SAMPLE CONTENT

Interference of Light

COMMON UNIVERSITY ENTRANCE TEST

E (UG

 Based on notified syllabus prescribed by NTA

1601 MCQs

LOADED WITH AMAZING FEATURES

A Caution 🗒 Topic Test 🛛 📅 Connections

Concept Videos Subtopic wise MCQs Smart Key/Thinking Hatke

PHYSICS

Ms. Meenal lyer M.Sc., B.Ed.

Ms. Ketki Deshpande M.Sc.

Target Publications® Pvt. Ltd.

CUET (UG) Physics

Salient Features

- *General Transformation of the second second*
- Synopsis to offer a crisp overview of the chapter
- Subtopic wise segregation of MCQs for efficient practice
- Connections, Cautions designed to impart holistic learning
- A list of Important formulae provided via Q.R. code for quick revision
- Video links provided via Q.R codes for boosting conceptual retention
- Detailed solutions provided for better understanding
- Inclusion of Smart keys/Thinking Hatke to promote lateral thinking and problem-solving ability
- Topic Test provided for self-assessment at the end of each chapter
- Solution to Topic Test accessible via Q.R. code
- Includes Passage-based MCQs with Answers (Solution provided through Q.R. code)
- Includes relevant questions of CUCET 2021
- Includes Question Paper of CUET (UG) 2022–6th August (Slot 2) (Solution provided through Q.R. Code)

Scan the adjacent QR code in *Quill - The Padhai App* to access the list of Important formulae segregated chapter-wise

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd. No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

Common University Entrance Test, CUET (UG) is a pivotal juncture in a student's academic journey. It is a single-window opportunity for the students to seek admission in the premier institutions for undergraduate courses after class XII.

Target Publications, with more than a decade of experience and expertise in the domain of competitive examination, offers "**CUET** (**UG**) **Physics**" for all the CUET (**UG**) aspirants. This book is compiled according to the notified syllabus prescribed by NTA for CUET (**UG**).

It is a complete preparation and practice book with the unmatched comprehensive amalgamation of theory, MCQs, and the tools that will be needed to clear the exam successfully.

The content of this book is arranged in a logical sequence to enable strategic learning. It provides the students with scientifically accurate context, several study techniques, and relevant supporting details essential for a better understanding of the concepts of Physics.

The chapter begins with '**Synopsis'** and is followed by '**Multiple Choice Questions'** (MCQs). The questions in the MCQs section are specially created and compiled to help students revise concepts as well as to give them practice of questions which require understanding of multiple-concepts. To aid students, detailed solutions are provided for difficult questions.

While ensuring the complete coverage of the syllabus in an effortless and easy to grasp format, emphasis is also given to optimize students learning outcomes. Keeping the following key objectives in mind:

Time management, easy memorization, revision, and non-conventional yet simple methods for MCQ solving, we have infused several features such as, **Caution, Connections, Smart Key and Thinking hatke**.

Topic Test is provided at the end of each chapter for self evaluation. Solution to Topic Test can be viewed by scanning the QR code provided at the end of each chapter.

A section of **Passage-based MCQs** covering a wide range of concepts is included at the end of the book. These passages are segregated chapter-wise and their solutions can be viewed though Q.R. code in a pdf format.

Question paper of CUET (UG) held on 6th August (Slot - 2) 2022 is provided to offer students glimpse of the complexity of questions asked in entrance examination, solution to which is provided through Q.R. Code. The paper has been split topic wise to let the students know which of the topics were more relevant in the latest examination.

We are confident that this book will cater to the needs of students across varied backgrounds and effectively assist them to excel in the examination.

We hope the book benefits the learner as we have envisioned.

Publisher

Edition: Second

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

Disclaimer

This reference book is based on the CUET (UG) syllabus prescribed by National Testing Agency (NTA). We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

© reserved with the Publisher for all the contents created by our Authors.

No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Solution to CUET (UG) 2 6th August (Slot - 2)

CONTENTS

No.	Topic Name	Page No.
1.	Electric charges and fields	1
2.	Electrostatic potential and capacitance	15
3.	Current electricity	29
4.	Moving charges and magnetism	52
5.	Magnetism and matter	69
6.	Electromagnetic induction	82
7.	Alternating current	91
8.	Electromagnetic waves	106
9.	Ray optics and optical instruments	114
10.	Wave optics	129
11.	Dual nature of radiation and matter	145
12.	Atoms	156
13.	Nuclei	170
14.	Semiconductor electronics: materials, devices and simple circuits	183
15.	Communication systems	197
	Passage-based MCQs	205
	CUET (UG) 2022 Question Paper 6th August (Slot - 2)	229

Note: Symbol indicates the question can either be solved by applying a 'Smart Key' or by 'Thinking Hatke'

'Caution' makes students watchful against commonly made mistakes

Connections' interlink concepts covered in different chapters

പ്പ

Broad features of CUET (UG)

