Stemphic CONHENTH

 Questions With Solutions

Chapterwise \& Subtopicwise compilation of relevant board questions from 1996 to 2023

TarEet Publications ${ }^{\oplus}$ Pvt. Ltd.

A collection of
 Board Questions wint somitions Physics • Chemistry • Mathematics \& Statistics (Part I \& II) • Biology STD. XII Sci.

Chapterwise compilation of relevant board questions

 with solutions from 1996 to 2023
Salient Features

- Subjects covered: Physics, Chemistry, Mathematics \& Statistics (Part I \& II) and Biology
- Covers questions from previous curriculum which fall under the latest syllabus from 1996 to 2023.
- Chapter wise and Subtopic wise segregation of Theory questions and Numericals.
- Detailed solutions are provided to difficult MCQs
- Important Inclusion: Log calculations for selective numericals.
- Answers and precise solutions provided to the questions as per latest edition of the textbook.

Printed at: India Printing Works, Mumbai

© Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

Target's 'Board Questions with Solutions : Std. XII Sci.' is a compilation of all the relevant questions (MCQs + Theory Questions + Numericals) that have been asked in the previous year's HSC Maharashtra Board Papers of science stream for Physics, Chemistry, Mathematics \& Statistics (Part I \& II) and Biology. The objective of this book is to offer students quick access to previous year's relevant board questions along with their answers.

The chapter wise and subtopic wise (for Theory Questions \& Numericals) segregation of questions enable students gauge the weightage given and type of questions preferred for a chapter. Flow of questions is set year wise with questions from the most recent examination placed last in a subtopic. Only those questions from previous years which fall under the latest syllabus prescribed by Maharashtra State Board of Secondary and Higher Secondary Education are included. The solutions are precise and supplied with suitable diagrams and graphs. Detailed solutions are provided to difficult MCQs. Log calculations are included for selective numericals to aid students.

Constructive criticism and feedback for improving the book are always appreciated. Please write to us on: mail@targetpublications.org

Best of luck to all the aspirants!

Publisher
Edition: Second

Disclaimer

This reference book is transformative work based on Physics, Chemistry, Mathematics \& Statistics (Part I \& II) and Biology textbook; Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
© reserved with the Publisher for all the contents created by our Authors.
No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Chapter No.	Units	Page No.
	Physics	
1	Rotational Dynamics	1
2	Mechanical Properties of Fluids	18
3	Kinetic Theory of Gases and Radiation	27
4	Thermodynamics	35
5	Oscillations	37
6	Superposition of Waves	50
7	Wave Optics	67
8	Electrostatics	89
9	Current Electricity	99
10	Magnetic Fields due to Electric Current	112
11	Magnetic Materials	120
12	Electromagnetic Induction	126
13	AC Circuits	133
14	Dual Nature of Radiation and Matter	140
15	Structure of Atoms and Nuclei	151
16	Semiconductor Devices	163
	Chemistry	
1	Solid State	169
2	Solutions	178
3	Ionic Equilibria	188
4	Chemical Thermodynamics	192
5	Electrochemistry	208
6	Chemical Kinetics	222
7	Elements of Groups 16, 17 and 18	235
8	Transition and Inner Transition Elements	240
9	Coordination Compounds	246
10	Halogen Derivatives	252
11	Alcohols, Phenols and Ethers	260
12	Aldehydes, Ketones and Carboxylic Acids	268
13	Amines	279
14	Biomolecules	285
15	Introduction to Polymer Chemistry	290
16	Green Chemistry and Nanochemistry	295
	Mathematics \& Statistics Part - I	
1	Mathematical Logic	297
2	Matrices	306
3	Trigonometric Functions	318
4	Pair of Straight Lines	332
5	Vectors	339
6	Line and Plane	355
7	Linear Programming	371

Chapter No.	Units	Page No.
	Mathematics \& Statistics Part - II	
1	Differentiation	381
2	Applications of Derivatives	392
3	Indefinite Integration	402
4	Definite Integration	413
5	Application of Definite Integration	420
6	Differential Equations	426
7	Probability Distributions	437
8	Binomial Distribution	445
		452
1	Reproduction in Lower and Higher Plants	461
2	Reproduction in Lower and Higher Animals	475
3	Inheritance and Variation	486
4	Molecular Basis of Inheritance	493
5	Origin and Evolution of Life	499
6	Plant Water Relations	503
7	Plant Growth and Mineral Nutrition	506
8	Respiration and Circulation	514
9	Control and Co-ordination	523
10	Human Health and Diseases	529
11	Enhancement in Food Production	539
12	Biotechnology	545
13	Organisms and Populations	548
14	Ecosystems and Energy Flow	551
15	Biodiversity, Conservation and Environmental Issues	

