilateral triangle with side 6 cm .
[Mar 2017, 2018] [2 Marks]
5. In right-angled
$\triangle \mathrm{ABC}$,
$\mathrm{BD} \perp \mathrm{AC}$.
If $\mathrm{AD}=4, \mathrm{DC}=9$, then find $B D$.

[Mar 2019][2 Marks]
+8. See the given figure. In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$, $\operatorname{seg} \mathrm{QS} \perp \operatorname{seg} \mathrm{PR}$, then find x, y, z.
[3 Marks]

+9 . In the right angled triangle, sides making right angle are 9 cm and 12 cm . Find the length of the hypotenuse.
[2 Marks]
6. In the adjoining figure, if $\angle \mathrm{PQR}=90^{\circ}$, and $\angle \mathrm{PSR}=90^{\circ}$, then find PR and RS. [2 Marks]

7. Find the diagonal of a square whose side is 14 cm .
[1 Mark]
8. Find the side of a square whose diagonal is $16 \sqrt{2} \mathrm{~cm}$ long.
[Mar 2012; July 2017] [1 Mark]
+13 . In $\triangle \mathrm{LMN}, l=5, \mathrm{~m}=13, \mathrm{n}=12$. State whether $\triangle \mathrm{LMN}$ is a right angled triangle or not.
[2 Marks]
9. In $\triangle \mathrm{ABC}, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=40 \mathrm{~cm}$, $\mathrm{AC}=41 \mathrm{~cm}$. State whether $\triangle \mathrm{ABC}$ is a rightangled triangle or not? Write reason.
[Mar 2022] [2 Marks]
10. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
[Mar 2013] [2 Marks]
+16. See the given figure.
In $\triangle A B C, \operatorname{seg} A D \perp \operatorname{seg} B C$.
Prove that:
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$

[2 Marks]
11. In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$. If $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$, $A B=c$ and the length of the altitude from vertex C on side $A B$ is p, then show that
i. $\mathrm{cp}=\mathrm{ab}$
ii. $\quad \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$

[Mar 2014] [4 Marks]
12. $\triangle \mathrm{DEF}$ is an equilateral triangle. $\operatorname{seg} \mathrm{DP} \perp$ side EF , and $\mathrm{E}-\mathrm{P}-\mathrm{F}$. Prove that: $\mathrm{DP}^{2}=3 \mathrm{EP}^{2}$

[Oct 2008] [4 Marks]
13. Prove that three times the square of any side of an equilateral triangle is equal to four times the square of an altitude.
[4 Marks]
14. In an isosceles triangle $P Q R, P Q=P R$ and S is any point on side QR . Then prove that:
$\mathrm{PQ}^{2}-\mathrm{PS}^{2}=\mathrm{QS} \times \mathrm{SR}$.
[3 Marks]
15. If a and b are natural numbers and $a>b$. If $\left(a^{2}+b^{2}\right),\left(a^{2}-b^{2}\right)$ and $2 a b$ are the sides of the triangle, then prove that the triangle is right angled.
Find out two Pythagorean triplets by taking suitable values of a and b.
[Mar 2022][3 Marks]

Based on Practice Set 2.2

+1 . In the given figure, seg PM is a median of $\triangle \mathrm{PQR}$. $\mathrm{PM}=9$ and $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=290$, then find QR .

2. In the figure below, if $\mathrm{AB}^{2}+\mathrm{AC}^{2}=122$, $B C=10$, then find the length of median drawn to side BC.

[Oct 2012; July 2015] [2 Marks]
3. In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \mathrm{AB}=12, \mathrm{BC}=16$ and seg BP is a median. Find BP.
[2 Marks]
4. Adjacent sides of a parallelogram are 11 cm and 17 cm . If one of its diagonal is 26 cm , then find length of its other diagonal.
[Mar 2016] [3 Marks]
+5 . Prove that the sum of the squares of the diagonals of a rhombus is equal to the sum of the squares of the sides.
[4 Marks]
6. In the given figure, SV is the median and $\mathrm{SW} \perp \mathrm{TU}$. Prove that, $\mathrm{SU}^{2}-\mathrm{ST}^{2}=2 \mathrm{TU} \times \mathrm{VW}$