	Mode	of Examination	: Computer	Based Te	st (CBT) mode	
Sections	Subjects/ Tests	Questions to be Attempted	Marks per Question	Total Marks	Question Type	Duration
Section IA - Languages Section IB - Languages	There are 13 different languages. Any of these languages may be chosen. There are 20 Languages. Any other language apart from those offered in Section I A may be chosen.	40 questions out of 50 in each language	5	200	 Language to be tested through Reading Comprehension based on different types of passages–Factual, Literary and Narrative, [Literary Aptitude and Vocabulary] MCQ Based Questions 	45 Minutes for each language
Section II - Domain	There are 27 Domains specific Subjects being offered under this Section. A candidate may choose a maximum of Six Domains as desired by the applicable University/ Universities.	40 questions out of 50 in each subject	5	200	 Input text can be used for MCQ Based Questions MCQs based on syllabus given on NTA website 	45 Minutes for each Domain Specific Subjects
Section III General Test	For any such undergraduate programme/ programmes being offered by Universities where a General Test is being used for admission.	60 questions out of 75	5	300	 Input text can be used for MCQ Based Questions General Knowledge, Current Affairs, General Mental Ability, Numerical Ability, Quantitative Reasoning (Simple application of basic mathematical arithmetic/algebra geometry/mensuration /stat taught till Grade 8), Logical and Analytical Reasoning 	60 Minutes

• One mark will be deducted for a wrong answer.

• Unanswered/Marked for Review will be given no mark (0).

Candidates are advised to visit the NTA CUET (UG) official website https://cuet.samarth.ac.in/ for latest updates regarding the Examination.

How This Book Covers The Entire Syllabus of CUET (UG) Physics

CUET (UG) Syllabus	Chapter	Subtopic	Subtopic name
	no.	no.	-
UN Electric charges and their concernation			Electric charge
Electric charges and their conservation	1	1.2	Coulomb's low
coulomb's law – force between two point charges	I	1.0	
Forces between multiple charges;	1	1.7	Forces between multiple charges
superposition principle			
Continuous charge distribution	1	1.13	Continuous charge distribution
Electric field, electric field due to a point	1	1.8	Electric field
charge			
Electric field lines	1	1.9	Electric field lines
Electric dipole, electric field due to a dipole	1	1.11	Electric dipole
Torque on a dipole in a uniform electric field	1	1.12	Dipole in a uniform external field
Electric flux	1	1.10	Electric flux
Statement of Gauss's theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet, and uniformly charged thin spherical shell (field inside and outside)	1	1.14, 1.15	Gauss's law, Applications of Gauss's law
Electric potential, potential difference	2	2.2	Electrostatic potential
Electric potential due to a point charge, a dipole and system of charges	2	2.3, 2.4, 2.5	Potential due to a point charge, Potential due to an electric dipole, Potential due to a system of charges
Equipotential surfaces	2	2.6	Equipotential surfaces
The electrical potential energy of a system of two point charges, and electric dipoles in an electrostatic field	2	2.7, 2.8	Potential energy of a system of charges, Potential energy in an external field
Conductors and insulators, free charges, and bound charges inside a conductor	1	1.3	Conductors and insulators
Dielectrics and electric polarization	2	2.10	Dielectrics and polarisation
Capacitors and capacitance	2	2.11	Capacitors and capacitance
The combination of capacitors in series and in parallel	2	2.14	Combination of capacitors
The capacitance of a parallel plate capacitor with and without dielectric medium between the plates	2	2.12, 2.13	The parallel plate capacitor, Effect of dielectric on capacitance
Energy stored in a capacitor	2	2.15	Energy stored in a capacitor
Van de Graaff generator	2	2.16	Van de Graaff generator
UNIT	II: Curren	t Electricity	
Electric current	3	3.2	Electric current
The flow of electric charges in a metallic	3	3.3	Electric currents in conductors
conductor, drift velocity and mobility, and			
their relation with electric current			
Ohm's law, electrical resistance, V-I	3	3.4,3.5,3.6	Ohm's Law, Drift of electrons and the
cnaracteristics (linear and non-linear)			origin of resistivity, Limitations of ohm's law

CUET (UG) Syllabus	Chapter	Subtopic	Subtopic name
Electrical energy and power	110 . 3	110. 3 Q	Electrical energy nower
Electrical energy and power	5	5.7	Electrical energy, power
Electrical resistivity and conductivity	2	27	Desistivity of somissions were signal.
carbon resistors, colour code for carbon resistors	3	3./	Resistivity of various materials
Series and parallel combinations of resistors	3	3.10	Combination of resistors- series and parallel
Temperature dependence of resistance	3	3.8	Temperature dependence of resistivity
The internal resistance of a cell, potential	3	3.11	Cells, emf, internal resistance
difference, and emf of a cell			
combination of cells in series and in parallel	3	3.12	Cells in series and in parallel
Kirchhoff 's laws and simple applications	3	3.13	Kirchhoff's rules
Wheatstone bridge	3	3.14	Wheatstone bridge
Metre bridge	3	3.15	Meter bridge
Potentiometer – principle, and applications to	3	3.16	Potentiometer
measure potential difference, and for			
comparing emf of two cells; measurement of			
internal resistance of a cell			
UNIT III: Magneti	c Effects of	Current and	l Magnetism
Concept of the magnetic field, Oersted's	4	4.1	Intoduction
experiment			
Biot - Savart law and its application to current	4	4.5	Magnetic field due to a current element,
carrying circular loop			Biot-Savart law
Ampere's law and its applications to infinitely	4	4.7, 4.8	Ampere's circuital law, The solenoid
long straight wire, straight and toroidal solenoids			and the toroid
Force on a moving charge in uniform	4	4.3, 4.4	Motion in a magnetic field, Motion in
magnetic and electric fields. Cyclotron			combined electric and magnetic field
Force on a current-carrying conductor in a uniform magnetic field. The force between two parallel current-carrying conductors – definition of ampere	4	4.9	Force between two parallel currents, the ampere
Torque experienced by a current loop in a magnetic field; moving coil galvanometer – its current sensitivity and conversion to ammeter and voltmeter	4	4.10, 4.11	Torque on current loop, magnetic dipole, The moving coil galvanometer
Current loop as a magnetic dipole and its magnetic dipole moment. The magnetic dipole moment of a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis.	4	4.10	Torque on current loop magnetic dipole
Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines;	5	5.2	The bar magnet
Earth's magnetic field and magnetic elements	5	5.4, 5.5	The earth's magnetism, Magnetisation and magnetic intensity
Para-, dia- and ferromagnetic substances, with examples. Electromagnets and factors affecting their strengths. Permanent magnets	5	5.6, 5.7	Magnetic properties of materials, permanent magnets and electromagnets