01 Rotational Dynamics

Multiple Choice Questions

1. A car is moving along a horizontal curve of radius 20 m and coefficient of friction between the road and wheels of the car is 0.25 . If acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, then its maximum speed is
[Mar 08]
(A) $3 \mathrm{~m} / \mathrm{s}$
(B) $5 \mathrm{~m} / \mathrm{s}$ (C)
$7 \mathrm{~m} / \mathrm{s}$
(D) $9 \mathrm{~m} / \mathrm{s}$
2. A body is acted upon by a constant torque. In 4 seconds its angular momentum changes from L to 4 L . The magnitude of the torque is \qquad .
[Oct 08]
(A) $\frac{\mathrm{L}}{4}$
(B) $\frac{3 \mathrm{~L}}{4}$
(C) 3L
(D) 12 L
3. Radius of gyration of a ring about a transverse axis passing through its centre is \qquad . [Mar 09]
(A) $0.5 \times$ diameter of ring
(B) diameter of ring
(C) $2 \times$ diameter of ring
(D) (diameter of ring) ${ }^{2}$
4. A stone is tied to a string and rotated in a horizontal circle with constant angular velocity. If the string is released, the stone flies
[Oct 09, Mar 10]
(A) radially inward
(B) radially outward
(C) tangentially forward
(D) tangentially backward
5. The radius of gyration of a solid sphere of mass M and radius R rotating about an axis with its diameter N is
[Mar 10]
(A) $\sqrt{\frac{1}{5}} \cdot \mathrm{R}$
(B) $\sqrt{\frac{2}{5}} \cdot \mathrm{R}$
(C) $\sqrt{\frac{3}{5}} \cdot \mathrm{R}$
(D) $\sqrt{\frac{7}{5}} \cdot \mathrm{R}$
6. The moment of inertia of a thin uniform rod of mass M and length L , about an axis passing through a point, midway between the centre and one end, perpendicular to its length is [Mar 13]
(A) $\frac{48}{7} \mathrm{ML}^{2}$
(B) $\frac{7}{48} \mathrm{ML}^{2}$
(C) $\frac{1}{48} \mathrm{ML}^{2}$
(D) $\frac{1}{16} \mathrm{ML}^{2}$
7. If ' L ' is the angular momentum and ' I ' is the moment of inertia of a rotating body, then $\frac{L^{2}}{2 I}$ represents its
[Oct 13]
(A) rotational P.E.
(B) total energy
(C) rotational K.E.
(D) translational K.E.
8. A thin wire of length L and uniform linear mass density ρ is bent into a circular coil. Moment of inertia of the coil about tangential axis in its plane is \qquad .
[Oct 14]
(A) $\frac{3 \rho L^{2}}{8 \pi^{2}}$
(B) $\frac{8 \pi^{2}}{3 \rho \mathrm{~L}^{3}}$
(C) $\frac{3 \rho L^{3}}{8 \pi^{2}}$
(D) $\frac{8 \pi}{3 \rho \mathrm{~L}^{2}}$
9. The period of a conical pendulum in terms of its length (l, semivertical angle (θ) and acceleration due to gravity (g) is: [Mar 15]
(A) $\frac{1}{2 \pi} \sqrt{\frac{l \cos \theta}{\mathrm{~g}}}$
(B) $\frac{1}{2 \pi} \sqrt{\frac{\operatorname{l\operatorname {sin}\theta }}{\mathrm{~g}}}$
(C) $4 \pi \sqrt{\frac{\operatorname{l\operatorname {cos}\theta }}{4 g}}$
(D) $4 \pi \sqrt{\frac{l \tan \theta}{g}}$
10. The kinetic energy of a rotating body depends upon
[Mar 15]
(A) distribution of mass only.
(B) angular speed only.
(C) distribution of mass and angular speed.
(D) angular acceleration only.
11. A particle rotates in U.C.M. with tangential velocity ' v ' along a horizontal circle of diameter ' D '. Total angular displacement of the particle in time ' t ' is \qquad .
[Mar 16]
(A) vt
(B) $\left(\frac{v}{D}\right)-t(C)$
$\frac{\mathrm{vt}}{2 \mathrm{D}}$
(D) $\frac{2 \mathrm{vt}}{\mathrm{D}}$
12. A body of moment of inertia $5 \mathrm{kgm}^{2}$ rotating with an angular velocity $6 \mathrm{rad} / \mathrm{s}$ has the same kinetic energy as a mass of 20 kg moving with a velocity of \qquad .
[Mar 16]
(A) $5 \mathrm{~m} / \mathrm{s}$
(B) $4 \mathrm{~m} / \mathrm{s}$
(C) $3 \mathrm{~m} / \mathrm{s}$
(D) $2 \mathrm{~m} / \mathrm{s}$
13. The difference in tensions in the string at lowest and highest points in the path of the particle of mass ' m ' performing vertical circular motion is
[July 16]
(A) 2 mg
(B) 4 mg
(C) 6 mg
(D) 8 mg
14. The body is rotating with uniform angular velocity (ω) having rotational kinetic energy (E). Its angular momentum (L) is:
[July 16]
(A) $\frac{2 \mathrm{E}}{\omega}$
(B) $\frac{\mathrm{E}^{2}}{\omega}$
(C) $\frac{\mathrm{E}}{\omega^{2}}$
(D) $\frac{\mathrm{E}}{2 \omega}$

