CBSE

COMPETENCY

 Based Questions * MATHEMATICS*
1037 Practice Questions

CHAPTERWISE \& SUBTOPICWISE FOR SECTION A \& E

As per the latest circular and sample paper released by CBSE

TYPES OF QUESTIONS:

- Multiple Choice Questions
- Assertion Reason Questions
- Case/source Based Questions

CBSE COMPETENCY Based Questions

MATHEMATICS

(SECTION A \& E)

Class X

Salient Features

E Written as per the Latest Syllabus
$\infty \quad$ Includes '1037' Questions for practice
\Leftrightarrow Subtopic-wise segregation of questions for efficient practice
\leqslant Extensive coverage of Multiple Choice Questions, Assertion-Reason and Case/Source Based Questions
C Covers selective Textual Exercise Questions, Exemplar Questions and Previous years Board Questions
$\sigma \quad$ Quick Review of each chapter to facilitate quick revision
Contains detailed Solutions to difficult MCQs and Assertion \& Reason type of questions.
© Includes Selective Solved Questions from Previous Years' Board Papers updated upto year 2023
σ Includes selective solved questions from SQP (2022-23 and 2023-24), Practice Questions and Handbook (2022-23) released by CBSE 6 Self-Assessment Tests (Solutions can be accessed through QR code)

Printed at: Print to Print, Mumbai

[^0]Competency Based Assessment is recently adopted by CBSE from National Education Policy 2020 for Board Examination of Class X. Target's "CBSE Competency Based Questions Mathematics Class $\mathrm{X}^{\prime \prime}$ is a complete, thorough, critically analysed, and extensively drafted book to cater to Competency Based Assessment for sections A and E of the Question paper for the Board Examination.

Since Competency Focused Questions in the form of MCQs/Case Based Questions, Source-Based Integrated Questions, or any other type constitute $\mathbf{5 0 \%}$ (40 out of 80 marks) of the weightage of the question paper, we wanted to create a book that would specifically strengthen the competency of students for the two sections consisting of MCQs, Assertion-Reason, and Case/Source Based Questions.

This book aims to provide comprehensive and thorough preparation material of MCQs, AssertionReason and Case/Source Based Questions to excel in the exam.

The flow of subtopics within the chapter is purposely kept aligned with the latest NCERT textbook to foster a sense of familiarity in the students. Complete coverage of topics in this book would prove to be a strong source of foundational practise for the Board Examination.

The Subtopic-wise segregation for each chapter of this book helps the students practise questions smoothly and at their own pace.

Each chapter begins with Synopsis to offer crisp revision to students in efficient form of pointers, tables, charts, etc., followed by a Quick Review.

The question types Multiple Choice Questions, Assertion-Reason and Case/Source based Questions have been specially created and compiled keeping the following objectives in mind: to help students revise concepts as well as prepare them to solve complex questions that require strenuous effort and understanding of multiple-concepts. The assortment of questions also encompasses questions based on real life situations and application based questions and promotes higher order thinking in students.

To aid students, solutions are provided for questions wherever deemed necessary.
Self-Assessment Tests (solutions provided in PDF format via QR codes) placed at the end of the book allow students to gauge their preparedness for each chapter.

We hope that the book builds up the necessary knowledge and skillset in the students required to crack Multiple Choice Questions, Assertion-Reason and Case/Source based Questions and boosts their confidence required to succeed in the examination.

Publisher
Edition: Second

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org
A book affects eternity; one can never tell where its influence stops.

Disclaimer

[^1]No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

COURSE STRUCTURE 2023-24

Units	Unit Name	Marks
I	Number Systems	06
II	Algebra	20
III	Coordinate Geometry	06
IV	Geometry	15
V	Trigonometry	12
VI	Mensuration	10
VII	Statistics and Probability	11
	Total	$\mathbf{8 0}$

Unit I: Number Systems

1. Real Number
(15) Periods

Fundamental Theorem of Arithmetic - statements after reviewing work done earlier and after illustrating and motivating through examples, Proofs of irrationality of $\sqrt{2}, \sqrt{3}, \sqrt{5}$

Unit II: Algebra

1. Polynomials
(8) Periods

Zeros of a polynomial. Relationship between zeros and coefficients of quadratic polynomials.
2. Pair Of Linear Equations In Two Variables
(15) Periods

Pair of linear equations in two variables and graphical method of their solution, consistency/inconsistency. Algebraic conditions for number of solutions. Solution of a pair of linear equations in two variables algebraically - by substitution, by elimination. Simple situational problems.
3. Quadratic Equations
(15) Periods

Standard form of a quadratic equation $a x^{2}+b x+c=0,(a \neq 0)$. Solutions of quadratic equations (only real roots) by factorization, and by using quadratic formula. Relationship between discriminant and nature of roots. Situational problems based on quadratic equations related to day to day activities to be incorporated.
4. Arithmetic Progressions
(10) Periods

Motivation for studying Arithmetic Progression Derivation of the $n^{\text {th }}$ term and sum of the first n terms of A.P. and their application in solving daily life problems.

Unit III: Coordinate Geometry

Coordinate Geometry
(15) Periods

Review: Concepts of coordinate geometry, graphs of linear equations. Distance formula. Section formula (internal division).