Q.1. A. Choose the correct alternative.
i. Which of the following triplets will not form a right angled triangle?
(A) $(5,12,13)$
(B) $(8,15,17)$
(C) $(20,10,11)$
(D) $(9,40,41)$
ii. In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=30^{\circ}, \angle \mathrm{R}=90^{\circ}$ and the length of the hypotenuse is 20 cm . What will be length of QR ?
(A) 10 cm
(B) $10 \sqrt{3} \mathrm{~cm}$
(C) $10 \sqrt{2} \mathrm{~cm}$
(D) $5 \sqrt{2} \mathrm{~cm}$
iii. If the length of the diagonal of a square is 16 cm , then its perimeter will be
(A) 32 cm
(B) $32 \sqrt{2} \mathrm{~cm}$
(C) 64 cm
(D) $64 \sqrt{2} \mathrm{~cm}$
iv. In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}$ and $\mathrm{QS} \perp \mathrm{PR}$. If $\mathrm{PS}=32 \mathrm{~cm}, \mathrm{SR}=8 \mathrm{~cm}$, then $\mathrm{QS}=$
(A) 8 cm
(B) $2 \sqrt{10} \mathrm{~cm}$
(C) 16 cm
(D) 40 cm

Q.1. B. Solve the following questions.
i. Find the diagonal of a rectangle having length and breadth 8 cm and 6 cm respectively.
ii. Is $(7,40,42)$ the Pythagorean triplet?
Q.2. A. Complete the following activities. (Any one)
i. For finding AB and BC with the help of information given in the adjoining figure, complete the following activity.

Solution:

$\mathrm{AB}=\mathrm{BC}$
...[Given]
$\therefore \quad \angle \mathrm{BAC}=\angle \mathrm{BCA}$
...[Isosceles triangle theorem]
$\therefore \quad \angle \mathrm{BAC}=\square$

$$
\begin{array}{rlrl}
\therefore & \mathrm{AB}=\mathrm{BC} & =\square \times \mathrm{AC} \\
& =\square \times \sqrt{8} \\
& = & \mathrm{AB}=\mathrm{BC} & =\square
\end{array}
$$

ii. In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}$ is an obtuse angle, seg $\mathrm{AD} \perp$ seg BC .

Prove that: $\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}+2 \mathrm{BC} \times \mathrm{CD}$.
Complete the proof by filling the blanks.

Proof:

$\mathrm{BD}=\mathrm{BC}+\mathrm{DC}$
$\ldots[\mathrm{B}-\mathrm{C}-\mathrm{D}]$
$\therefore \quad \mathrm{BD}=\mathrm{a}+x$
In $\triangle \mathrm{ADB}, \angle \mathrm{D}=90^{\circ}$
$\therefore \quad \mathrm{c}^{2}=(\mathrm{a}+x)^{2}+\square$
...[Pythagoras theorem]
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2}+2 \mathrm{a} x+x^{2}+\square$
Also, in $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$
$\therefore \quad \mathrm{b}^{2}=\square+\mathrm{p}^{2}$
...[Pythagoras theorem]
$\therefore \quad \mathrm{p}^{2}=\mathrm{b}^{2}-\square$
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2}+2 \mathrm{ax}+x^{2}+\mathrm{b}^{2}-x^{2}$
\ldots...Substituting (ii) in (i)]
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ax}$
$\therefore \quad \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}+2 \mathrm{BC} \times \mathrm{CD}$
Q.2. B. Solve the following questions. (Any two)
i. A 50 m long ladder reaches a window 14 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
ii. In $\triangle A B C$, seg $A P$ is a median. If $B C=18, A B^{2}+A C^{2}=260$, find $A P$.
iii. Find the height of an equilateral triangle having side 12 cm .
Q.3. A. Complete the following activities. (Any one)
i. In the given figure, seg PS is the median of $\triangle \mathrm{PQR}$ and $\mathrm{PT} \perp \mathrm{QR}$. Prove that,
a. $\mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$
b. $\mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$

Proof:

a. \quad seg PS is the median of $\triangle P Q R$.

$\therefore \quad \mathrm{PQ}^{2}=\left(\frac{\mathrm{QR}}{2}\right)^{2}+\mathrm{PS}^{2}-\square \times \mathrm{ST}$
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$
ii. Rupali and Vivek started walking to the East and to the North respectively, from the same point and at the same speed. After 3 hours distance between them was $21 \sqrt{2} \mathrm{~km}$. Find their speed per hour.
Suppose Rupali and Vivek started Vivek walking from point A, and reached points B and C respectively after 3 hours.