Page no. $\mathbf{2}$ is purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes
16. $\mathrm{F}_{\mathrm{CP}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$

Multiplying and dividing the equation by mr^{2}, we get,

$$
\mathrm{F}_{\mathrm{CP}}=\frac{\mathrm{m}^{2} \mathrm{v}^{2} \mathrm{r}^{2}}{\mathrm{mr}^{3}}
$$

$\therefore \quad \mathrm{F}_{\mathrm{CP}}=\frac{\mathrm{L}^{2}}{\mathrm{mr}^{3}}$
$\ldots .(\because \mathrm{L}=\mathrm{mvr})$
18. P.E. $=\mathrm{mgh}$

At highest point, $\mathrm{h}=2 \mathrm{r}$
$\therefore \quad$ P.E. $=2 \mathrm{mgr}$
19. $\mathrm{I}_{\mathrm{c}}=\mathrm{MR}^{2}=0.25 \times 0.5^{2}=0.0625 \mathrm{kgm}^{2}$

Theory Questions

1.2 Characteristics of Circular Motion

1. Explain the concept of centripetal force.

[Mar 17]

Ans: Centripetal force:

i. The force providing centripetal or radial acceleration is called as centripetal or radial force.
$F_{\text {CPF }}=-m \omega^{2} \vec{r}$
where, $r=$ radius of circular path.
ii. In magnitude, $\mathrm{F}_{\mathrm{CPF}}=\operatorname{mr} \omega^{2}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{mv} \omega$
iii. The direction of this force is along the radius and towards centre (centre seeking).
2. Distinguish between centripetal force and centrifugal force.
[Mar 10, 18]
Ans:

Sr. No.	Centripetal force	Centrifugal force
i.	Centripetal force is directed along the radius towards the centre of a circle.	Centrifugal force is directed along the radius away from the centre of a circle.
ii.	It is a real force.	It is a pseudo force.
iii.	It is considered in inertial frame of reference.	It is considered in non-inertial frame of reference.
iv.	In vector form, it is given by $\overrightarrow{\mathrm{F}}=-\frac{\mathrm{mv}^{2}}{\mathrm{r}} \hat{\mathrm{r}}_{0}$ with usual notations.	In vector form, it is given by $\overrightarrow{\mathrm{F}}=+\frac{\mathrm{mv}}{}{ }^{2}$ with usual notations.

3. What is the value of tangential acceleration in U.C.M.?
[Mar 19]
Ans: Value of tangential acceleration in U.C.M. is always zero.
4. Define U.C.M.

Name the forces acting on a body executing nonuniform circular motion. [July 19]
Ans: Definition: During circular motion, if the speed of the particle remains constant, it is called Uniform Circular Motion (UCM).
Forces acting on the body executing nonuniform circular motion: Centripetal force provided partly by the weight of the body performing circular motion and partly by the normal reaction.
5. Define uniform circular motion. [Mar 20]

Ans: Refer Subtopic 1.2: Q. No. 4 (Definition only)

1.3 Applications of Uniform Circular Motion

1. Derive an expression for period of a conical pendulum.
[Mar 08]
Ans:
i. Consider the vertical section of a conical pendulum having bob (point mass) of mass m and string of length ' L '.
ii. Here, θ is the angle made by the string with the vertical, at any position (semi-vertical angle of the cone)
iii. In a given position B , the forces acting on the bob are
a. its weight ' mg ' directed vertically downwards
b. the force ' T_{0} ' due to the tension in the string, directed along the string, towards the support A.

