

NEAT-UG $=$

PHYSICS TEST SERIES

With Answer Key \& Solutions

 2250 mces
30 Topic Tests

10 Revision Tests

- 5 Model Test Papers

Tarfet Publications ${ }^{\oplus}$ Pvt. Ltd.

NEET (UG)

With Answer Key \& Solutions

Salient Features:

- Includes ' 2250 ' MCQs for practice in the form of Topic Test, Revision Test and Model Test Papers as per latest paper pattern.
- Contains 30 Topic Tests and 10 Revision Tests cover MCQs from multiple different topics for efficient practice of MCQs.
- 5 Model Test Papers at the end for self-evaluation.
- Answers are provided to all the questions and Solutions are provided for difficult questions

Printed at: India Printing Works, Mumbai

[^0]Target's 'NEET (UG) Physics Test Series' is a complete practice book, extremely handy for the preparation of NEET (UG) examinations. This book would act as a go-to tool for preparation and practice at the same time.
The core objective of the book is to help students gauge their preparedness to appear for NEET (UG) Examination, as it includes a beautiful assortment of MCQ's in the form of Topic Tests and Revision Tests along with Model Test Papers as per latest paper pattern. Topic Tests are provided for powerful concept building.

Revision Tests develop confidence in the students, as it includes MCQs from three different topics. Model Test Papers would help students analyse their strengths and area of improvement to yield better results.

All Test Papers in this book have been created in line with the examination pattern and touches upon all the conceptual nodes of the subject.

We have provided answers to all the questions along with detailed solutions for difficult questions.
We are sure that, these question papers would provide ample practice to students in a systematic manner and would boost their confidence to face the challenges posed in examinations.

We welcome your valuable suggestions and feedback towards this book.

We wish the students all the best for their examinations!

- Publisher

Edition: First

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on : mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops.

Disclaimer

[^1]
NEW PAPER PATTERN

$>$ Paper Pattern NEET (UG)-2021
The Paper Pattern of NEET (UG)-2021 comprises of subjects - Physics, Chemistry and Biology (Botany and Zoology). Each subject will consist of two sections. Section A will consist of 35 Questions and Section B will have 15 questions. Out of these 15 Questions, candidates can choose to attempt any 10 Questions.
The New Paper Pattern for the NEET (UG)-2021 Examination is as follows:

Sr. No.	Subject(s)	Section(s)	No. of Questions(s)	Mark(s) (Each Question Carries 04 (Four) Marks)	Type of Questions(s)
1.	Physics	Section A	35	140	MCQ (Multiple Choice Questions)
		Section B	*15	40	
2.	Chemistry	Section A	35	140	
		Section B	*15	40	
3.	Botany	Section A	35	140	
		Section B	*15	40	
4.	Zoology	Section A	35	140	
		Section B	*15		
	Total Marks				
* Only the first 10 attempted questions from out of 15 will be considered for evaluation.					

Important points to note for Section A \& B:

i. Each question carries 04 (four) marks and, for each correct answer candidate will get 04 (four) marks.
ii. For each incorrect answer, 01 (one) mark will be deducted from the total score.
iii. To answer a question, the candidate has to find, for each question, the correct answer/ best option.
iv. In case of the challenge of key, if more than one option is found to be correct then all/any one of the multiple correct/best options marked will be given four marks (+4). However, unanswered/unattempted questions will be given no marks.
v. In case, a question is dropped/ ignored, all candidates will be given four marks (+4) irrespective of the fact whether the question has been attempted or not attempted by the candidate.
> Mode of Examination:
NEET (UG) - 2021 is a Pen \& Paper-based Test, to be answered on the specially designed machine gradable OMR sheet using Ball Point Pen.
$>$ Duration of Examination:
The duration of the examination would be three (03) hours.

INDEX

Sr. No	Test Name	Page No.
1	Physical world and measurement, Scalars and vectors	1
2	Gravitation	4
3	Motion in one dimension	8
	Revision Test 01	12
4	Electrostatics : I	16
5	Electrostatics: II	21
6	Electrostatics : III	26
	Revision Test 02	31
7	Laws of Motion	35
8	Motion in Two Dimensions	39
9	Work, Energy and Power	43
	Revision Test 03	47
10	Rotational Motion	51
11	Oscillations	56
12	Current Electricity	60
	Revision Test 04	65
13	Magnetic effect of electric current : I	69
14	Magnetic effect of electric current : II	74
15	Magnetism, Dual Nature of Matter and Radiation	79
	Revision Test 05	83
16	Diffraction and Polarisation of Light, Ray Optics : I	88
17	Ray Optics : II	92
18	Electromagnetic Waves and Communication Systems	96
	Revision Test 06	100
19	Elasticity and Surface Tension	104
20	Viscosity	108
21	Wave Mechanics	112
	Revision Test 07	116
22	Electromagnetic Induction and Alternating Current : I	120
23	Electromagnetic Induction and Alternating Current : II	124
24	Wave Optics \& Interference of Light	127
	Revision Test 08	131
25	Kinetic theory of gases and Heat : I	135
26	Heat II	138
27	Thermodynamics	142
	Revision Test 09	146
28	Atoms, Molecules and Nuclei : I	150
29	Atoms, Molecules and Nuclei : II	153
30	Electronic Devices	157
	Revision Test 10	162
	Model Test Paper 01	165
	Model Test Paper 02	169
	Model Test Paper 03	173
	Model Test Paper 04	177
	Model Test Paper 05	182
	Answer Key to MCQs	187-194
	Solutions to MCQs	195-388