Unit IV: Geometry

1. Triangles

(15) Periods

Definitions, examples, counter examples of similar triangles.
i. (Prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
ii. (Motivate) If a line divides two sides of a triangle in the same ratio, the line is parallel to the third side.
iii. (Motivate) If in two triangles, the corresponding angles are equal, their corresponding sides are proportional and the triangles are similar.
iv. (Motivate) If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar.
v. (Motivate) If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar.
2. Circles

Tangent to a circle at, point of contact
i. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
ii. (Prove) The lengths of tangents drawn from an external point to a circle are equal.

Unit V: Trigonometry

1. Introduction To Trigonometry
(10) Periods

Trigonometric ratios of an acute angle of a right-angled triangle. Proof of their existence (well defined); motivate the ratios whichever are defined at 0° and 90°. Values of the trigonometric ratios of $30^{\circ}, 45^{\circ}$ and 60°. Relationships between the ratios.
2. Trigonometric Identities
(15) Periods

Proof and applications of the identity $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$. Only simple identities to be given.
3. HEIGHTS AND DISTANCES: Angle Of Elevation, Angle Of Depression.
(10)Periods

Simple problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation / depression should be only $30^{\circ}, 45^{\circ}$, and 60°.

Unit VI: Mensuration

1. Areas Related To Circles
(12) Periods

Area of sectors and segments of a circle. Problems based on areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of $60^{\circ}, 90^{\circ}$ and 120° only.
2. Surface Areas And Volumes
(12) Periods

Surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones.

Unit VII: Statistics And Probability

1. Statistics
(18) Periods

Mean, median and mode of grouped data (bimodal situation to be avoided).
2. Probability
(10) Periods

Classical definition of probability. Simple problems on finding the probability of an event

MATHEMATICS-Standard

QUESTION PAPER DESIGN

CLASS - X (2023-24)
Time: 3 Hours
Max. Marks: 80

Sr. no.	Typology of Questions	Total Marks	Weightage (approx.)
1	Remembering: Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers. Understanding: Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating main ideas	43	
2	Applying: Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	19	54
3	Analysing : Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations Evaluating: Present and defend opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria. Creating: Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions	18	24
		22	

Intermal Assessment	$\mathbf{2 0}$ Marks
Pen Paper Test and Multiple Assessment $(5+5)$	10 Marks
Portfolio	05 Marks
Lab Practical (Lab activities to be done from the prescribed books)	05 Marks

MATHEMATICS-Basic
 QUESTION PAPER DESIGN

CLASS - X (2023-24)

Time: 3 Hours
Max. Marks: 80

Sr. no.	Typology of Questions	\%otal Marks	Weightage (approx.)
1	Remembering: Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers. Understanding: Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating main ideas	60	
2	Applying: Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	12	75
3	Analysing : Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations Evaluating: Present and defend opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria. Creating: Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions	8	15
		10	

Intermal Assessment	$\mathbf{2 0}$ Marks
Pen Paper Test and Multiple Assessment $(5+5)$	10 Marks
Portfolio	05 Marks
Lab Practical (Lab activities to be done from the prescribed books)	05 Marks

CONTENTS

Chapter No. Chapter Name	Page No.	
1	Real Numbers	1
2	Polynomials	10
3	Pair of Linear Equations in Two Variables	27
4	Quadratic Equations	41
5	Arithmetic Progressions	52
6	Triangles	70
7	Coordinate Geometry	88
8	Introduction to Trigonometry	109
9	Some Applications of Trigonometry	125
10	Circles	143
11	Areas Related to Circles	162
12	Surface Areas and Volumes	170
13	Statistics	189
14	Probability	218
	Self-Assessment Test : Multiple Choice Questions Test - 1	232
	Self-Assessment Test : Multiple Choice Questions Test - 2	234
	Self-Assessment Test : Assertion and Reason Test - 1	237
	Self-Assessment Test : Assertion and Reason Test - 2	239
	Self-Assessment Test : Case/Source Based Questions Test - 1	240
	Self-Assessment Test : Case/Source Based Questions Test - 2	243

Note: 1. * mark represents Textual question.
2. Ho mark represents NCERT Exemplar question.

Don't lose out on marks in grammar and vocabulary. Practice more and score full with Target's English Grammar \& Writing Skills CBSE Class X. Scan the adjacent QR Code to know more.

The path to victory: Prepare for your Board exams with Target's CBSE Mathematics Class X. Scan the adjacent QR Code to know more.

Content and Concepts

1.1 The Fundamental Theorem of Arithmetic
1.2 Revisiting Irrational Numbers

Synopsis

1.1 The Fundamental Theorem of Arithmetic

Theorem 1.1:

Every composite number can be expressed (factorised) as a product of primes and this factorisation is unique, apart from the order in which the prime factors occur.
This fundamental theorem of arithmetic helps us to find HCF and LCM of the numbers.
This method is also called the prime factorisation method.

Example:

Consider a composite number 2352.

$\Rightarrow \quad$ Prime factorization of 2352 is

$$
\begin{aligned}
2352 & =2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7 \\
& =2^{4} \times 3 \times 7^{2}
\end{aligned}
$$

HCF and LCM:

$\mathrm{HCF}=$ Product of the smallest power of each common prime factor in the numbers.
LCM $=$ Product of the greatest power of each prime factor in the numbers.