iv. As the motion of the bob is a horizontal circular motion, the resultant force must be horizontal and directed towards the centre C of the circular motion.
v. For this, tension $\left(\mathrm{T}_{0}\right)$ in the string is resolved into
a. $\quad \mathrm{T}_{0} \cos \theta$: vertical component
b. $\quad \mathrm{T}_{0} \sin \theta$: horizontal component
vi. The vertical component $\left(\mathrm{T}_{0} \cos \theta\right)$ balances the weight ' mg '.
$\therefore \quad \mathrm{mg}=\mathrm{T}_{0} \cos \theta$
vii. The horizontal component $\mathrm{T}_{0} \sin \theta$ then becomes the resultant force which is centripetal.
$\mathrm{mr} \omega^{2}=\mathrm{T}_{0} \sin \theta$
Dividing equation (2) by equation (1),
$\omega^{2}=\frac{\mathrm{g} \sin \theta}{\mathrm{r} \cos \theta}$

Page no. 4 to 9 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes
3. State and prove principle of conservation of angular momentum.
[Mar 18, 23]
Ans: Statement: Refer Subtopic 1.10: Q. No. 1 Proof: Refer Subtopic 1.10: Q. No. 2
4. Explain the principle of conservation of angular momentum with the help of two appropriate examples.
[July 19]
Ans: Statement and explanation:
Refer Subtopic 1.10: Q. No. 1 and Q. No. 2

Examples:

i. The angular velocity of revolution of a planet around the sun in an elliptical orbit increases, when the planet comes closer to the sun and vice-versa.
ii. A person carrying heavy weights in his hands and standing on a rotating platform can change the speed of the platform.
iii. A diver performs somersaults by jumping from a high diving board keeping his legs and arms out stretched first, and then curling his body.
5. State the law of conservation of angular momentum.
[July 22]
Ans: Statement: Refer Subtopic 1.10: Q. No. 1

1.11 Rolling Motion

1. Derive an expression for kinetic energy, when a rigid body is rolling on a horizontal surface without slipping. Hence find kinetic energy for a solid sphere.
[Mar 13]
Ans: Expression for kinetic energy of rolling sphere:
i. Mass of the sphere is given to be M.

Let, $\mathrm{v}=$ linear velocity of the sphere
$\omega=$ angular velocity of the sphere
I = moment of inertia of the sphere
$K=$ radius of gyration
ii. Total K.E of rolling body
$=(\mathrm{K} . \mathrm{E})_{\text {translational }}+(\mathrm{K} . \mathrm{E})_{\text {rotational }}$
$\therefore \quad(\mathrm{K} . \mathrm{E})_{\text {rolling }}=\frac{1}{2} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
$=\frac{1}{2} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{MK}^{2}\left[\frac{\mathrm{v}^{2}}{\mathrm{r}^{2}}\right]$

$$
\begin{equation*}
\ldots\left(\because \mathrm{I}=\mathrm{MK}^{2} \text { and } \mathrm{v}=\mathrm{r} \omega\right) \tag{1}
\end{equation*}
$$

$\therefore \quad(\mathrm{K} . \mathrm{E})_{\text {rolling }}=\frac{1}{2} \mathrm{Mv}^{2}\left[1+\frac{\mathrm{K}^{2}}{\mathrm{r}^{2}}\right]$
Since the value of ' K ' is different for different bodies, so (K.E) rolling ${ }^{\text {also varies from body to body. }}$
2. Obtain an expression for total kinetic energy of a rolling body in the form $\frac{1}{2} M V^{2}\left[1+\frac{K^{2}}{R^{2}}\right]$.
[Mar 16]
Ans: Refer Subtopic 1.11: Q. No. 1

Numericals

1.2 Characteristics of Circular Motion

1. An object of mass 2 kg attached to wire of length 5 m is revolved in a horizontal circle. If it makes 60 r.p.m. Find its
i. angular speed
ii. linear speed
iii. centripetal acceleration
iv. centripetal force
[Mar 09]
Solution:
Given:

$$
\mathrm{m}=2 \mathrm{~kg}, \mathrm{r}=5 \mathrm{~m}, \mathrm{n}=60 \mathrm{r} . \mathrm{p} . \mathrm{m} .=1 \text { r.p.s. }
$$

To find:

Formulae:
i. Angular Speed (ω)
ii. Linear Speed (v)
iii. Centripetal acceleration $\left(\mathrm{a}_{\mathrm{cp}}\right)$
iv. Centripetal Force $\left(F_{c p}\right)$
i. $\quad \omega=2 \pi n \quad$ ii. $\quad v=r \omega$ iii. $\quad a_{c p}=r \omega^{2} \quad$ iv. $\quad F_{c p}=m r \omega^{2}$

Calculation: From formula (i),
$\omega=2 \times 3.142 \times 1=\mathbf{6 . 2 8 4} \mathbf{~ r a d} / \mathrm{s}$
From formula (ii), $\mathrm{v}=5 \times 6.284=\mathbf{3 1 . 4 2} \mathbf{~ m} / \mathrm{s}$
From formula (iii), $\mathrm{a}=\mathrm{r} \omega^{2}=5 \times(6.284)^{2}=\mathbf{1 9 7 . 4 4} \mathbf{~ m} / \mathbf{s}^{2}$ From formula (iv), $\mathrm{F}_{\mathrm{cp}}=\mathrm{mr} \omega^{2}=2 \times 197.44=\mathbf{3 9 4 . 8 8} \mathbf{N}$
Ans: i. The angular speed id $6.284 \mathrm{rad} / \mathbf{s}$.
ii. The linear speed of an object id $\mathbf{3 1 . 4 2} \mathbf{~ m} / \mathbf{s}$.
iii. The centripetal acceleration of an object is $\mathbf{1 9 7 . 4 4 ~ m / s}{ }^{2}$.
iv. The centripetal force is $\mathbf{3 9 4 . 8 8} \mathbf{N}$.
2. A car of mass 1500 kg rounds a curve of radius 250 m at $90 \mathrm{~km} / \mathrm{hour}$. Calculate the centripetal force acting on it.
[Mar 13]

Solution:

Given:

$$
\mathrm{m}=1500 \mathrm{~kg}, \mathrm{r}=250 \mathrm{~m}
$$

$$
\mathrm{v}=90 \mathrm{~km} / \mathrm{h}=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{s}
$$

To find: \quad Centripetal force $\left(\mathrm{F}_{\mathrm{CP}}\right)$
Formula: $\quad \mathrm{F}_{\mathrm{CP}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
Calculation: From formula,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{CP}}
\end{aligned}=\frac{1500 \times(25)^{2}}{250}
$$

Ans: The centripetal force acting on the car is $\mathbf{3 7 5 0} \mathbf{N}$.
3. A racing car completes 5 rounds of a circular track in 2 minutes. Find the radius of the track if the car has uniform centripetal acceleration of $\pi^{2} \mathrm{~m} / \mathrm{s}^{2}$.
[Oct 13]

Solution:

Given: $\quad 5$ rounds $=2 \pi \mathrm{r}(5), \mathrm{t}=2$ minutes $=120 \mathrm{~s}$ To find: \quad Radius (r)

Page no. 11 to 168 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes

Multiple Choice Questions

1. In body centred cubic structure, the space occupied is about \qquad [Mar 13]
(A) 68%
(B) 53%
(C) 38%
(D) 32%
2. To prepare n-type semiconductor, the impurity to be added to silicon should have the following number of valence electrons:
[Mar 14]
(A) 2
(B) 3
(C) 4
(D) 5
3. The major binding force in diamond is \qquad
[Oct 14]
(A) covalent bond
(B) ionic bond
(C) metallic bond
(D) coordinate covalent bond
4. p-type semi-conductors are made by mixing silicon with impurities of \qquad . [Mar 15]
(A) germanium
(B) boron
(C) arsenic
(D) antimony
5. An ionic compound crystallises in FCC type structure with ' A ' ions at the centre of each face and ' B ' ions occupying corners of the cube. The formula of compound is \qquad .
[Mar 17]
(A) $\quad \mathrm{AB}_{4}$
(B) $\quad \mathrm{A}_{3} \mathrm{~B}$
(C) AB
(D) AB_{3}
6. Number of types of orthorhombic unit cell is
\qquad .
[July 18]
(B) 3
(C) 4
(A) 7
(D) 2
7. The number of atoms per unit cell of body centred cube is:
[Mar 20]
(A) 1
(B) 2
(C) 4
(D) 6
8. The co-ordination number of atoms in body centred cubic structure (bcc) is \qquad .
[Mar 22]
(A) 4
(B) 6
(C) 8
(D) 12
9. The CORRECT relation between edge length and radius of an atom in simple cubic lattice is
\qquad .
[July 22]
(A) $2 \mathrm{a}=\mathrm{r}$
(B) $\sqrt{3} \mathrm{a}=4 \mathrm{r}$
(C) $a=2 r$
(D) $\sqrt{2} a=4 r$
10. The relation between radius of sphere and edge length in body centered cubic lattice is given by formula:
[Mar 23]
(A) $\sqrt{3} \mathrm{r}=4 \mathrm{a}$
(B) $\mathrm{r}=\frac{\sqrt{3}}{\mathrm{a}} \times 4$
(C) $r=\frac{\sqrt{3}}{4} \mathrm{a}$
(D) $\mathrm{r}=\frac{\sqrt{2}}{4} \times \mathrm{a}$