1. If L and C denote the inductance and capacitance respectively, then the dimensional formula for LC will be
(A) $\left[\mathrm{M}^{2}\right]$
(B) $\left[\mathrm{T}^{2}\right]$
(C) $\left[\mathrm{A}^{-2}\right]$
(D) $\left[\mathrm{L}^{-2}\right]$
2. The length of a beam is $0.6 \times 10^{3} \mathrm{~m}$, the order of magnitude of the length of the beam is
(A) 10^{4}
(B) 10^{2}
(C) 10^{3}
(D) 10^{5}
3. Assertion: Nuclear radii can be measured by Fermi unit.
Reason: Micron and angstrom are not considered as correct unit to measure nuclear radii as these are larger units.
(A) Assertion is True, Reason is True; Reason is a correct explanation for Assertion.
(B) Assertion is True, Reason is True; Reason is not a correct explanation for Assertion.
(C) Assertion is True, Reason is False.
(D) Assertion is False, Reason is True.
4. What vector must be added to the sum of two vectors $4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$, so that the resultant may be a unit vector along negative y axis?
(A) $3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
(B) $-2 \hat{i}+\hat{j}-6 \hat{k}$
(C) $-7 \hat{\mathrm{i}}-2 \hat{\mathrm{k}}$
(D) $-6 \hat{i}+9 \hat{j}$
5. The dimensional representation of latent heat is identical to that of
(A) angular momentum.
(B) gravitational potential.
(C) electric potential.
(D) internal energy.
6. Verifying if the velocity (v) of electromagnetic wave is directly proportional to the wavelength of the wave (λ), the density of air (ρ) and time (t), choose the correct relation between the quantities.
(A) $v \propto \lambda t^{-1}$
(B) $\quad \mathrm{v} \propto \lambda \rho^{-1} t$
(C) $\quad \mathrm{v} \propto \lambda^{-1} \rho^{-2} t$
(D) $\quad \mathrm{v} \propto \lambda \rho \mathrm{t}^{-1}$
7. If $l=4.221 \mathrm{~cm}, \mathrm{~b}=2.1 \mathrm{~cm}$, then $l+\mathrm{b}$ is equal to
(A) 6.31 cm
(B) 6 cm
(C) 6.62 cm
(D) 6.3 cm
8. If $\vec{P} \times \vec{Q}=0$, then two vectors \vec{P} and \vec{Q} are
(A) parallel to each other.
(B) perpendicular to each other.
(C) at an angle 60°.
(D) at an angle 120°.
9. Two points A and B in space have the co-ordinates $(1,-1,2)$ and $(4,2,5)$ respectively. Find vector $A B$.
(A) $\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$
(B) $\quad 2(-\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
(C) $3(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
(D) $4(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
10. What will be magnitude of two forces if their magnitudes are in the ratio $1: 2$, the angle between their direction is 30° and magnitude of their resultant force is 30 N ?
(A) $\quad 10.31 \mathrm{~N}, 20.62 \mathrm{~N}$
(B)
9.63 N, 18.64 N
(C) $\quad 6.22 \mathrm{~N}, 12.44 \mathrm{~N}$
(D) $1.26 \mathrm{~N}, 3.13 \mathrm{~N}$
11. Joule/second is equal to
(A) watt
(B) pascal
(C) tesla
(D) farad
12. Assertion: The sum of the vectors \vec{P} and \vec{Q} is equal to the sum of their unit vectors \hat{P} and \hat{Q}.
Reason: \vec{P} is equal to \vec{Q}.
(A) Assertion is True, Reason is True; Reason is a correct explanation for Assertion.
(B) Assertion is True, Reason is True; Reason is not a correct explanation for Assertion.
(C) Assertion is True, Reason is False.
(D) Assertion is False, Reason is True.
13. If $\mathrm{R}, \sigma, \mathrm{M}$ and K denotes Rydberg constant, electrical conductivity, magnetic dipole moment and dielectric constant, then dimensions of $\frac{\mathrm{R}^{2} \sigma}{\mathrm{MK}^{4}}$ will be
(A) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{2} \mathrm{~A}^{-4}\right]$
(B) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-4} \mathrm{~A}^{-1}\right]$
(C) $\left[\mathrm{M}^{-2} \mathrm{~L}^{-5} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
(D) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-7} \mathrm{~T}^{3} \mathrm{~A}^{1}\right]$
14. The vector projection of $3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ on x -axis is
(A) 7
(B) 4
(C) zero
(D) 3
15. The dimensions of k in the equation $E=\frac{1}{2} k x^{2}$ is
(A) $\left[\mathrm{M}^{-2} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]$
(B) $\left[\mathrm{M}^{1} \mathrm{~T}^{-1}\right]$
(C) $\left[\mathrm{M}^{1} \mathrm{~T}^{-2}\right]$
(D) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
16. The length of a simple pendulum is about 90 cm known to an accuracy of 2 mm . A clock of resolution 0.2 s is used to measure time for 200 oscillations. If period of oscillation of simple pendulum is 2 s , then what is the accuracy in the determined value of g ?
(A) 20%
(B) 50%
(C) 10%
(D) 30%
17. If the radius of a sphere is (6.3 ± 0.3), then the percentage error in the volume of the ball will be
(A) 14.28%
(B) 15.46%
(C) 28.65%
(D) 8.43%