Relation between HCF and LCM of any two positive integers:
For any two positive integers a and b, $\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b$

Things to Remember

* HCF of two numbers is always a factor of their LCM.
* LCM is always a multiple of HCF.
$\operatorname{HCF}(p, q, r) \times \operatorname{LCM}(p, q, r) \neq p \times q \times r$, where p, q, r are positive integers. However, the following results hold good for three

$$
\text { numbers } p, q \text { and } r:
$$

$\operatorname{LCM}(p, q, r)$
$=\frac{p \cdot q \cdot r \cdot \operatorname{HCF}(p, q, r)}{\operatorname{HCF}(p, q) \cdot \operatorname{HCF}(q, r) \cdot \operatorname{HCF}(p, r)}$
$\operatorname{HCF}(p, q, r)$
$=\frac{p \cdot q \cdot r \cdot \operatorname{LCM}(p, q, r)}{\operatorname{LCM}(p, q) \cdot \operatorname{LCM}(q, r) \cdot \operatorname{LCM}(p, r)}$

1.2 Revisiting Irrational Numbers

Rational Number:

A number r is called a rational number, if it can be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Examples:

$-1,0, \frac{2}{3}, \frac{3}{5}, 1$, etc are rational numbers.

Irrational Number:

A number s is called a irrational number, if it cannot be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Examples:

$\sqrt{3}, \sqrt{5}, 2+\sqrt{8}, \pi,-\sqrt{3},-\sqrt{5}$ etc. are irrational numbers.

Theorem 1.2:

Let p be a prime number. If p divides a^{2}, then p divides a, where a is a positive integer.

Example:

Let prime number p be 5 and $a=15$
$\Rightarrow a^{2}=225$

Here, p divides a^{2} i.e., $\frac{a^{2}}{p}=\frac{225}{5}=45$
$\Rightarrow p$ divides a i.e., $\frac{a}{p}=\frac{15}{5}=3$

Quick Review

Real Numbers

Competency Based Questions

1.1 The Fundamental Theorem of Arithmetic

Multiple Choice Questions

1. 225 can be expressed as [CBSE (Basic) 2020]
(A) 5×3^{2}
(B) $5^{2} \times 3$
(C) $5^{2} \times 3^{2}$
(D) $5^{3} \times 3$
2. If prime factorization of 7560 is expressible as $2^{3} \times 3^{p} \times q \times 7$, then the values of p and q are respectively \qquad and \qquad .
(A) 2,3
(B) 5,3
(C) 3,5
(D) 5,2
3. Least prime factor of m is 17 and least prime factor of n is 11 , then the least prime factor of $\mathrm{m}+\mathrm{n}=$ \qquad -.
(A) 2
(B) 5
(C) 143
(D) Cannot be determined
4. HCF of 144 and 198 is [CBSE(Basic) 2020]
(A) 9
(B) 18
(C) 6
(D) 12
5. $\quad \sqrt{n}$ is a natural number such that $n>1$. Which of these can DEFINITELY be expressed as a product of primes?
[CBSE Competency Focused Practice
Questions 2022-23]
i. $\quad \sqrt{n}$
ii. n
iii. $\frac{\sqrt{n}}{2}$
(A) only (ii)
(B) only (i) and (ii)
(C) all (i), (ii) and (iii)
(D) cannot be determined without knowing n
6. The HCF and the LCM of 12, 21, 15 respectively are [CBSE (Standard) 2020]
(A) 3,140
(B) 12,420
(C) 3,420
(D) 420,3
\&7. If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3} ; x, y$ are prime numbers, then $\operatorname{HCF}(a, b)$ is
(A) $x y$
(B) $x y^{2}$
(C) $x^{3} y^{3}$
(D) $x^{2} y^{2}$
7. If two positive integers p and q can be expressed as $p=a b^{2}$ and $q=a^{3} b ; a, b$ being prime numbers, then $\operatorname{LCM}(p, q)$ is
(A) $a b$
(B) $a^{2} b^{2}$
(C) $a^{3} b^{2}$
(D) $a^{3} b^{3}$
8. LCM of $2^{3} \times 3^{2}$ and $2^{2} \times 3^{3}$ is [CBSE 2012]
(A) 2^{3}
(B) 3^{3}
(C) $2^{3} \times 3^{3}$
(D) $2^{2} \times 3^{2}$
9. The total number of factors of a prime number is
[CBSE (Standard) 2020]
(A) 1
(B) 0
(C) 2
(D) 3
10. If ' n ' is a natural number, then which of the following numbers end with zero?
[CBSE (Standard) 2023]
(A) $(3 \times 2)^{\mathrm{n}}$
(B) $(2 \times 5)^{\mathrm{n}}$
(C) $(6 \times 2)^{\mathrm{n}}$
(D) $(5 \times 3)^{\mathrm{n}}$
11. Find the product of HCF and LCM for the numbers 45 and 105.
(A) 4275
(B) 4725
(C) 4525
(D) 4755
12. If the product of two numbers is 3240 and their LCM is 360 , find their HCF
(A) 6
(B) 5
(C) 10
(D) 9
13. Given that $\operatorname{LCM}(91,26)=182$, then $\operatorname{HCF}(91,26)$ is
[CBSE 2011]
(A) 13
(B) 26
(C) 7
(D) 9
14. Two positive numbers have their HCF as 12 and their product as 6336. The number of pairs possible for the numbers is:
[CBSE 2021-22]
(A) 2
(B) 3
(C) 4
(D) 1
15. If the HCF of 65 and 117 is expressible in the form $65 m-117$, then the value of m is
(A) 4
(B) 2
(C) 1
(D) 3
16. If the HCF of 55 and 99 is expressible in the form $55 m-99$, then the value of m is
[CBSE 2011]
(A) 4
(B) 2
(C) 1
(D) 3
17. If the HCF of 567 and 693 is expressible in the form $567 x+693 \times(-4)$, find x.
(A) 4
(B) 2
(C) 5
(D) 3
18. The values of x and y in the given figure are