Answers:

1. (D)
2.

(D)
3.
(A)
4. (B)
5. (B)
(C) 7
(B)
8. (C)
9.
(C)
10.
(C)

Solution:
5. As ' A ' ions are present at the face centres of the 6 faces of the cube, the number of ions of
' A ' in the unit cell $=\frac{1}{2} \times 6=3$
As ' B ' is present at the 8 corners of the cube, number of ions of B in the unit cell
$=\frac{1}{8} \times 8=1$
$\therefore \quad$ Ratio of atoms $\mathrm{A}: \mathrm{B}=3: 1$.
The formula of the compound is $\mathrm{A}_{3} \mathrm{~B}$.

Theory Questions

1.2 Types of solids

1. Distinguish between crystalline solids and amorphous solids.
[Mar 13, 14, 17, 19]
Ans:

	Crystalline solids	Amorphous solids
i.	The constituent particles are arranged in a regular and periodic manner.	The constituent particles are arranged randomly.
ii.	They have sharp and characteristic melting point.	They do not have sharp melting point. They gradually soften over a range of temperature.
iii.	They are anisotropic, i.e., have different physical properties in different direction.	They are isotropic, i.e., have same physical properties in all directions.
iv.	They have long range order.	They have only short range order.
e.g.	Ice, NaCl, etc.	Glass, rubber, plastics, etc.

1.3 Classification of crystalline solids

1. Classify the following molecular solids into different types:
i. HCl
ii. $\quad \mathrm{CO}_{2}$
iii. Solid ice
iv. $\quad \mathbf{S O}_{\mathbf{2}}$
[July 18]

Ans:

i. $\quad \mathrm{HCl}-$ Polar molecular solid
ii. $\quad \mathrm{CO}_{2}$ - Non-polar molecular solid
iii. Solid ice - Hydrogen bonded molecular solid
iv. SO_{2} - Polar molecular solid

Page no. 170 to 296 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes

01 Mathematical Logic

Multiple Choice Questions

1. If $\mathrm{A}=\{2,3,4,5,6\}$, then which of the following is not true?
[Oct 13]
(A) $\exists x \in$ A such that $x+3=8$
(B) $\exists x \in$ A such that $x+2<5$
(C) $\exists x \in$ A such that $x+2<9$
(D) $\quad \forall x \in$ A such that $x+6 \geq 9$
2. If $\mathrm{p} \wedge \mathrm{q}=\mathrm{F}, \mathrm{p} \rightarrow \mathrm{q}=\mathrm{F}$, then the truth values of p and q are:
[Oct 15]
(A) T, T
(B) T, F
(C) F, T
(D) F, F

OR

If $\mathrm{p} \wedge \mathrm{q}$ is $\mathrm{F}, \mathrm{p} \rightarrow \mathrm{q}$ is F then the truth values of p and q are \qquad respectively.
[Mar 23]
(A) T, T
(B) T, F
(C) F, T
(D) F, F
3. The negation of $p \wedge(q \rightarrow r)$ is
[Mar 16]
(A) $\mathrm{p} \vee(\sim \mathrm{q} \vee \mathrm{r})$
(B) $\sim p \wedge(q \rightarrow r)$
(C) $\sim \mathrm{p} \wedge(\sim \mathrm{q} \rightarrow \sim \mathrm{r})$
(D) $\sim p \vee(q \wedge \sim r)$
4. Inverse of th
statement
pattern $(p \vee q) \rightarrow(p \wedge q)$ is
[July 16]
(A) $\quad(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \vee \mathrm{q})$
(B) $\quad \sim(p \vee q) \rightarrow(p \wedge q)$
(C) $(\sim p \vee \sim q) \rightarrow(\sim p \wedge \sim q)$
(D) $\quad(\sim p \wedge \sim q) \rightarrow(\sim p \vee \sim q)$
5. The negation of $p \wedge(q \rightarrow r)$ is \qquad
[Mar 22]
(A) $\sim p \wedge(\sim q \rightarrow \sim r)$
(B) $\mathrm{p} \vee(\sim \mathrm{q} \vee \mathrm{r})$
(C) $\sim p \wedge(\sim q \rightarrow r)$
(D) $\mathrm{p} \rightarrow(\mathrm{q} \wedge \sim \mathrm{r})$
6. The negation of $(p \vee \sim q) \wedge r$ is \qquad .
[July 22]
(A) $(\sim p \wedge q) \wedge r$
(B) $\quad(\sim p \wedge q) \vee r$
(C) $(\sim p \wedge q) \vee \sim r$
(D) $\quad(\sim p \vee q) \wedge \sim r$