18. The velocity of a particle travelling in a straight line is given by $v=p t+\mathrm{qt}^{2}+\mathrm{r}$. Find the dimensions of q if $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are constants.
(A) $\left[L^{1} M^{1} \mathrm{~T}^{1}\right]$
(B) $\left[\mathrm{L}^{2} \mathrm{M}^{1} \mathrm{~T}^{2}\right]$
(C) $\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{-3}\right]$
(D) $\left[\mathrm{L}^{2} \mathrm{M}^{0} \mathrm{~T}^{-2}\right]$
19. The force F is expressed in terms of mass (m) and time (t) as $\mathrm{F}=\alpha \mathrm{m}+\beta \mathrm{t}^{2}$. The dimensions of $\frac{\alpha}{\beta}$ are
(A) $\left[\mathrm{M}^{2} \mathrm{~T}^{-4}\right]$
(B) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]$
(C) $\left[\mathrm{M}^{1} \mathrm{~T}^{-1}\right]$
(D) $\left[\mathrm{M}^{-1} \mathrm{~T}^{2}\right]$
20. The physical quantity is given by $P=M^{\alpha} L^{\beta} T^{\gamma}$. The percentage error in the measurement of M , L and T are a, b and c respectively. Then maximum percentage error in P is
(A) $\frac{\alpha \beta}{\mathrm{c}}+\frac{\beta \gamma}{\mathrm{a}}+\frac{\gamma \alpha}{\mathrm{b}}$
(B) $\alpha a+\beta b+\gamma c$
(C) $\frac{\alpha}{\mathrm{a}}+\frac{\beta}{\mathrm{b}}+\frac{\gamma}{\mathrm{c}}$
(D) $\alpha^{\mathrm{a}}+\beta^{\mathrm{b}}+\gamma^{\mathrm{c}}$
21. $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \theta^{-1}\right]$ are the dimensions of \qquad -.
(A) Rydberg constant
(B) Universal gas constant
(C) Boltzmann constant
(D) Stefan's constant
22. Which of the following is a scalar?
(A) Energy of thermal neutron
(B) Electric field
(C) Velocity of air
(D) Torque
23. If $\vec{p}=4 \hat{i}-9 \hat{j}, \vec{q}=6 \hat{i}+9 \hat{k}$ and $\vec{r}=4 \hat{j}+2 \hat{k}$, then the unit vector \hat{R} along the direction of sum of these vectors will be
(A) $\frac{1}{\sqrt{111}}(6 \hat{\mathrm{i}}-19 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
(B) $\frac{1}{\sqrt{288}}(2 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}+14 \hat{\mathrm{k}})$
(C) $\frac{1}{\sqrt{164}}(11 \hat{\mathrm{j}}-9 \hat{\mathrm{i}}+12 \hat{\mathrm{k}})$
(D) $\frac{1}{\sqrt{246}}(10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+11 \hat{\mathrm{k}})$
24. What will be the direction of resultant force on the body if it is acted up by these forces $\vec{F}_{1}=2 \hat{i}-4 \hat{j}+9 \hat{k}, \vec{F}_{2}=-2 \hat{i}-5 \hat{j}+6 \hat{k}$ and $\vec{F}_{3}=4 \hat{i}-9 \hat{j}+2 \hat{k}$?
(A) Along x-axis
(B) Along y-axis
(C) Along z-axis
(D) Along all three axes
25. What will be direction of cosines of the vector \vec{P} if $\overrightarrow{\mathrm{P}}=2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$?
(A) $\frac{2}{\sqrt{29}}, \frac{-4}{\sqrt{29}}$ and $\frac{3}{\sqrt{29}}$
(B) $\frac{4}{\sqrt{46}}, \frac{3}{\sqrt{46}}$ and $\frac{2}{\sqrt{46}}$
(C) $\frac{1}{\sqrt{59}}, \frac{2}{\sqrt{59}}$ and $\frac{5}{\sqrt{59}}$
(D) $\frac{4}{\sqrt{19}}, \frac{3}{\sqrt{19}}$ and $\frac{-2}{\sqrt{19}}$
26. The angular diameter of a planet is $2000^{\prime \prime}$. If the distance of the planet from the earth is $2 \times 10^{12} \mathrm{~m}$, then the linear diameter of the planet is
(A) $1.94 \times 10^{10} \mathrm{~m}$
(B) $2.64 \times 10^{9} \mathrm{~m}$
(C) $1.64 \times 10^{12} \mathrm{~m}$
(D) $2.11 \times 10^{8} \mathrm{~m}$
27. If $\vec{A}=4 \hat{i}+6 \hat{j}, \vec{B}=4 \hat{j}-\hat{k}$ and $\vec{C}=6 \hat{i}+2 \hat{k}$, then value of $\vec{A}+2 \vec{B}-\vec{C}$ would be
(A) $6 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}$
(B) $2 \hat{\mathrm{i}}-14 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
(C) $6 \hat{i}-14 \hat{j}+9 \hat{k}$
(D) $-2 \hat{i}+14 \hat{j}-4 \hat{k}$
28. $\mathrm{Wm}^{-2} \mathrm{~K}^{-4}$ is a unit of
(A) Wein's constant
(B) Boltzmann constant
(C) Stefan's constant
(D) Gas constant
29. The magnitude of rectangular components of \vec{R} along the x, y and z axes of a three dimensional rectangular cartesian co-ordinates system are 2 units, 3 units and 4 units respectively. Find the magnitude of resultant vector \vec{R}.
(A) $\sqrt{29}$
(B) $\sqrt{19}$
(C) $\sqrt{39}$
(D) $\sqrt{59}$
30. $0.1 \hat{i}+0.2 \hat{j}+x \hat{k}$ represents a unit vector when x is
(A) 0.62
(B) 0.97
(C) 0.81
(D) 0.33
31. Which of the following represents a vector of magnitude 10 units?
(A) $\hat{\mathrm{P}}=10$ unit
(B) $|\hat{\mathrm{P}}|=10$ unit
(C) $|\overrightarrow{\mathrm{P}}|=10$ unit
(D) $\overrightarrow{\mathrm{P}}=10$ unit
32. Find the value of 40 J on the system based on $30 \mathrm{~cm}, 2 \mathrm{~kg}$ and 0.5 minute as fundamental units.
(A) 8×10^{3} units
(B) zero
(C) 8×10^{5} units
(D) 8×10^{4} units
33. Assertion: Thermal conductivity of a substance depends upon transfer of heat through it.
Reason: The dimension of thermal conductivity is $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \theta^{-1}\right]$.