CUFT (UC) Syllabus	Chapter	Subtopic	Subtonic name
	no.	no.	
UNIT IV: Electromagn	etic Inducti	ion and Alte	rnating Currents
Electromagnetic induction; Faraday's law,	6	6.2, 6.3,	The experiments of Faraday and Henry,
induced emf and current		6.4	Magnetic flux, Faraday's law of induction
Lenz's Law	6	6.5	Lenz's law and conservation of energy
Eddy currents	6	6.8	Eddy currents
Self and mutual inductance	6	6.9	Inductance
Alternating currents, Peak and rms value of	7	7.1, 7.2,	Introduction, AC voltage applied to a
alternating current/voltage, Reactance and		7.4, 7.5,	resistor, AC voltage applied to an
impedance		7.6	inductor, AC voltage applied to a
			capacitor, AC voltage applied to a
			series LCR circuit
LC oscillations (qualitative treatment only)	7	7.8	LC oscillations
LCR series circuit	7	7.6	AC voltage applied to a series LCR
			circuit
Resonance, Power in AC circuits, wattless	7	7.7	Power in AC circuit: The power factor
current			
AC generator	6	6.10	AC generator
Transformer	7	7.9	Transformers
UNIT V	: Electroma	agnetic Wav	es
Need for displacement current.	8	8.2	Displacement current
Electromagnetic waves and their	8	8.3	Electromagnetic waves
characteristics (qualitative ideas only).			
Transverse nature of electromagnetic waves			
Electromagnetic spectrum (radio waves,	8	8.4	Electromagnetic spectrum
microwaves, infrared, visible, ultraviolet, x-			
rays, gamma rays) including elementary facts			
about their uses.	UNIT VI. (Ontics	
Reflection of light spherical mirrors mirror	9	92	Reflection of light by spherical mirrors
formula).2	Reflection of light by spherical millions
Refraction of light	9	93	Refraction
total internal reflection and its applications	9	9.0	Total internal reflection
optical fibres	,	2.4	
refraction at spherical surfaces, lenses, thin lens	9	9.5	Refraction at spherical surfaces and by
formula, lens maker's formula, Magnification,			lenses
power of a lens, combination of thin lenses in			
contact combination of a lens and a mirror			
Refraction and dispersion of light through a	9	9.6	Refraction through a prism
prism			
Scattering of light-blue colour of the sky and	9	9.7	Some natural phenomena due to
reddish appearance of the sun at sunrise and			sunlight
sunset			
Optical instruments: Human eye, image	9	9.8	Optical instruments
formation, and accommodation, correction of eye			
detects (myopia and nypermetropia) using lenses.			
(reflecting and refracting) and their magnifying			
powers			
I · · · · · · · ·			

CUET (UG) Syllabus	Chapter no.	Subtopic no.	Subtopic name
Wave optics: Wavefront and Huygens' principle,	10	10.2	Huygens principle
Reflection, and refraction of plane wave at a plane surface using wavefronts, Proof of laws of reflection and refraction using Huygens' principle	10	10.3	Refraction and Reflection of plane waves using Huygens principle
Interference, Young's double hole experiment and expression for fringe width	10	10.5	Interference of light waves and young's experiment
Coherent sources, and sustained interference of light	10	10.4	Coherent and Incoherent addition of waves
Diffraction due to a single slit, width of central maximum, Resolving the power of microscopes and astronomical telescopes	10	10.6	Diffraction
Polarisation, plane polarised light; Brewster's law, uses of plane polarised light and Polaroids	10	10.7	Polarisation
UNIT VII: Dual	Nature of	Matter and l	Radiation
Photoelectric effect	11	11.3	Photoelectric effect
Hertz and Lenard's observations	11	11.4	Experimental study of photoelectric effect
Einstein's photoelectric equation – particle nature of light	11	11.6, 11.7	Einstein's photoelectric equation: energy quantum of radiation, Particle nature of light: the photon
Matter waves – wave nature of particles, de Broglie relation	11	11.8	Wave nature of matter
Davisson-Germer experiment (experimental details should be omitted; only the conclusion should be explained.)	11	11.9	Davisson and Germer experiment
UNIT	VIII: Atom	s and Nuclei	
Alpha - particle scattering experiment, Rutherford's model of atom	12	12.1	Alpha-particle Scattering and Rutherford's Nuclear Model of Atom
Bohr model, Energy levels	12	12.3	Bohr Model of the Hydrogen Atom and Energy Levels
Hydrogen spectrum	12	12.2	Hydrogen Spectrum
Composition and size of nucleus	13	13.1, 13.2	Atomic Masses and Composition of Nucleus, Size of the Nucleus
Atomic masses, isotopes, isobars, isotones	13	13.1	Atomic Masses and Composition of Nucleus
Radioactivity – alpha, beta, and gamma particles/rays, and their properties, Radioactive decay law	13	13.4	Radioactivity and Radioactive Decay Law
Mass-energy relation, mass defect, Binding energy per nucleon and its variation with mass number	13	13.3	Mass-Energy Relation and Binding Energy per Nucleon
Nuclear fission and fusion	13	13.5	Nuclear Fission and Fusion