(A) $x=10 ; y=14$
(B) $x=21 ; y=84$
(C) $x=21 ; y=25$
(D) $x=10 ; y=40$
19. For any natural number $n, 8^{n}$ does not end with which of the following digits?
(A) 6
(B) 4
(C) 2
(D) 5
20. Express $5 \times 11 \times 13+13$ as a product of primes.
(A) $2^{3} \times 7 \times 13$
(B) $3^{2} \times 7 \times 13$
(C) $2^{3} \times 5 \times 13$
(D) $5 \times 11 \times 13$
21. Let p be a prime number and k be a positive integer. If p divides k^{2}, then which of these is DEFINITELY divisible by p ?

$\frac{k}{2}$	k	$7 k$	k^{3}

[CBSE Competency Focused Practice Questions 2022-23]
(A) only k
(B) only k and $7 k$
(C) only $k, 7 k$ and k^{3}
(D) all $\frac{k}{2}, k, 7 k$ and k^{3}
\&23. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(A) 10
(B) 100
(C) 504
(D) 2520
24. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 24 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point?
(A) 48
(B) 54
(C) 72
(D) 36
25. Three bells toll at intervals of $12,15,18$ minutes respectively. If they start tolling together, after how many minutes they next toll together?
(A) 60
(B) 180
(C) 90
(D) 108
26. Find the smallest number which when increased by 11 is exactly divisible by both 198 and 486.
(A) 10681
(B) 5335
(C) 5346
(D) 16027
27. For a morning walk, three persons steps off together. Their steps measure $80 \mathrm{~cm}, 85 \mathrm{~cm}$ and 90 cm respectively. What is the minimum distance each should walk to show that they can cover the distance in complete steps?
(A) 12325 cm
(B) 12330 cm
(C) 12240 cm
(D) 12320 cm
28. Find the smallest number which leaves remainders 18 when divided by 27 and 33 .
(A) 297
(B) 279
(C) 315
(D) 612
29. Find the greatest 5 digits number exactly divisible by 20,18 and 28 .
(A) 99540
(B) 98280
(C) 97020
(D) 99560
30. Find the smallest 6 digits number exactly divisible by 20, 18 and 28.
(A) 102060
(B) 100800
(C) 100080
(D) 100818
31. Find the greatest 4 digits number which leaves remainder 12 when divided by 105,175 and 70 .
(A) 9987
(B) 9462
(C) 9998
(D) 9963
32. Find the smallest 5 digits number which leaves remainder 12 when divided by 105,175 and 70 .
(A) 10500
(B) 11562
(C) 10512
(D) 11550
\&33. The largest number which divides 70 and 125 , leaving remainders 5 and 8 , respectively, is
(A) 13
(B) 65
(C) 875
(D) 1750
34. A school library has 280 science journals and 300 maths journals. Students were told to stack these journals in such a way that each stack contains equal number of journals. Then the numbers of stacks of science and maths journals respectively are \qquad -
(A) 14 and 15
(B) 15 and 14
(C) 28 and 20
(D) 20 and 28
35. Find the maximum number of students among whom 2002 books and 1040 notebooks can be distributed in such a way that each student gets the same number of books and the same number of notebooks.
(A) 39
(B) 13
(C) 26
(D) 52
36. Find the least number of square tiles required to cover the floor of 630 m long and 531 m broad.
(A) 9
(B) 4130
(C) 81
(D) 2360
37. Let a and b be two positive integers such that $a=p^{3} q^{4}$ and $b=p^{2} q^{3}$, where p and q are prime numbers. If $\operatorname{HCF}(a, b)=p^{m} q^{n}$ and $\operatorname{LCM}(a, b)=p^{r} q^{s}$, then $(m+n)(r+s)=$
[CBSE SQP (Standard) 2022-23]
(A) 15
(B) 30
(C) 35
(D) 72

Assertion \& Reason

For question numbers 38 to 40, two statements are given - one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
38. Assertion (A) : If two numbers have 18 as their HCF, then 380 can't be their LCM.
Reason (R) : LCM $\times \mathrm{HCF}=$ Product of two numbers
39. Assertion (A) : Prime factorisation of 7650 is $2 \times 3 \times 5^{2} \times 17$.
Reason (R) : Prime factorisation of 6006 is $2 \times 3 \times 7 \times 11 \times 13$.
40. Assertion (A) : If product of two numbers is 5780 and their HCF is 17 , then their LCM is 340
Reason (R): HCF is always a factor of LCM
[CBSE SQP (Standard) 2022-23]

Case / Source Based Questions

41. To enhance the reading skills of grade V students, the school nominates you and two of your friends to set up a class library. There are two sections- section A and section B of grade V. There are 48 students in section A and 54 students in section B.

i.. Write 54 as a product of its primes.
ii. What is the minimum number of books you will acquire for the class library, so that they can be distributed equally among students of Section A or Section B?