(A) Assertion is True, Reason is True; Reason is a correct explanation for Assertion.
(B) Assertion is True, Reason is True; Reason is not a correct explanation for Assertion.
(C) Assertion is True, Reason is False.
(D) Assertion is False, Reason is True.
34. What are the dimensions of inter-atomic force?
(A) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{1}\right]$
(B) $\left[\mathrm{M}^{1} \mathrm{~T}^{1}\right]$
(C) $\left[\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]$
(D) $\left[\mathrm{M}^{1} \mathrm{~T}^{-2}\right]$
35. $\mathrm{x}=\alpha\left(1+\mathrm{e}^{-\beta t}\right)$, where x is distance and t is time. Then β is
(A) distance
(B) frequency
(C) velocity
(D) time
36. The unit vector parallel to the resultant of the vectors $\vec{P}=3 \hat{i}+2 \hat{j}-6 \hat{k}$ and $\vec{Q}=2 \hat{i}+\hat{j}$ is
(A) $\frac{1}{\sqrt{20}}(6 \hat{i}+9 \hat{j}-9 \hat{\mathrm{k}})$
(B) $\frac{1}{\sqrt{70}}(5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}})$
(C) $\frac{1}{49}(5 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})$
(D) $\frac{1}{8}(6 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+9 \hat{\mathrm{k}})$
37. $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{0}\right]$ is dimensional formula of \qquad .
(A) Planck's constant
(B) coefficient of linear expansion
(C) mechanical equivalent of heat
(D) Rydberg constant
38. The SI units of specific heat is
(A) Joule
(B) Joule/kg-K
(C) Joule/K
(D) Joule/mole-K
39. The wavelength of light is 60 micron. Its value in metre is
(A) 0.000006 m
(B) 0.06 m
(C) 0.00006 m
(D) 0.0006 m
40. Magnitude of emf of an inductor is given by $|\mathrm{e}|=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$, the dimension of emf is
(A) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$
(B) $\quad\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{-3}\right]$
(C) $\left[\mathrm{M}^{1} \mathrm{~L}^{-2} \mathrm{~T}^{1} \mathrm{~A}^{1}\right]$
(D) $\left[\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-1} \mathrm{~A}^{-4}\right]$
41. If the error encountered while performing experiment is due to fluctuation of voltage then, the most possible error will be
(A) system error.
(B) personal error.
(C) random error.
(D) instrumental error.
42. Magnetic induction B at the centre of a circular coil of radius r when current I flows through it, is given by $B=\frac{\mu_{0}}{4 \pi} \frac{2 I}{r}$ the dimensions of μ_{0} will be
(A) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
(B) $\left[\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-1} \mathrm{~A}^{-1}\right]$
(C) $\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{-3}\right]$
(D) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-4} \mathrm{~A}^{-1}\right]$
43. Assertion: Out of the four measurements $\mathrm{x}=0.5 \mathrm{~m}, \mathrm{x}=0.50 \mathrm{~m}, \mathrm{x}=0.500 \mathrm{~m}$ and $\mathrm{x}=0.5000 \mathrm{~m}$, the last one is more accurate.
Reason: In every measurement, only the last significant digit is not accurately known.
(A) Assertion is True, Reason is True; Reason is a correct explanation for Assertion.
(B) Assertion is True, Reason is True; Reason is not a correct explanation for Assertion.
(C) Assertion is True, Reason is False.
(D) Assertion is False, Reason is True.
44. The value of force in C.G.S. system was noted as 150 dyne. In SI system the fundamental quantities are kilogram, metre and second, the magnitude of force is
(A) $150 \times 10^{-3} \mathrm{~N}$
(B) $15.0 \times 10^{-3} \mathrm{~N}$
(C) $1500 \times 10^{-3} \mathrm{~N}$
(D) $1.5 \times 10^{-3} \mathrm{~N}$
45. The physical quantity P is given by $P=\frac{a^{2} b^{2}}{c^{3} \sqrt{d}}$, the percentage error in measurement of a, b, c and d are $2 \%, 3 \%, 1 \%$ and 2% respectively. What is the percentage error in P ?
(A) 8%
(B) 12%
(C) 14%
(D) 10%
46. The displacement vector due to end points $(2,4,0)$ and x is $6 \hat{i}-9 \hat{j}+\hat{k}$. What is the magnitude of \vec{x} from origin?
(A) $3 \sqrt{10}$
(B) $4 \sqrt{7}$
(C) $9 \sqrt{5}$
(D) $2 \sqrt{10}$
47. If torque is equal to the product of force and displacement, then what is dimensional formula for torque?
(A) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(B) $\left[\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]$
(C) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]$
(D) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{1}\right]$
48. The velocity of a racing car recorded by four sensors are $150 \mathrm{~m} / \mathrm{s}, 151 \mathrm{~m} / \mathrm{s}, 152 \mathrm{~m} / \mathrm{s}$ and $149 \mathrm{~m} / \mathrm{s}$ respectively. The average absolute error is
(A) $0.2 \mathrm{~m} / \mathrm{s}$
(B) $1 \mathrm{~m} / \mathrm{s}$
(C) $0.5 \mathrm{~m} / \mathrm{s}$
(D) $2 \mathrm{~m} / \mathrm{s}$
49. Match the following:

	PHYSICAL QUANTITY		DIMENSIONS
1.	Specific gravity	i.	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
2.	Angular frequency	ii.	$\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}\right]$
3.	Energy density	iii.	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
4.	Coefficient of viscosity	iv.	$\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]$

(A) 1-(i), 2-(iii), 3-(iv), 4-(ii)
(B) 1-(ii), 2-(i), 3-(iv), 4-(iii)
(C) 1-(iv), 2-(iii), 3-(i), 4-(ii)
(D) 1-(iii), 2-(i), 3-(iv), 4-(ii)
50. The length and breadth of a metal sheet are 4.28 m and 2.06 m respectively. The area of the sheet upto correct significant figures is
(A) $8.83 \mathrm{~m}^{2}$
(B) $8.82 \mathrm{~m}^{2}$
(C) $8.816 \mathrm{~m}^{2}$
(D) $8.817 \mathrm{~m}^{2}$

Page no. 4 to 186 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes

Topic Test - 01

11. (A) 12. (D) 13. (D) 14. (C) 15. (C) 16. (A) 17. (A) 18. (C) 19. (D) 20. (B)
21. (B) 22. (A) 23. (D) 24. (D) 25. (A) 26. (A) 27. (D) 28. (C) 29. (A) 30. (B)
31. (C) 32. (C) 33. (B) 34. (D) 35. (B) 36. (B) 37. (C) 38. (B) 39. (C) 40. (A)
41. (C) 42. (A) 43. (A) 44. (D) 45. (C) 46. (A) 47. (A) 48. (B) 49. (D) 50. (B)

Topic Test-02

1. (C) 2. $\quad(\mathrm{C}) \quad 3 . \quad(\mathrm{A}) \quad 4 . \quad(\mathrm{C}) \quad 5 . \quad(\mathrm{D}) \quad 6 . \quad(\mathrm{D}) \quad 7 . \quad$ (B) $8 . \quad$ (C) \quad 9. \quad (A) $10 . \quad$ (B)
2. (A) 12. (A) 13. (D) 14. (D) 15. (B) 16. (D) 17. (B) 18. (B) 19. (A) 20. (D)
3. (D) 22. (D) 23. (C) 24. (B) 25. (D) 26. (B) 27. (B) 28. (D) 29. (B) 30. (C)
4. (A) 32. (D) 33. (A) 34. (A) 35. (D) 36. (A) 37. (B) 38. (C) 39. (A) 40. (C)
5. (A) 42. (B) 43. (A) 44. (B) 45. (A) 46. (B) 47. (D) 48. (A) 49. (B) 50. (A)

Topic Test-03

11. (D) 12. (B) 13. (C) 14. (B) 15. (A) 16. (A) 17. (A) 18. (D) 19. (A) 20. (B)
21. (C) 22. (C) 23. (B) 24. (D) 25. (B) 26. (C) 27. (A) 28. (A) 29. (D) 30. (B)
31. (D) 32. (B) 33. (A) 34. (B) 35. (B) 36. (D) 37. (C) 38. (D) 39. (A) 40. (A)
41. (B) 42. (C) 43. (D) 44. (A) 45. (A) 46. (C) 47. (D) 48. (C) 49. (B) 50. (C)

Revision Test-01

11. (B) 12. (D) 13. (A) 14. (B) 15. (A) 16. (A) 17. (D) 18. (D) 19. (D) 20. (A)
21. (B) 22. (B) 23. (A) 24. (D) 25. (B) 26. (A) 27. (A) 28. (D) 29. (D) 30. (B)
31. (D) 32. (B) 33. (B) 34. (B) 35. (B) 36. (B) 37. (D) 38. (B) 39. (D) 40. (B)
41. (D) 42. (B) 43. (C) 44. (A) 45. (B) 46. (D) 47. (A) 48. (A) 49. (B) 50. (A)

Topic Test-04

11. (A) 12. (C) 13. (C) 14. (B) 15. (D) 16. (B) 17. (D) 18. (B) 19. (C) 20. (B)
21. (A) 22. (A) 23. (B) 24. (A) 25. (C) 26. (B) 27. (D) 28. (A) 29. (D) 30. (D)
31. (A) 32. (A) 33. (A) 34. (B) 35. (A) 36. (A) 37. (B) 38. (B) 39. (B) 40. (B)
41. (D) 42. (D) 43. (B) 44. (A) 45. (B) 46. (C) 47. (D) 48. (D) 49. (B) 50. (B)

Topic Test-05

1. (D) 2. (A) 3. (C) 4. (B) 5. (C) 6. (C) 7. (C) 8. (A) 9. (B) 10. (B)
2. (B) 12. (B) 13. (A) 14. (C) 15. (C) 16. (B) 17. (B) 18. (B) 19. (A) 20. (C)
3. (A) 22. (A) 23. (A) 24. (A) 25. (B) 26. (B) 27. (A) 28. (B) 29. (A) 30. (B)
4. (C) 32. (D) 33. (B) 34. (D) 35. (A) 36. (D) 37. (B) 38. (B) 39. (C) 40. (C)
5. (C) 42. (D) 43. (B) 44. (C) 45. (A) 46. (A) 47. (A) 48. (B) 49. (B) 50. (D)

Page no. 188 to 194 are purposely left blank.
To see complete chapter buy Target Notes or Target E-Notes

Topic Test-01

1. (B)
$\mathrm{L}=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
$\mathrm{C}=\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$
$\mathrm{LC}=\left[\mathrm{T}^{2}\right]$
2. (C)
3. (A)
4. (C)