CUET (UG) Syllabus	Chapter no.	Subtopic no.	Subtopic name
UNIT	IX: Electro	onic Devices	
Energy bands in solids (qualitative ideas only), conductors, insulators, and semiconductors	14	14.2, 14.3, 14.4	Classification of metals, conductors andSemiconductors,Intrinsicsemiconductor,Extrinsicsemiconductor
semiconductor diode – <i>I-V</i> characteristics in forward and reverse bias	14	14.5, 14.6	p-n junction, Semiconductor diode
diode as a rectifier	14	14.7	Application of junction diode as a rectifier
<i>I-V</i> characteristics of LED, photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator	14	14.8	Special purpose p-n junction diodes
Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator	14	14.9	Bipolar junction transistor
Logic gates (OR, AND, NOT, NAND and NOR)	14	14.10	Digital electronics and logic gates
Transistor as a switch	14	14.9	Bipolar junction transistor
UNIT X:	Communi	cation Syster	ns
Elements of a communication system (block diagram only)	15	15.1	Elements of a communication system
bandwidth of signals (speech, TV, and digital data), bandwidth of transmission medium	15	15.2	Bandwidth of signals (Bandwidth of transmission medium)
Propagation of electromagnetic waves in the atmosphere, sky, and space wave propagation	15	15.3	Propagation of electromagnetic waves in the atmosphere, sky and space wave propagation
Need for modulation	15	15.4	Need for modulation
Production and detection of an amplitude- modulated wave	15	15.5	Production and detection of an amplitude-modulated wave

Note: This book covers a few subtopics in addition to the syllabus prescribed by NTA to help students have thorough and complete understanding of the concepts.

Page no. 1 to 81 are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes**

06 Electromagnetic Induction

Content and Concepts

- 6.1 Introduction
- 6.2 The experiments of Faraday and Henry
- 6.3 Magnetic flux
- 6.4 Faraday's law of induction
- 6.5 Lenz's law and conservation of energy

Synopsis

- 6.6 Motional electromotive force
- 6.7 Energy consideration: a quantitative study
- 6.8 Eddy currents
- 6.9 Inductance
- 6.10 AC generator

Smart Key - 2

- i. If a metallic rod of length *l* rotates about one of its ends in a plane perpendicular to the magnetic field, then the induced e.m.f produced across its ends is given by, $e = \frac{B\omega l^2}{2} = Bl^2 \pi v = BAv$
- Here, $\omega = 2\pi v$ = angular frequency of rotation, A = πl^2 = area of circle, v = frequency of rotation. ii. Similarly, for a metallic disc rotating about its own centre, the induced e.m.f. produced between centre

and the edge is given by, $e = \frac{B\omega r^2}{2} = BAv$

Chapter 06: Electromagnetic Induction

Smart Key - 3

i. Formulae of self inductance for different shapes:

Sr. no.	Condition
a.	Circular coil, $L = \frac{\mu_0 \pi N^2 r}{2}$
b.	Square coil, $L = \frac{2\sqrt{2}\mu_0 N^2 a}{\pi}$
c.	Toroid, $L = \frac{\mu_0 N^2 r}{2}$
d.	Solenoid, $L = \frac{\mu_0 N^2 A}{l}$
	If core is of any other magnetic material then
	$L = \frac{\mu N^2 A}{l} \qquad \dots (\mu = \mu_0 \mu_r)$
e.	Coaxial cylinders,
	$L = \frac{\mu_0}{2\pi r} \log_e \frac{R}{r} = \frac{2.303}{2\pi r} \mu_0 \log_{10} \frac{R}{r}$

ii. Formulae of mutual inductance for different shapes:

a. Two concentric coplanar circular coils, $M = \frac{\pi\mu_0 N_1 N_2 r^2}{2R}$ b. Two concentric coplanar square coils, $\mu_0 2\sqrt{2} N_1 N_2 l^2$
$\mathbf{M} = \frac{\pi\mu_0 N_1 N_2 r^2}{2R}$ b. Two concentric coplanar square coils, $\mu_0 2\sqrt{2} N_1 N_2 l^2$
b. Two concentric coplanar square coils, $\mu_0 2\sqrt{2} N_1 N_2 l^2$
$\mu_0 2\sqrt{2} N_1 N_2 l^2$
$M = \frac{\pi L}{\pi L}$
c. Two Solenoids, $M = \frac{\mu_0 N_1 N_2 A}{l}$