Distance between them $=\mathrm{BC}=$ \square km
since, their speed is same, both travel the same distance in the given time.
$\therefore \quad \mathrm{AB}=\mathrm{AC}$
Let $\mathrm{AB}=\mathrm{AC}=x \mathrm{~km}$
Now, In $\triangle \mathrm{ABC}, \angle \mathrm{A}=\square$
$\therefore \quad \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
...[Pythagoras theorem]
$\therefore \quad(21 \sqrt{2})^{2}=x^{2}+x^{2}$
...[From (i)]
$\therefore \quad \square \times 2=2 x^{2}$
$\therefore \quad x^{2}=441$
$\therefore \quad x=\sqrt{441} \quad \ldots$ [Taking square root of both sides]
$\therefore \quad x=\square$
$\therefore \quad \mathrm{AB}=\mathrm{AC}=21 \mathrm{~km}$
Now, speed $=\frac{\text { distance }}{\text { time }}=\square$
$\therefore \quad$ The speed of Rupali and Vivek is \square
Q.3. B. Solve the following questions. (Any One)
i. $\triangle \mathrm{ABC}$ is an equilateral triangle. Point P is on base BC such that $\mathrm{PC}=\frac{1}{3} \mathrm{BC}$, if $\mathrm{AB}=6 \mathrm{~cm}$ find AP .
ii. In the adjoining figure, $\angle \mathrm{DFE}=90^{\circ}, \mathrm{FG} \perp \mathrm{ED}$. If $\mathrm{GD}=8, \mathrm{FG}=12$, find
a. EG
b. FD, and
c. EF

Q.4. Solve the following questions. (Any one)
i. The length of one side of a parallelogram is 17 cm . If the length of its diagonals are 12 cm and 26 cm , then find the length of the other side of the parallelogram.
ii. $\quad A B C$ is a triangle in which $A B=A C$ and D is a point on $B C$. Prove that $A B^{2}-A D^{2}=B D \cdot C D$.
Q.5. Solve the following question. (Any one)
i. If a and b are natural numbers and $a>b$, then show that $\left(a^{2}+b^{2}\right),\left(a^{2}-b^{2}\right),(2 a b)$ is a Pythagorean triplet. Find two Pythagorean triplets using any convenient values of a and b.
ii. In an isosceles triangle, length of the congruent side is 13 cm and its base is 10 cm . Find the distance between the vertex opposite to the base and the centroid.

Scan the given Q. R. Code in Quill - The Padhai App to view the answers of the Chapter Assessment.
PERFELT SERIES
\rightarrow English Kumarbharati\rightarrow मराठी अक्षरभारती- हिंदी लोकभारती
\rightarrow हिंदी लोकवाणी
\longrightarrow आमोदः सम्पूर्ण-संस्क्रृतम्
\longrightarrow आनन्दः संयुक्त-संस्कृतम्

- History and Political Science
- Geography
- PRECISE SERIES
- Science and Technology (Part-1)
- Science and Technology (Part-2)
\longrightarrow History, Political Science and Geography
\longrightarrow Mathematics (Part-1)
\longrightarrow Mathematics (Part - II)
\longrightarrow Science and Technology (Part-1)
- Science and Technology (Part-2)
Additional Titles: (Eng., Mar. \& Semi Eng. Med.)
- Grammar \& Writing Skills Books (std. X)
- Marathi • Hindi • English
- Hindi Grammar Worksheets
- 3 in 1 Writing Skills
- English (HL) • Hindi (LL) • Marathi (LL)
- 3 in 1 Grammar (Language Study) \& Vocabulary- English (HL) • Hindi (LL) • Marathi (LL)
- SSC 54 Question Papers \& Activity Sheets With Solutions
- आमोद:(समूर्ण-संस्क्तुतम) -
SSC 11 Activity Sheets With Solutions
- हिंदी लोकवाणी (संयुक्त), संस्कृत-आनन्द: (संयुक्तमे) -
SSC 12 Activity Sheets With Solutions
- IQB (Important Question Bank)
- Mathematics Challenging Questions
- Geography Map \& Graph Practice Book
- A Collection of Board Questions With Solutions
PRECLSE SERIES
—. My English Coursebook
- मराठी कुमारभारती
- इतिह्नस व राज्यशास्त्र
- भूगोल
-. गणित (भाग - I)
\longrightarrow गणित (भाग - II)
- विज्ञान आणि तंत्रज्ञान (भाग - १)- WDRKBIDK
- English Kumarbharati
\longrightarrow मराठी अक्षरभारती
\rightarrow हिंदी लोकभारती\longrightarrow Mathematics (Part-I)\longrightarrow Mathematics (Part - II)\longrightarrow My English Coursebook\longrightarrow मराठी कुमारभारती

Visit Our Website

B2, $9^{\text {th }}$ Floor, Ashar, Road No. 16/Z,
Wagle Industrial Estate, Thane (W)- 400604
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org
Email: mail@targetpublications.org

[^0]: (C) Target Publications Pvt. Ltd.

 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

[^1]: This reference book is transformative work based on the latest textbook of Mathematics Part - II published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.