Let \vec{R} be the vector to be added.
$\therefore \quad(4 \hat{i}-2 \hat{j}+3 \hat{k})+(3 \hat{i}+\hat{j}-\hat{k})+\vec{R}=-\hat{j}$
$7 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}+\overrightarrow{\mathrm{R}}=-\hat{\mathrm{j}}$
$\overrightarrow{\mathrm{R}}=-7 \hat{\mathrm{i}}-2 \hat{\mathrm{k}}$
5. (B)
6. (A)
$v \propto \lambda^{x} \rho^{y} t^{z}$
$\mathrm{v}=\mathrm{k} \lambda^{\mathrm{x}} \rho^{\mathrm{y}} \mathrm{t}^{\mathrm{z}}$
$\left[M^{0} L^{1} T^{-1}\right]=\left[M^{0} L^{1} T^{0}\right]^{x}\left[M^{1} L^{-3} T^{0}\right]^{y}\left[M^{0} L^{0} T^{1}\right]^{z}$
\ldots. (Here, k is constant of proportionality and is dimensionless.)
$\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]=\left[\mathrm{L}^{\mathrm{x}}\right]\left[\mathrm{M}^{\mathrm{y}} \mathrm{L}^{-3 \mathrm{y}}\right]\left[\mathrm{T}^{\mathrm{z}}\right]$
$\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]=\left[\mathrm{L}^{\mathrm{x}-3 \mathrm{y}} \mathrm{M}^{\mathrm{y}} \mathrm{T}^{\mathrm{z}}\right]$
$\Rightarrow \mathrm{y}=0$,
Also, $(x-3 y=1) \Rightarrow x=1$ and $-1=z$
$\therefore \quad \mathrm{z}=-1$
$\therefore \quad v \propto \lambda^{1} \rho^{0} t^{-1}$
$\mathrm{v} \propto \lambda \mathrm{t}^{-1}$
7. (D)
$l=4.221 \mathrm{~cm}$
$=4.2 \mathrm{~cm}$ (rounding off upto one decimal places)
$\mathrm{b}=2.1 \mathrm{~cm}$
$l+\mathrm{b}=4.2+2.1=6.3 \mathrm{~cm}$
8. (A)
$\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}}=0$
$\therefore \quad P Q \sin \theta=0$
$\therefore \quad \sin \theta=0$
$\Rightarrow \theta=0^{\circ}$
Two vectors will be parallel to each other.
9. (C)

$$
\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}
$$

$$
\mathrm{AB}=\mathrm{OB}-\mathrm{OA}
$$

$\overrightarrow{\mathrm{OA}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{OB}}=4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
$\overrightarrow{A B}=4 \hat{i}+2 \hat{j}+5 \hat{k}-\hat{i}+\hat{j}-2 \hat{k}$
$\overrightarrow{A B}=3 \hat{i}+3 \hat{j}-3 \hat{k}$
$\overrightarrow{\mathrm{AB}}=3(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
10. (A)

Let \vec{P} and \vec{Q} be the two forces,
$|\overrightarrow{\mathrm{P}}|=\mathrm{x},|\overrightarrow{\mathrm{Q}}|=2 \mathrm{x}, \mathrm{R}=30 \mathrm{~N}$ and $\theta=30^{\circ}$
$|\vec{R}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}+2 \mathrm{PQ} \cos \theta}$
$30=\sqrt{x^{2}+(2 x)^{2}+2(x)(2 x) \cos 30^{\circ}}$
$\therefore \quad 30=\sqrt{5 x^{2}+2 \sqrt{3} x^{2}}$
$\therefore \quad x=10.31 \mathrm{~N}$
Forces are
$\mathrm{P}=\mathrm{x}=10.31 \mathrm{~N}$ and
$\mathrm{Q}=2 \mathrm{x}=2 \times 10.31=20.62 \mathrm{~N}$
11. (A)

Power $=\frac{\text { work }}{\text { time }}$
watt $=\frac{\text { joule }}{\text { second }}$
12. (D)

Sum of two vectors cannot be equal to sum of their unit vectors $\vec{P}+\vec{Q} \neq \hat{P}+\hat{Q}$
13. (D)

$$
\begin{aligned}
{\left[\frac{\mathrm{R}^{2} \sigma}{\mathrm{MK}^{4}}\right] } & =\frac{\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]^{2}\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{3} \mathrm{~A}^{2}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0} \mathrm{~A}^{1}\right]\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]^{4}} \\
& =\frac{\left[\mathrm{M}^{-1} \mathrm{~L}^{-5} \mathrm{~T}^{3} \mathrm{~A}^{2}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0} \mathrm{~A}^{1}\right]}=\left[\mathrm{M}^{-1} \mathrm{~L}^{-7} \mathrm{~T}^{3} \mathrm{~A}^{1}\right]
\end{aligned}
$$

14. (C)

As the multiple of $\hat{\mathrm{i}}$ in the given vector is zero, this vector lies in yz plane and projection of this vector on x -axis is zero.
15. (C)
$\mathrm{E}=\frac{1}{2} \mathrm{kx}^{2}$
$\mathrm{k}=\frac{[\mathrm{E}]}{\left[\mathrm{x}^{2}\right]}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\mathrm{L}^{2}}=\left[\mathrm{MT}^{-2}\right]$
16. (A)

Time period of a simple pendulum is given by
$\mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$
$\therefore \quad \mathrm{T}^{2}=\frac{4 \pi^{2} l}{\mathrm{~g}}$
or $\mathrm{g}=\frac{4 \pi^{2} l}{\mathrm{~T}^{2}}$
Taking logs and differentiating equation (i), we get
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{\Delta l}{l}-\frac{2 \Delta \mathrm{~T}}{\mathrm{~T}}$

For maximum relative error, the individual errors should be added up.
$\therefore \quad \frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{\Delta l}{l}+\frac{2 \Delta \mathrm{~T}}{\mathrm{~T}}$
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{0.2}{90}+2 \times \frac{0.2}{2}$
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=0.002+0.2$
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=0.202$
\% error in g is given by,
$\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100=0.202 \times 100=20 \%$
17. (A)

Percentage error $=3 \frac{\Delta r}{r} \times 100$ $\ldots .\left(\because\right.$ volume of a sphere $\left.=\frac{4}{3} \pi r^{3}\right)$

$$
\begin{aligned}
& =3 \times \frac{0.3}{6.3} \times 100 \\
& =14.28 \%
\end{aligned}
$$

18. (C)