- Multiple Choice Questions

맘

6.2 The experiments of Faraday and Henry

- 1. If a magnet is moved towards a coil, the magnitude of induced e.m.f in the coil depends upon _____.
 - (A) length of the magnet
 - (B) breadth of the magnet
 - (C) velocity of the magnet
 - (D) density of the magnet
- A magnet is brought towards a coil (i) speedly
 (ii) slowly then the induced e.m.f./induced charge will be respectively

- (A) More in first case / More in first case
- (B) More in first case/Equal in both case
- (C) Less in first case/More in second case
- (D) Less in first case/Equal in both case
- 3. Two identical circular metal coils A and B are kept on a table in such a way that they are very close, but they do not touch each other. The coil A carries a current and it is slowly increased. What is the response of the coil B?
 - (A) B is attracted by A.
 - (B) B is repelled by A.
 - (C) B is not affected.
 - (D) B is first attracted by A and then repelled.

Page no. 84 to 86 are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes**

										R			Cha	pter ()6: El	ectroi	magr	netic Ir	nduct	ion
2.	Whic	h of t	he fol	lowin	g stat	ement	t is in	correc	ct?	¦ 4.		The r	numb	er of	turns	s in t	he co	oil of	an A	A.C.
	(A)	Both mag	a.c. net.	and	d.c. (lynam	o ha	ive a	field			genera 2.5 n	ator a 1 ² . T	tre 100 The co) and al is	its cr revol	oss-s lving	in a	al are unif	a is orm
	(B)	Both arma	a.c ature.	. and	d.c	. dyn	amo	have	e an			unifor	etic m an	field Igular	of s veloc	trengt trengt trengt	h 0. 60 r	3 Т ad/s. Т	with The va	the alue
	(C)	Both mecl	a.c hanic	an and an and an	d d.o rgy ir	c. dy ito ele	name ctrica	o cor al ener	ivert gy.			(A)	1.25		age f	(B)) 4	.50	K	v.
	(D)	Both	a.c.	and d.	c. dyı	namo	have	slip ri	ngs.			(C) TI	0.75	c		(D) 2	.23		
3.	The comr	outpu	ıt of oris	a d	ynam	o usi	ng a	a spli	tting	5.	•	genera 0.25	ator $\frac{1}{m^2}$.	er of is 500 The c	turn 0 an oil i	s in the s rota	the d area ated	of th at the	an e coi rate	a.c. 1 is of
	(A)	d.c.	_									100 c	ycles	/s in a	n mag	gnetic	field	of 0.2	2 Wb	m^2 .
	(B)	a.c.										The p	eak v	alue o	t the	emt g	enera	40 kV	nearly	ý
	(C)	fluct	uatin	g d.c.								(\mathbf{A})	220	κν kV		(В (Д) 4	40 K V 57 1 k	v	
	(D)	half-	wave	rectif	ied v	oltage						(0)								
							-	ļ	Answ	ers to	MC	Qs								
6.2 :	1.	(C)	2.	(B)	3.	(B)									-					
6.2 :	1.	(C) (A)	2. 2.	(B) (A)	3.	(B)	4.	(A)	5.	(A)										
6.2 : 6.3 :	1. 1. 1	(C) (A) (B)	2. 2. 2	(B) (A)	3. 3. 3	(B) (D)	4.	(A)	5.	(A)	6		7		8	(B)	0	(C)	10	
6.2 : 6.3 : 6.4 :	1. 1. 1. 11.	(C) (A) (B) (D)	2. 2. 2.	(B) (A) (A)	3. 3. 3.	(B) (D) (D)	4. 4.	(A) (D)	5. 5.	(A) (D)	6.	(D)	7.	(D)	8.	(B)	9.	(C)	10.	(C)
6.2 : 6.3 : 6.4 : 6.5 :	1. 1. 1. 11. 1.	(C) (A) (B) (D) (D)	2. 2. 2. 2.	 (B) (A) (A) (B) 	3. 3. 3. 3.	(B) (D) (D) (B)	4. 4. 4.	(A) (D) (B)	5. 5.	(A) (D)	6.	(D)	7.	(D)	8.	(B)	9.	(C)	10.	(C)
6.2 : 6.3 : 6.4 : 6.5 : 6.6 :	1. 1. 1. 11. 1. 1.	(C) (A) (B) (D) (D) (A)	2. 2. 2. 2. 2. 2.	 (B) (A) (A) (B) (B) 	3. 3. 3. 3. 3.	(B) (D) (D) (B) (A)	4. 4. 4. 4.	(A) (D) (B) (C)	5. 5. 5.	(A) (D) (C)	6. 6.	(D) (B)	7.	(D)	8.	(B)	9.	(C)	10.	(C)
 6.2 : 6.3 : 6.4 : 6.5 : 6.6 : 6.8 : 	1. 1. 1. 1. 1. 1. 1.	 (C) (A) (B) (D) (D) (A) (D) 	2. 2. 2. 2. 2. 2. 2.	 (B) (A) (A) (B) (C) 	3. 3. 3. 3. 3. 3.	 (B) (D) (D) (B) (A) (B) 	4. 4. 4. 4. 4.	 (A) (D) (B) (C) (B) 	5. 5. 5.	(A) (D) (C) (B)	6. 6.	(D) (B)	7.	(D)	8.	(B)	9.	(C)	10.	(C)
 6.2 : 6.3 : 6.4 : 6.5 : 6.6 : 6.8 : 6.9 : 	1. 1. 11. 1. 1. 1. 1.	 (C) (A) (B) (D) (D) (A) (D) (D) 	2. 2. 2. 2. 2. 2. 2. 2. 2.	 (B) (A) (A) (B) (C) (B) 	3. 3. 3. 3. 3. 3. 3.	 (B) (D) (D) (B) (A) (B) (B) (B) 	4. 4. 4. 4. 4. 4.	 (A) (D) (B) (C) (B) (B) 	5. 5. 5. 5.	(A) (D) (C) (B) (A)	6. 6.	(D) (B) (A)	7.	(D)	8.	(B) (A)	9.	(C) (C)	10.	(C) (D)
 6.2 : 6.3 : 6.4 : 6.5 : 6.6 : 6.8 : 6.9 : 	1. 1. 11. 1. 1. 1. 1. 1. 1.	 (C) (A) (D) (D) (A) (D) (D) (C) 	 2. 2. 2. 2. 2. 2. 12. 	 (B) (A) (A) (B) (C) (B) (B) (B) (B) 	3. 3. 3. 3. 3. 3. 3.	 (B) (D) (D) (B) (A) (B) (B) 	4. 4. 4. 4. 4. 4.	 (A) (D) (B) (C) (B) (B) 	5. 5. 5. 5.	 (A) (D) (C) (B) (A) 	6. 6.	(D) (B) (A)	7.	(D)	8.	(B) (A)	9.	(C) (C)	10.	(C) (D)