Answers:

1.

(D)
2
(B)
3. (D)
4. (D)
5.
(D)
6. (C)

Hints:

1. Consider option (D)

For $x=2 \in \mathrm{~A}$, we have $x+6=8<9$
i.e., $x=2$ does not satisfy the condition $x+6 \geq 9$
2. $\mathrm{p} \rightarrow \mathrm{q}=\mathrm{F} \Rightarrow \mathrm{p} \equiv \mathrm{T}$ and $\mathrm{q} \equiv \mathrm{F}$
3. $\sim[p \wedge(q \rightarrow r)]$
$\equiv \sim p \vee \sim(q \rightarrow r) \quad \ldots$ [De-Morgan's Law]
$\equiv \sim p \vee(q \wedge \sim r)$
...[Negation of implication]
4. Inverse of $(p \vee q) \rightarrow(p \wedge q)$ is
$\sim(p \vee q) \rightarrow \sim(p \wedge q)$

$$
\equiv(\sim p \wedge \sim q) \rightarrow(\sim p \vee \sim q)
$$

5. $\sim[\mathrm{p} \wedge(\mathrm{q} \rightarrow \mathrm{r})]$

$$
\equiv \sim \mathrm{p} \vee \sim(\mathrm{q} \rightarrow \mathrm{r})
$$

$$
\equiv \mathrm{p} \rightarrow[\sim(\mathrm{q} \rightarrow \mathrm{r})] \quad \ldots[\because \mathrm{p} \rightarrow \mathrm{q} \equiv \sim \mathrm{p} \vee \mathrm{q}]
$$

$$
\equiv \mathrm{p} \rightarrow[\sim(\sim \mathrm{q} \vee \mathrm{r})]
$$

$$
\equiv \mathrm{p} \rightarrow(\mathrm{q} \wedge \sim \mathrm{r})
$$

6. $\sim[(p \vee \sim q) \wedge r]$
$\equiv \sim(p \vee \sim q) \vee \sim r$
...[De Morgan's law]
$\equiv(\sim p \wedge q) \vee \sim r$
...[De Morgan's law]

Questions

Based on Exercise 1.1

1. Write down the following statements in symbolic form:
i. A triangle is equilateral if and only if it is equiangular.
ii. Price increases and demand falls.
[Mar 13]

Solution:

i. Let p : A triangle is equilateral
q : A triangle is equiangular
$\therefore \quad$ Symbolic form of the given statement is $\mathrm{p} \leftrightarrow \mathrm{q}$.
ii. Let p : Price increases
q : Demand falls
$\therefore \quad$ Symbolic form of the given statement is $\mathrm{p} \wedge \mathrm{q}$.
2. If p : It is a day time, q : It is warm, write the compound statements in verbal form denoted by-
i. $\quad \mathbf{p} \wedge \sim \mathbf{q} \quad$ ii. $\quad \sim \mathbf{p} \rightarrow \mathbf{q} \quad$ iii. $\quad \mathbf{q} \leftrightarrow \mathbf{p}$
[Oct 14]

Solution:

We have
p : It is day time
$\mathrm{q}:$ It is warm
$\therefore \quad \sim \mathrm{p}:$ It is not daytime
$\sim \mathrm{q}:$ It is not warm
$\therefore \quad$ Verbal forms of the given statements are
i. It is daytime but it is not warm.
ii. If it is not daytime, then it is warm.
iii. It is warm if and only if it is daytime.