By homogeneity of dimensions of LHS and RHS,
velocity $=\mathrm{qt}^{2}$
$\mathrm{m} / \mathrm{s}=\mathrm{q} \times \mathrm{s}^{2}$
$\mathrm{q}=\mathrm{m} / \mathrm{s}^{3}$
$\mathrm{q}=\left[\mathrm{L}^{1} \mathrm{M}^{0} \mathrm{~T}^{-3}\right]$
19. (D)
$\alpha \mathrm{m}=\mathrm{F}$
$\alpha=\frac{\mathrm{F}}{\mathrm{m}}=\frac{\left[\mathrm{L}^{1} \mathrm{M}^{1} \mathrm{~T}^{-2}\right]}{\mathrm{M}^{1}}$
$=\left[\mathrm{L}^{1} \mathrm{~T}^{-2}\right]$
$\beta t^{2}=F$
$\beta=\frac{\mathrm{F}}{\mathrm{t}^{2}}=\frac{\left[\mathrm{L}^{1} \mathrm{M}^{1} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{2}\right]}=\left[\mathrm{L}^{1} \mathrm{M}^{1} \mathrm{~T}^{-4}\right]$
$\frac{\alpha}{\beta}=\frac{\left[\mathrm{L}^{\mathrm{l}} \mathrm{T}^{-2}\right]}{\left[\mathrm{LM}^{1} \mathrm{~T}^{-4}\right]}$
$\frac{\alpha}{\beta}=\left[M^{-1} T^{2}\right]$
20. (B)

Percentage error in $\mathrm{P}=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$
21. (B)
$[\mathrm{R}]=\left[\frac{\mathrm{PV}}{\mathrm{T}}\right]=\left[\frac{\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2} \times \mathrm{L}^{3}}{\theta}\right]$
$[\mathrm{T}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \theta^{-1}\right]$
22. (A)
23. (D)

$$
\begin{aligned}
\overrightarrow{\mathrm{R}} & =\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}} \\
& =4 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}+6 \hat{\mathrm{i}}+9 \hat{\mathrm{k}}+4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}=10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+11 \hat{\mathrm{k}} \\
\hat{\mathrm{R}} & =\frac{\overrightarrow{\mathrm{R}}}{|\mathrm{R}|}=\frac{10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}}{\sqrt{10^{2}+5^{2}+11^{2}}}=\frac{1}{\sqrt{246}}(10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+11 \hat{\mathrm{k}})
\end{aligned}
$$

24. (D)
25. (A)

$$
\overrightarrow{\mathrm{P}}=2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}
$$

$\therefore \quad|\overrightarrow{\mathrm{P}}|=\sqrt{(2)^{2}+(-4)^{2}+(3)^{2}}=\sqrt{29}$
$\therefore \quad \cos \alpha=\frac{2}{\sqrt{29}}$,
$\cos \beta=\frac{-4}{\sqrt{29}}$,
$\cos \gamma=\frac{3}{\sqrt{29}}$
26. (A)

Distance of planet from earth's $=2 \times 10^{12} \mathrm{~m}$
Angular diameter of planet, θ
$=2000^{\prime \prime}=\left(\frac{2000}{60 \times 60}\right)^{\circ}=\frac{2000}{3600} \times \frac{\pi}{180} \mathrm{rad}$
Diameter of planet, $\mathrm{D}=\mathrm{s} \times \theta$

$$
\begin{aligned}
& =2 \times 10^{12} \times \frac{2000}{3600} \times \frac{\pi}{180} \\
D & \approx 1.94 \times 10^{10} \mathrm{~m}
\end{aligned}
$$

27. (D)

$$
\begin{aligned}
\overrightarrow{\mathrm{A}}+2 \overrightarrow{\mathrm{~B}}-\overrightarrow{\mathrm{C}} & =4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+2(4 \hat{\mathrm{j}}-\hat{\mathrm{k}})-(6 \hat{\mathrm{i}}+2 \hat{\mathrm{k}}) \\
& =4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+8 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}-6 \hat{\mathrm{i}}-2 \hat{\mathrm{k}} \\
& =-2 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}
\end{aligned}
$$

28. (C)

Stefan's constant (σ)
$\sigma=\frac{\mathrm{E}}{\mathrm{T}^{4}}=$ watt $/ \mathrm{m}^{2}-\mathrm{K}^{4}$
29. (A)
$\mathrm{R}=\sqrt{\mathrm{R}_{\mathrm{x}}^{2}+\mathrm{R}_{\mathrm{y}}^{2}+\mathrm{R}_{\mathrm{z}}^{2}}=\sqrt{2^{2}+3^{2}+4^{2}}=\sqrt{29}$
30. (B)

$$
\sqrt{(0.1)^{2}+(0.2)^{2}+x^{2}}=1
$$

$\therefore \quad x=0.97$
31. (C)
32. (C)

$$
\begin{aligned}
40 \mathrm{~J} & =\frac{40 \mathrm{kgm}^{2}}{\mathrm{~s}^{2}}=\frac{40 \times 2 \mathrm{~kg} \times(100 \mathrm{~cm})^{2}}{(1 \mathrm{~s})^{2}} \\
& =\frac{40 \times 2 \times(100 / 30)^{2}}{(1 / 30)^{2}}=8 \times 10^{5} \text { units }
\end{aligned}
$$

33. (B)

$$
\begin{aligned}
& \Delta Q=K A\left(\frac{T_{1}-T_{2}}{L}\right) \Delta t \\
& {[K]=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right][\mathrm{L}]}{\left[\mathrm{L}^{2}\right][\theta][\mathrm{T}]}=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \theta^{-1}\right]}
\end{aligned}
$$

34. (D)
$\mathrm{k}=\mathrm{Y} \times \mathrm{r}_{0}$
where, $\mathrm{Y}=$ Young's modulus,
$\mathrm{r}_{0}=$ inter-atomic distance.
$[\mathrm{k}]=\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{1}\right]$
$=\left[\mathrm{M}^{1} \mathrm{~T}^{-2}\right]$
35. (B)

The power of exponent is always dimensionless.
$\therefore \quad[\beta \mathrm{t}]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
$[\beta]=\left[\frac{1}{\mathrm{t}}\right]=\frac{1}{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]}$
$\beta=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
$\beta=$ frequency
36. (B)