Solutions to MCQs

6.2 The experiments of Faraday and Henry

- 1. (C)
- **2.** (**B**)

The magnitude of induced e.m.f is directly proportional to the rate of change of magnetic flux. Using *Smart Key - 1(i)*,

8

Induced charge doesn't depend upon time. So, whether the magnet moves rapid or slow, induced charge will remain the same.

- **3.** (**B**)
- 6.3 Magnetic flux
- 1. (A)

(A)

2.

 $\phi = \vec{B} \cdot \vec{A}$. The area vector \vec{A} is perpendicular to the surface. So, when the surface is parallel to the magnetic field, the angle between \vec{B} and \vec{A} is 90°. Hence $\phi = 0$

3. (D)

4.

- (A) $\phi = BA = 10^3 \times 10^{-2} = 10$ weber
- 5. (A)

$$\begin{split} \varphi &= NBA \cos\theta = 100 \times 0.2 \times 5 \times 10^{-4} \cos \, 60^{\circ} \\ &= 5 \times 10^{-3} \, Wb \end{split}$$

CUET (UG) Physics

6.4 Faraday's law of induction

1. (**B**)

2. (A)

Faraday's laws involve conversion of mechanical energy into electric energy. This is in accordance with the law of conservation of energy.

3. (D)

Whenever magnetic flux linked with a circuit changes, induced e.m.f. is produced and e.m.f. lasts as long as the change in the magnetic flux continues.

4. (D)

As the electron approaches the coil, the current develops in the coil to oppose the change in its magnetic flux. But when electron moves away, then the magnetic field inside the loop decreases and current changes its direction.

5. (D)

Induced e.m.f = rate of change of magnetic flux

$$=\frac{0.8}{0.2}=4$$
 V

6. (D)

$$e = -NA \frac{dB}{dt} = -500 \times 0.15 \left[\frac{0.2 - 1}{0.4} \right] = 150 V$$

7. (D)

$$|\mathbf{e}| = \mathbf{N} \left(\frac{\Delta \mathbf{B}}{\Delta t}\right) \mathbf{A} \cos \theta$$

$$= 1000 \times 1 \times (20 \times 10^{-2})^2 \cos 0 = 40 \text{ V}$$

8. (B)

$$e = -\frac{\text{NBA}(\cos\theta_2 - \cos\theta_1)}{\Delta t}$$
$$= -\frac{2000 \times 0.3 \times 70 \times 10^{-4}}{(\cos 180 - \cos \theta_1)}$$

0.1

$$\therefore$$
 e = 84 V

9. (C)

The magnitude of induced emf is given by

$$|\mathbf{e}| = \frac{d\phi_B}{dt} = \frac{d}{dt} (5t^2 + 3t + 16)$$

= 10t + 3 + 0 = 10t + 3
At t = 4 s,
|\mathbf{e}| = 10 \times 4 + 3 = 43 \text{ V}

10. (C)

$$\phi_1 = 4 \times 10^{-4} \text{Wb}$$

$$\phi_2 = 0.1 \ \phi_1 = 0.4 \times 10^{-4} \text{Wb}$$

$$d\phi = |\phi_2 - \phi_1| = 3.6 \times 10^{-4} \text{Wb}$$

$$dt = t \text{ second}$$

$$e = \frac{d\phi}{dt}$$

$$\therefore \quad 0.72 \times 10^{-3} = \frac{3.6 \times 10^{-4}}{t}$$
$$\therefore \quad t = \frac{3.6 \times 10^{-4}}{0.72 \times 10^{-3}}$$

$$= 0.5$$
 second

$$\frac{dB}{dt} = 10^8 \text{ gauss/s} = 10^4 \text{ T/s}$$
$$I = \frac{e}{R} = \frac{NA(dB/dt)}{R} = \frac{10 \times 10^{-3} \times 10^4}{20} = 5 \text{ A}$$

6.5 Lenz's law and conservation of energy

1. (D)

The energy of the field increases with the magnitude of the field. Lenz's law infers that there is an opposite field created due to increase or decrease of magnetic flux around a conductor so as to hold the law of conservation of energy.