OR

ii. After reading activity, students are supposed to submit the books at library counters in their respective sections. On each counter same number at students are to be attended. Find the maximum number of students that can be attended on each counter.
iii. $2 \times 3 \times 5 \times 7 \times 11+11$ is a
(A) Prime number
(B) Composite number
(C) Neither prime nor composite
(D) None of the above
42. A seminar is being conducted by an Educational Organization, where the participants will be educators of different subjects. The number of participants in Hindi, English and Mathematics are 65,91 and 117 respectively.

i. In each room, the same number of participants are to be seated and all of them being in the same subject, hence find the maximum number participants that can accommodated in each room.
ii. What is the minimum number of rooms required during the event?

OR

ii. The LCM of 65,91 and 117 is
iii. The product of HCF and LCM of 65,91 and 117 is
(A) 692055
(B) 35360
(C) 45500
(D) 53235

1.2 Revisiting Irrational Numbers

Multiple Choice Questions

1. Sum of the two rational numbers is
(A) always irrational.
(B) always rational.
(C) either rational or irrational.
(D) always non-zero.
2. The sum of two irrational numbers is
(A) always irrational.
(B) always rational.
(C) either rational or irrational.
(D) always non-zero.
3. The sum of a rational and an irrational numbers
(A) is always irrational.
(B) is always rational.
(C) is either rational or irrational.
(D) is always positive.
4. The product of a nonzero rational and an irrational number is
(A) always irrational.
(B) always rational.
(C) rational or irrational.
(D) one.
5. The reciprocal of an irrational number is
[CBSE 2012]
(A) an integer
(B) a rational
(C) a natural number
(D) an irrational
6. The product of two irrational numbers is
[CBSE 2012]
(A) always a rational.
(B) always an irrational.
(C) one.
(D) always a non-zero number.
7. $\pi-\frac{22}{7}$ is
[CBSE 2012]
(A) a rational number.
(B) an irrational number.
(C) a prime number.
(D) an even number.
8. Two representations of real numbers are shown below.

Which one is correct?
(A) Representation 1
(B) Representation 2
(C) Both
(D) None
9. Find the smallest natural number which divides 2205 to make its square root a rational number.
(A) 3
(B) 5
(C) 9
(D) 15

Assertion \& Reason

For question numbers 10 to 11, two statements are given - one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes $(A),(B),(C)$ and (D) as given below:
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
10. Assertion (A) : $\frac{1}{\sqrt{2}}$ is a rational number.

Reason (R) : The reciprocal of an irrational number is an irrational.
11. Assertion (A) : $\sqrt{3}$ is an irrational number.

Reason (R): Square root of a prime number is rational.

Answer key and Solutions

1.1 The Fundamental Theorem of Arithmetic

1. (C)

$$
225=3 \times 3 \times 5 \times 5=5^{2} \times 3^{2}
$$

2. (C)
$7560=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 7$

$$
=2^{3} \times 3^{3} \times 5 \times 7
$$

$\Rightarrow \quad p=3$ and $q=5$
3. (A)

17 and 11 are the least prime factors of m and n respectively.
i.e., 2 is not the prime factor of both the numbers.
$\Rightarrow \mathrm{m}$ and n are odd numbers.
$\Rightarrow \mathrm{m}+\mathrm{n}$ is an even number.
$\Rightarrow 2$ is the least prime factor of $m+n$.
4. (B)
$144=2^{4} \times 3^{2}$
$198=2 \times 3^{2} \times 11$
$\operatorname{HCF}(26,91)=2 \times 3^{2}=18$
5. (B)

Given that \sqrt{n} is a natural number.
$\Rightarrow \sqrt{n}$ can be expressed as a product of primes.
$\Rightarrow(\mathrm{i})$ is true.
Also, n is a perfect square.
$\Rightarrow n$ also can be expressed as a product of prime numbers.
\Rightarrow (ii) is true.
If \sqrt{n} is an odd number then $\frac{\sqrt{n}}{2}$ cannot be express as a product of primes.
\Rightarrow (iii) is not always true.
6. (C)
$12=2^{2} \times 3$
$21=3 \times 7$
$15=3 \times 5$
$\operatorname{HCF}(12,21,15)=3$
$\operatorname{LCM}(12,21,15)=2^{2} \times 3 \times 5 \times 7=420$
7. (B)
8. (C)
9. (C)
10. (C)
11. (B)
12. (B)
$\mathrm{HCF} \times \mathrm{LCM}=$ product of two numbers
$\Rightarrow \quad \mathrm{HCF} \times \mathrm{LCM}=45 \times 105$
$=4725$
13. (D)
$\mathrm{HCF} \times \mathrm{LCM}=$ product of two numbers
$\Rightarrow \mathrm{HCF} \times 360=3240$
$\Rightarrow \mathrm{HCF}=\frac{3240}{360}=9$
14. (A)

We know that LCM \times HCF $=$ Product of two numbers
$\therefore \quad 182 \times \mathrm{HCF}=91 \times 26$
$\therefore \quad 7 \times \mathrm{HCF}=91$
$\therefore \quad \mathrm{HCF}=13$
15. (A)