Page no. 298 to 451 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes

Reproduction in Lower and Higher Plants

Multiple Choice Questions

1. The types of pollination exhibited by Vallisneria and Zea mays respectively are \qquad [Oct 08]
(A) Anemophily and Hydrophily
(B) Entomophily and Hydrophily
(C) Hydrophily and Anemophily
(D) Hydrophily and Entomophily
2. The endosperm cells in an angiospermic plant has 18 chromosomes, the number of chromosomes in its roots cells will be
[Mar 09]
(A) 12
(B) 6
(C) 18
(D) 24
3. In porogamy, the pollen tube enters into the ovule through \qquad [Mar 09]
(A) micropyle
(B) integument
(C) chalaza
(D) funicle
4. Egg apparatus consists of \qquad [Oct 09]
(A) egg and antipodals
(B) egg and polar nuclei
(C) egg and synergids
(D) egg and secondary nucleus
5. Synergids are \qquad [Mar 10]
(A) haploid
(B) triploid
(C) diploid
(D) tetraploid
6. How many meiotic divisions are required for the formation of 100 seeds?
[Oct 13]
(A) 25
(B) 50
(C) 100
(D) 125
7. During fertilization, male gametes are carried by pollen tube. This is called
[Oct 13]
(A) Syngamy
(B) Mesogamy
(C) Polygamy
(D) Siphonogamy
8. For formation of 50 seeds, how many minimum meiotic divisions are necessary?
[Mar 14]
(A) 25
(B) 50
(C) 75
(D) 63
9. In bisexual flowers, maturation of gynoecium before androecium is known as \qquad .
[Mar 14]
(A) protandry
(B) protogyny
(C) gynandry
(D) dicliny
10. If the number of chromosomes in an endosperm cell is 27 , what will be the chromosome number in the definitive nucleus?
[Mar 15]
(A) 9
(B) 18
(C)
27
(D) 36
11. Lever mechanism of pollination is observed in
\qquad .
[Mar 15]
(A) Salvia
(B) Jasmine
(C) Bougainvillea
(D) Butea
12. Vegetative propagation takes place with the help of leaves in \qquad plant.
[Oct 15]
(A) Kalanchoe
(B) Oxalis
(C) Cynodon
(D) Dahlia
13. How many meiotic divisions will be needed to produce 44 female gametophytes in angiosperms?
[Oct 15]
(A) 11
(B) 22
(C) 44
(D) 66
14. Endosperm of angiosperm is \qquad .
[July 16]
(A) haploid
(B) diploid
(C) triploid
(D) tetraploid
15. A versatile anther is an adaptation for type of pollination.
[July 18]
(A) anemophilous
(B) entomophilous
(C) hydrophilous
(D) ornithophilous
16. During double fertilization second male gamete fuses with \qquad .
[Mar 19]
(A) antipodal cell
(B) egg cell
(C) secondary nucleus
(D) synergids
17. How many meiotic and mitotic divisions are required for the formation of male gametophyte from pollen mother cell?
[Mar 20]
(A) 2 meiotic and 1 mitotic
(B) 1 meiotic and 1 mitotic
(C) 1 meiotic and 2 mitotic
(D) 2 meiotic and 2 mitotic
18. How many meiotic and mitotic divisions occur during the development of male gametophyte from the microspore mother cell?
[Mar 22]
(A) One meiotic and two mitotic
(B) Two meiotic only
(C) Two mitotic only
(D) One mitotic and one meiotic
19. How many mitotic divisions take place during the formation of a female gametophyte from a functional megaspore?
[Mar 23]
(A) One
(B) Two
(C) Three
(D) Four

Give your XII ${ }^{\text {th }}$ exam preparation the TECHNOLOGY BOOST!

Practice more than 4,500 MCQs for just ₹499/-

Use Coupon Code QUILLPADHAl2023

Also available for $\mathrm{X}^{\mathrm{th}}, \mathrm{XI}^{\mathrm{th}}$, MHT-CET, NEET \& JEE
 - Practice chapter-wise \& full syllabus MCQs in test format
 Quill - Get instant verification of your answer
 - Detailed analysis of every test on completion
 (1) Target notyminm Option to save questions for future reference

Visit our website to know more about our

 range of books for $\mathrm{X}^{\mathrm{th}}, \mathrm{XIT}^{\mathrm{t}}$, MHT-CET, NEET \& JEE
Visit Our Website

Tarset Publications ${ }^{\text {P }}$ Tvtt Ltd.

Address:

$2^{\text {nd }}$ floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400080
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org Email: mail@targetpublications.org