- 2. (B) 3. (B) 4. (B)
- 6.6 Motional electromotive force
- 1. (A)
- 2. (B)

 $e = Bvl = 10^{-3} \times 10^2 \times 3 = 0.3$ volt

3. (A)

5

$$v = 1080 \text{ km/hr} = 1080 \times \frac{5}{18} \text{ m/s} = 300 \text{ m/s}$$

e.m.f developed between the tips of the wing is,

$$e = Blv = 1.75 \times 10^{-5} \times 40 \times 300 = 0.21 V$$

4. (C)
$$|e| = Blv$$

:.
$$B = \frac{e}{lv} = \frac{2}{0.5 \times \frac{300}{60}} = 0.8$$
 tesla

(C)
Using Smart Key
$$e = \frac{1}{2}Bl^{2}\omega = Bl^{2}\pi v$$

$$\therefore \quad e = 0.5 (20 \times 10^{-2})^2 \times 3.14 \times 100 = 6.28 \text{ V}$$

- 2,

6. (B)

Refer Smart Key - 2(ii)

CAUTION

The induced emf is independent of numbers of spokes in the wheel.

6.8 Eddy currents

1. (D) 2. (C) 3. (B) 4. (B)

> When a metallic plate with slots cut in is made to oscillate in the magnetic field, there is damping effect but it is small compared to the case when no slots were cut. Eddy currents are considerably reduced by taking plate with slots and consequently less damping.

5. (B)

88

t

6.9 Inductance

(D) $e = L \frac{dI}{dt}$ $L = \frac{e}{(dI / dt)}$

2. (B)

1.

Using *Smart Key* - 3(*i* - *a*) and (*i* - *c*), For circular coil, $L_1 = \frac{\mu_0 \pi N^2 r}{2}$ For toroid, $L_2 = \frac{\mu_0 N^2 r}{2}$

$$\therefore \qquad \frac{L_1}{L_2} = \pi$$

- **3.** (**B**)
- 4. (B) Given: N = 1000; I = 4A; $\phi = 4 \times 10^{-3}$ Wb.
- $\therefore \quad \text{Total magnetic flux linked with solenoid} = N\phi$

Self inductance,
$$L = \frac{14\psi}{I}$$
(:: $\phi = LI$)
 $L = \frac{1000 \times 4 \times 10^{-3}}{I} = 1 H$

$$\therefore \qquad \mathbf{L} = \frac{1000 \times 4 \times 10^{-4}}{4} = 1 \text{ H}$$

6.

Using Smart Key - 3(i - a), $\therefore \qquad L = \frac{\mu_0 N^2 \pi r}{2}$ $L = \frac{4\pi \times 10^{-7} \times 500 \times 500 \times \pi \times 0.05}{2} = 25 \text{ mH}$

- (A) Using *Smart Key* - 3 (*ii* - a), $M = \frac{\pi \mu_0 N_1 N_2 r^2}{2R}$ Here N₁ = N₂ = 1, r = r₂, R = r₁ $M = \frac{\mu_0 \pi r_2^2}{2r_1}$
- 7. (D) $e = M \left| \frac{dI}{dt} \right| = 1.25 \times 80 = 100 V$
- 8. (A) $e_{2} = M \frac{dI_{1}}{dt} \Rightarrow I_{2} R_{2} = M \frac{dI_{1}}{dt}$ $\Rightarrow 0.4 \times 5 = 0.5 \times \frac{dI_{1}}{dt} \Rightarrow \frac{dI_{1}}{dt} = 4 \text{ A/s.}$ 9. (C)

$$\phi = MI \Longrightarrow M = \frac{1.2 \times 10^{-2}}{0.01} = 1.2 \text{ H}$$

$$e_2 = M \frac{dI_1}{dt} = 6 \times \left| \frac{(2-2)}{10^{-3}} \right| = 0 V$$

THINKING HATKE – Q. 10

In secondary coil, e.m.f. induces only when current through primary changes.

11. (C) Using Smart Key - 3 (ii - a), $M = \frac{\mu_0 N_1 N_2 \pi r_1^2}{2r_2}$ $= \frac{4\pi \times 10^{-7} \times 100 \times 1000 \pi (0.02)^2}{2 \times 0.2}$ $= 39.44 \times 10^{-5} H$ $e = M \left| \frac{dI}{dt} \right| = 39.44 \times 10^{-5} \frac{(7-5)}{4 \times 10^{-2}} \text{ volt}$ ∴ $e = 19.72 \times 10^{-3} \text{ V} = 19.72 \text{ mV}$

12. (B) Using Smart Key - 3 (ii - c), $M = \frac{\mu_0 N_p N_s A_2}{l}$ $M = \frac{(4\pi \times 10^{-7}) \times 2000 \times 300 \times (1.2 \times 10^{-3})}{0.30}$ $e = M \frac{dI}{dt}$ ∴ $e = \frac{(4\pi \times 10^{-7}) \times 2000 \times 300 \times (1.2 \times 10^{-3})}{0.30} \times \frac{4}{0.25}$ ∴ $e = 4.8 \times 10^{-2} \text{ volt}$

6.10 AC generator

1. (A)

Rotation of magnet in the dynamo creates the variable flux which in turn produces the induced current.