Product $=6336, \mathrm{HCF}=12$
Let the numbers be $12 x$ and $12 y$, where x and y are co-primes.
Product $=6336$
$\Rightarrow(12 x)(12 y)=6336$
$\Rightarrow x y=\frac{6336}{12 \times 12}=44$
As x and y are co-primes,
Possible pairs are $(1,44)$ and $(4,11)$
16. (B)
$65=5 \times 13$
$117=3^{2} \times 13$
$\operatorname{HCF}(65,117)=13$
$\therefore \quad 13=65 m-117$
$\therefore \quad 65 \mathrm{~m}=130$
$\therefore \quad \mathrm{m}=2$
17. (B)
$55=5 \times 11$
$99=3^{2} \times 11$
$\operatorname{HCF}(55,99)=11$
$\therefore \quad 11=55 m-99$
$\therefore \quad 55 \mathrm{~m}=110$
$\therefore \quad \mathrm{m}=2$
18. (C)
$567=3^{4} \times 7$
$693=3^{2} \times 7 \times 11$
$\operatorname{HCF}(567,693)=3^{2} \times 7=63$
$\therefore \quad 63=567 x+693 \times(-4)$
$\therefore \quad 567 x=2835$
$\therefore \quad x=5$
19. (B)

$\therefore \quad y=4 \times 21=84$
20. (D)

If the number 8^{n}, for any natural number n, ends with the digit five, then it is divisible by 5 . That is, the prime factorization of 8^{n} contains the prime 5. This is not possible because prime factorisation of $8^{n}=\left(2^{3}\right)^{n}=2^{3 n}$; so the only prime in the factorisation of 8^{n} is 2 and the uniqueness of the fundamental theorem of arithmetic guarantees that there are no other primes in the factorization of 8^{n}.
So, there is no natural number n for which 8^{n} ends with the digit five.
21. (A)

$$
\begin{aligned}
5 \times 11 \times 13+13 & =(5 \times 11+1) \times 13 \\
& =(55+1) \times 13=56 \times 13 \\
& =(2 \times 2 \times 2 \times 7) \times 13 \\
& =2^{3} \times 7 \times 13
\end{aligned}
$$

22. (C)

Given that k^{2} is divisible by prime number p
$\Rightarrow k^{2}=p \times n$
\ldots [where n is some positive integer]
$\Rightarrow k \times k=p \times n$
$\Rightarrow k=p \times \frac{n}{k}$
$\Rightarrow k=p \times m$
$\ldots\left[\begin{array}{l}\text { where } m=\frac{n}{k} \text { and } \mathrm{m} \text { is a positive integer, } \\ \text { as } p \text { is a prime number } \Rightarrow \mathrm{k} \text { is the factor of } \mathrm{n}\end{array}\right]$
$\Rightarrow k, 7 k$ and k^{3} are divisible by p.
23. (D)

Method I

Note that option (A) and (B) are not divisible by 3 and option (C) is not divisible by 5.
Whether option (D) is divisible by all numbers from 1 to 10 .

Method II

$1=1$
$2=2$
$3=3$
$4=2^{2}$
$5=5$
$6=2 \times 3$
$7=7$
$8=2^{3}$
$9=3^{2}$
$10=2 \times 5$
$\therefore \quad$ L.C.M. $=2^{3} \times 3^{2} \times 5 \times 7=2520$
24. (C)
$18=2 \times 3 \times 3=2 \times 3^{2}$
$24=2 \times 2 \times 2 \times 3=2^{3} \times 3$
$\therefore \quad$ Required time $=\operatorname{LCM}(18,24)=2^{3} \times 3^{2}=72$
$\Rightarrow \quad$ Sonia and Ravi will meet again at the starting point after 72 minutes.
25. (B)
$12=2 \times 2 \times 3=2^{2} \times 3$
$15=3 \times 5$
$18=2 \times 3^{2}$
$\therefore \quad$ Required time $=\operatorname{LCM}(9,12,15)$

$$
=2^{2} \times 3^{2} \times 5=180
$$

\Rightarrow The bells toll together after 180 minutes.
26. (B)

We first find the smallest number divisible by
both 198 and 486, i.e., $\operatorname{LCM}(198,486)$.
$198=2 \times 3^{2} \times 11$
$486=2 \times 3^{5}$
$\therefore \quad \operatorname{LCM}(198,486)=2 \times 3^{5} \times 11=5346$
$\therefore \quad$ Required number $=5346-11=5335$
27. (C)
$80=2 \times 2 \times 2 \times 2 \times 5=2^{4} \times 5$
$85=5 \times 17$
$90=2 \times 3 \times 3 \times 5=2 \times 3^{2} \times 5$
$\therefore \quad$ Required distance $=\operatorname{LCM}(80,85,90)$

$$
=2^{4} \times 3^{2} \times 5 \times 17=12240
$$

\Rightarrow Each person should walk a minimum distance of 12240 cm in complete steps.
28. (C)

We first find the smallest number divisible by both 27 and 33, i.e., $\operatorname{LCM}(27,33)$.
$27=3^{3}$
$33=3 \times 11$
$\therefore \quad$ L.C.M $(27,33)=3^{3} \times 11=297$
$\therefore \quad$ Required number $=297+18=315$
29. (A)