Resultant of \vec{P} and $\vec{Q}, \vec{R}=\vec{P}+\vec{Q}$

$$
\left.\begin{array}{rl}
& =3 \hat{i}+2 \hat{j}-6 \hat{k}+2 \hat{i}+\hat{j} \\
& =5 \hat{i}+3 \hat{j}-6 \hat{k}
\end{array}\right)=\frac{5 \hat{R}}{|\vec{R}|}=\frac{5 \hat{i}+3 \hat{j}-6 \hat{\mathrm{i}}}{\sqrt{5^{2}+3^{2}+6^{2}}}=\frac{\sqrt{\mathrm{j}}-6 \hat{\mathrm{k}}}{\sqrt{70}} .
$$

37. (C)

Mechanical equivalent of heat
$=\frac{\text { Amountof Work }(W)}{\operatorname{Heat}(\mathrm{Q})}=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]}=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
38. (B)

Specific heat $=\frac{Q}{m \theta}=\frac{\text { Joule }}{\mathrm{kg}-\mathrm{K}}$
39. (C)

60 microns $=60 \times 10^{-6} \mathrm{~m}=0.00006 \mathrm{~m}$
40. (A)
$|\mathrm{e}|=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$
$\mathrm{L}=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
$\mathrm{dI}=\left[\mathrm{A}^{1}\right]$
$\mathrm{dt}=\left[\mathrm{T}^{1}\right]$
$e=\left[\frac{\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}}{\mathrm{~T}^{1}}\right] \times\left[\mathrm{A}^{1}\right]$
$=\left[\frac{\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}}{\mathrm{~T}^{1}}\right]$
$=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$
41. (C)
42. (A)
$\mu_{0}=\frac{\mathrm{B} \times \mathrm{r}}{\mathrm{I}}$
$\mu_{0}=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]\left[\mathrm{L}^{1}\right]}{\left[\mathrm{A}^{1}\right]}$
$\mu_{0}=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
43. (A)

Fractional error in the four measurements are respectively,
$\pm \frac{0.1}{0.5}, \frac{ \pm 0.01}{0.50}, \frac{ \pm 0.001}{0.500}, \frac{ \pm 0.0001}{0.5000}$
This means the last measurement has the least error, i.e., it is the most accurate one. Hence, option (A) is correct.
44. (D)
$\mathrm{n}_{2}=\mathrm{n}_{1}\left(\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right)^{1}\left(\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right)^{1}\left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)^{-2}$
$\mathrm{n}_{2}=150\left(\frac{\mathrm{~g}}{\mathrm{~kg}}\right)^{1}\left(\frac{\mathrm{~cm}}{\mathrm{~m}}\right)^{1}\left(\frac{\mathrm{sec}}{\mathrm{sec}}\right)^{-2}$
$\mathrm{n}_{2}=150\left(\frac{\mathrm{~g}}{10^{3} \mathrm{~g}}\right)^{1}\left(\frac{\mathrm{~cm}}{10^{2} \mathrm{~cm}}\right)^{1}\left(\frac{\mathrm{sec}}{\mathrm{sec}}\right)^{-2}$
$\mathrm{n}_{2}=\frac{150}{10^{3} \times 10^{2}}=1.5 \times 10^{-3} \mathrm{~N}$
45. (C)
$P=\frac{a^{2} b^{2}}{c^{3} \sqrt{d}}$

$$
\begin{aligned}
\frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100 & =\left[2\left(\frac{\Delta \mathrm{a}}{\mathrm{a}}\right)+2\left(\frac{\Delta \mathrm{~b}}{\mathrm{~b}}\right)+3\left(\frac{\Delta \mathrm{c}}{\mathrm{c}}\right)+\frac{1}{2}\left(\frac{\Delta \mathrm{~d}}{\mathrm{~d}}\right)\right] \\
& =\left[(2 \times 2)+(2 \times 3)+(3 \times 1)+\left(\frac{1}{2} \times 2\right)\right]=14 \%
\end{aligned}
$$

46. (A)
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}$
$6 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}+\hat{\mathrm{k}}=\overrightarrow{\mathrm{x}}-(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})$
$\overrightarrow{\mathrm{x}}=8 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$|\overrightarrow{\mathrm{x}}|=\sqrt{8^{2}+5^{2}+1^{2}}=3 \sqrt{10}$
47. (A)

Torque $=$ force \times displacement

$$
[\tau]=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{1}\right]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]
$$

48. (B)

Average value $=\frac{150+151+152+149}{4}=150.5 \mathrm{~m} / \mathrm{s}$
Now,
$\left|\Delta v_{1}\right|=150-150.5=0.5$
$\left|\Delta \mathrm{v}_{2}\right|=151-150.5=0.5$
$\left|\Delta v_{3}\right|=152-150.5=1.5$
$\left|\Delta v_{4}\right|=149-150.5=1.5$

Give your exam preparation the technology boost! Solve MCQs of this book on Quill - The Padhai App

Subject-wise \& Course-wise subscription options starting from ₹ 399/-

Available for MHT-CET, NEET \& JEE

- Practice chapter-wise \& full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion

Scan QR Code to download the app

- Option to save questions for future reference

Visit Our Website

Publications ${ }^{\circledR}$ Pvt. Ltd.

Address:
$2^{\text {nd }}$ floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400080
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org Email: mail@targetpublications.org

Explore our range of NEET \& JEE Books

[^0]: (C) Target Publications Pvt. Ltd.

 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

[^1]: This reference book is transformative work based on textual contents published by National Council of Educational Research and Training (NCERT). We the publishers are making this book which constitutes as fair use of textual contents which are transformed in the form of Multiple Choice Questions and their relevant hints, with a view to enable the students to understand, memorize and reproduce the same in NEET (UG) examination.

 This work is purely inspired by the paper pattern prescribed by NTA (National Testing Agency). Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.
 No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