We first find the smallest number divisible by 20,18 and 28, i.e., $\operatorname{LCM}(20,18$ and 28).
$20=2^{2} \times 5$
$18=2 \times 3^{2}$
$28=2^{2} \times 7$
$\operatorname{LCM}(20,18$ and 28$)=2^{2} \times 3^{2} \times 5 \times 7=1260$
99999 is the greatest 5 digit number.
Note that $99999=1260 \times 79+459$
i.e., $1260 \times 79=99540$ (5 digit number)
and $1260 \times 80=100800$ (6 digit number)
$\therefore \quad 99540$ is the greatest 5 digits number which is exactly divisible by 20,18 and 28 .
30. (B)

We first find the smallest number divisible by 20,18 and 28, i.e., $\operatorname{LCM}(20,18$ and 28).
$20=2^{2} \times 5$
$18=2 \times 3^{2}$
$28=2^{2} \times 7$
$\operatorname{LCM}(20,18$ and 28$)=2^{2} \times 3^{2} \times 5 \times 7=1260$
99999 is the greatest 5 digit number.
Note that $99999=1260 \times 79+459$
i.e., $1260 \times 79=99540$ (5 digit number)
and $1260 \times 80=100800$ (6 digit number)
$\therefore \quad 100800$ is the smallest 6 digits number which is exactly divisible by 20,18 and 28 .
31. (B)

We first find the smallest number divisible by 105,175 and 70 , i.e., $\operatorname{LCM}(105,175$ and 70$)$.
$105=3 \times 5 \times 7$
$175=5^{2} \times 7$
$70=2 \times 5 \times 7$
$\operatorname{LCM}(105,175$ and 70$)=2 \times 3 \times 5^{2} \times 7=1050$
9999 is the greatest 4 digit number.
Note that $9999=1050 \times 9+549$
i.e., $1050 \times 9=9450$ (4 digit number)
and $1050 \times 10=10500$ (5 digit number)
$\therefore \quad 9450$ is the greatest 4 digits number which is exactly divisible by 105,175 and 70 .
$\therefore \quad$ Required number $=9450+12=9462$
32. (C)

We first find the smallest number divisible by 105, 175 and 70, i.e., LCM (105, 175 and 70). $105=3 \times 5 \times 7$
$175=5^{2} \times 7$
$70=2 \times 5 \times 7$
$\operatorname{LCM}(105,175$ and 70$)=2 \times 3 \times 5^{2} \times 7=1050$ 9999 is the greatest 4 digit number.
Note that $9999=1050 \times 9+549$
i.e., $1050 \times 9=9450$ (4 digit number)
and $1050 \times 10=10500$ (5 digit number)
$\therefore \quad 10500$ is the smallest 5 digits number which is exactly divisible by 105,175 and 70 .
$\therefore \quad$ Required number $=10500+12=10512$
33. (A)
$70-5=65$
$125-8=117$
Note that: Required number $=\operatorname{HCF}(65,117)$
$65=5 \times 13$
$117=3^{2} \times 13$
$\therefore \quad$ Required number $=\operatorname{HCF}(65,117)=13$
34. (A)

Each stack contains equal number of journals.
\Rightarrow Number of journals in each stack

$$
=\operatorname{HCF}(280,300)
$$

$280=2 \times 2 \times 2 \times 5 \times 7=2^{3} \times 5 \times 7$
$300=2 \times 2 \times 5 \times 5 \times 3=2^{2} \times 5^{2} \times 3$
$\Rightarrow \operatorname{HCF}(280,300)=2^{2} \times 5=20$
\Rightarrow Number of stacks of science journals $=\frac{280}{20}=14$
Number of stacks of maths journals $=\frac{300}{20}=15$
35. (C)

$$
\begin{aligned}
& 2002=2 \times 7 \times 11 \times 13 \\
& 1040=2^{4} \times 5 \times 13
\end{aligned}
$$

Required number of students
$=\operatorname{HCF}(2003,1040)$
$=2 \times 13=26$
36. (B)
$630=2 \times 3^{2} \times 5 \times 7$
$531=3^{2} \times 59$
Largest possible length of the side of the square tile $=\operatorname{HCF}(630,531)=3^{2}=9 \mathrm{~m}$
$\therefore \quad$ Maximum size of a tile $=9 \times 9$
Size of the floor $=630 \times 531$
$\therefore \quad$ Required number of tiles $=\frac{630 \times 531}{9 \times 9}$

$$
=4130
$$

37. (C)
$\operatorname{HCF}(a, b)=p^{2} q^{3}$
$\Rightarrow p^{m} q^{n}=p^{2} q^{3}$
$\Rightarrow m=2, n=3$ and
$\underset{r}{\operatorname{LCM}}(a, b)=p^{3} p^{4}$
$\Rightarrow p^{r} q^{s}=p^{3} q^{4}$
$\Rightarrow r=3, s=4$
$\therefore \quad(m+n)(r+s)=(2+3)(3+4)$

$$
=5 \times 7=35
$$

38. (B)

HCF of two numbers is always a factor of their
LCM.
18 is not a factor of 380 .
380 can't be their LCM.
39. (D)

Prime factorisation of 7650 is $2 \times 3^{2} \times 5^{2} \times 17$
Prime factorisation of 6006 is $2 \times 3 \times 7 \times 11 \times 13$
40. (B)

Product of the two numbers $=\mathrm{LCM} \times \mathrm{HCF}$
$\therefore \quad 5780=17 \times \mathrm{LCM}$
$\therefore \quad \mathrm{LCM}=\frac{5780}{17}$

$$
=340
$$

41.

i. $\quad 54=2 \times 3 \times 3 \times 3=2 \times 3^{3}$
ii. $\quad 48=2 \times 2 \times 2 \times 2 \times 3=2^{4} \times 3$
$54=2 \times 3 \times 3 \times 3=2 \times 3^{3}$
$\therefore \quad$ Required number of books $=\operatorname{LCM}(48,54)$

$$
=2^{4} \times 3^{3}=432
$$

$\therefore \quad$ Minimum 432 books are to be acquired for the class library.

> OR
ii. $\quad 48=2^{4} \times 3$
$54=2 \times 3^{3}$
Maximum number of students that can be attended on each counter $=\operatorname{HCF}(48,54)$

$$
=2 \times 3=6
$$

$\therefore \quad$ Maximum 6 students can be attended on each counter.
iii. (B)
$2 \times 3 \times 5 \times 7 \times 11+11$
$=(2 \times 3 \times 5 \times 7 \times 1+1) \times 11$
$=(210+1) \times 11$
$=211 \times 11$
It is a composite number.
42.
i. $\quad 65=5 \times 13$
$91=7 \times 13$
$117=3^{2} \times 13$
Maximum number participants that can accommodated in each room
$=\operatorname{HCF}(65,91,117)$
$=13$
ii. Total number of participants $=65+91+117$

$$
=273
$$

If maximum number participants that can accommodated in each room are 13, then minimum number of rooms required $=\frac{273}{13}=21$

OR

ii. $\quad \operatorname{LCM}(65,91,117)=3^{2} \times 5 \times 7 \times 13=4095$
iii. (D)
$\operatorname{HCF}(65,91,117)=13$
$\operatorname{LCM}(65,91,117)=4095$
Required product $=53235$

1.2 Revisiting Irrational Numbers

1. (B)
2. (C)

Note that $\sqrt{2}$ is an irrational number.
So, $-\sqrt{2}$ is also an irrational number.
But $\sqrt{2}+\sqrt{2}=2 \sqrt{2}$, an irrational number.
And $\sqrt{2}-\sqrt{2}=0$, a rational number.
3. (A)
4. (A)
5. (D)
6. (D)
7. (B)

Note that the sum of a rational and an irrational numbers is an irrational number.
As π is an irrational number and $-\frac{22}{7}$ is a rational number, their sum is an irrational number.
8. (A)
9. (B)

Note that: Square root of a number which is not a perfect square is always irrational.

$$
\begin{aligned}
2205 & =441 \times 5 \\
& =3^{2} \times 5 \times 7^{2}
\end{aligned}
$$

In order to make 2205 a perfect square we need to divide by 5 .
$\frac{2205}{5}=441$, which is a perfect square.
$\Rightarrow \quad$ The smallest natural number which divides 2205 to make its square root a rational number is 5 .
10. (D)

We know that $\sqrt{2}$ is an irrational number and the reciprocal of an irrational number is an irrational.
$\therefore \quad \frac{1}{\sqrt{2}}$ is an irrational number.
11. (C)

Let p be a prime number.
Let us assume that \sqrt{p} is rational.
So, we can find coprime integers a and $b(b \neq 0)$
such that $\sqrt{p}=\frac{a}{b}$
$\Rightarrow \sqrt{p} b=a$
$\Rightarrow p b^{2}=a^{2}$
...(i) [Squaring both the sides]
$\Rightarrow a^{2}$ is divisible by p
$\Rightarrow a$ is divisible by p
So, we can write $a=p c$ for some integer c.
$\Rightarrow a^{2}=p^{2} c^{2} \quad \ldots$ [Squaring both the sides]
$\Rightarrow p b^{2}=p^{2} c^{2} \quad \ldots[$ From (i)]
$\Rightarrow b^{2}=p c^{2}$
$\Rightarrow b^{2}$ is divisible by p
$\Rightarrow b$ is divisible by p
$\Rightarrow p$ divides both a and b.
$\Rightarrow a$ and b have at least p as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction arises because we have assumed that \sqrt{p} is rational.
$\Rightarrow \quad \sqrt{p}$ is irrational.
i.e., square root of a prime number is irrational.
$\therefore \quad \sqrt{3}$ is an irrational number, as 3 is a prime.

AVAILABLE BODKS FIR BLASS X:

CBSE NDTES

NGERT TEXTBDOK \& EXEMPLAR

CBSE RIMPETENCY BASED RUESTINNS

Scan the QR code to buy e-book version of Target's The Padhai App

Visit Our Website

Q Publications ${ }^{\circledR}$ Pvt. Ltd.
 Transforming lives through learning.

piass

Explore our range of STATIONERY

Address:

$2^{\text {nd }}$ floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400080
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org

Email: mail@targetpublications.org

[^0]: © Target Publications Pvt. Ltd.
 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

[^1]: This reference book is transformative work based on Mathematics Textbook for class X, Rationalised 2023-24 published by the National Council of Educational Research and Training (NCERT) and NCERT Exemplar: 2018 published by the National Council of Educational Research and Training (NCERT). We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the National Council of Educational Research and Training (NCERT). Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.