2. (D)

Only a.c. dynamo has slip rings.

(C) Commutator converts a.c. into fluctuating dc.

4. (B)

3.

....

Induced emf e = NBA ω sin ω t For maximum value of voltage or emf, sin ω t = 1 e₀ = NBA ω

 $= 100 \times 0.3 \times 2.5 \times 60$ = 4500 = 4.5 × 10³ volt = 4.5 kV

5. (D)

 $e_0 = \omega NBA = (2\pi\nu)NBA$ $= 2 \times 3.14 \times 100 \times 5000 \times 0.2 \times 0.25$ = 157 kV

CUET	(UG) Physics	
Ż	Торіс	vic Test
1.	 Mutual induction is the production of induced e.m.f. in a coil due to changes of current in the (A) neighbouring coil. (B) same coil. (C) both (A) and (B). (D) neither (A) nor (B) 	 10. A varying current in a coil changes from 10 A to zero in 0.5 s. If the average e.m.f induced in the coil is 220 V, then the self-inductance of the coil is (A) 5 H (B) 10 H (C) 11 H (D) 22 H 11. The co-efficient of mutual induction between two circuits is equal to the e m f produced in
2.	The self inductance of a inductive coil is 0.4 H.The current in the coil is decreasing at the rate of 2A per second. What is the e.m.f induced in the coil?(A) 4.8 V(B) 1.8 V(C) 1.6 V(D) 0.8 V	 (A) kept steady at 1 ampere (B) cut off of 1 ampere level (C) changed at the rate of 1 A/s
3.	Current passing through a coil is changing at the rate of 1.5 ampere per second. If it induces e.m.f of 45 volt, then self inductance of the coil will be(A) 30 H(B) 67.5 H(C) 60 H(D) 33.3 H	 (D) changed from 1 A/s to 2 A/s 12. A coil of 50 turns is pulled in 0.02 s between the poles of a magnet, where its area includes 31 × 10⁻⁶ Wb to 1 × 10⁻⁶ Wb. The average e.m.f. is
4.	 Self-inductance of a solenoid depends on (A) the number of turns N of the coil only. (B) the area of cross-section A and length <i>l</i> of the coil only. (C) the permeability of the core of the coil only. (D) the number of turns, the area of cross section, length of the coil and permeability of the core of the coil 	(A) 7.5×10^{-2} V (B) 7.5×10^{-3} V (C) zero (D) 7.5×10^{-4} V 13. In a coil of area 10 cm ² and 10 turns, the magnetic field is directed perpendicular to the plane and is changing at the rate of 10^8 gauss/s. The resistance of the coil is 20Ω . The current in the coil is (A) 5 ampere (B) 0.5 ampere
5.	The magnetic field linked with a coil changes from 1 weber to 0.1 weber in 0.1 second. The e.m.f induced will be (A) 9 V (B) 10 V (C) 0.009 V (D) 1/9 V	 (C) 0.05 ampere (D) 5 × 10° ampere 14. When the north pole of a magnet is rapidly brought towards a coil (A) the face of the coil facing the north pole becomes a south pole. (D) the face of the coil facing the north pole becomes a south pole.
6.	Self-inductance of two identical coils is 0.1 H. They are wound over each other. Mutual inductance will be (A) 0.1 H (B) 0.2 H (C) 0.001 H (D) 0.05 H	 (B) the face of the coll facing the north pole becomes a north pole. (C) no induced e.m.f is produced. (D) the coil is deflected. 15. A conducting circular loop is placed in a
7.	If the flux associated with a coil changes at the rate of 240 weber in every 2 minutes, then the induced e.m.f. is (A) 2 volt (B) 0.20 volt (C) 3 volt (D) 6 volt	uniform magnetic field 0.04 T with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at 2 mm/s. The induced e.m.f. in the loop when the radius is 2 cm will be (A) $= 3.2 \text{ mW}$ (B) $= 4.8 \text{ mW}$
8.	Eddy currents are also known as currents. (A) alternating (B) focault (C) direct (D) peak	(A) $5.2 \ \mu V$ (B) $4.8 \ \mu V$ (C) $0.8 \ \mu V$ (D) $1.6 \ \mu V$
9.	A current through a choke coil of self inductance 2 H decreases at the rate of 0.5 A/s. The e.m.f. developed across the coil is (A) 1.0 V (B) 0.5 V (C) 2.0 V (D) 3.0 V	1. (A) 2. (D) 3. (A) 4. (D) 5. (A) 6. (A) 7. (A) 8. (B) 9. (A) 10. (C) 11. (C) 12. (A) 13. (A) 14. (B) 15. (A)
	Scan the adjacent QR code to down Topic Test in PDF format.	vnload Solution to

Page no. **91** to **206** are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes**

Read the given passages and answer the questions based on it.

01 Electric Charges and Fields

Passage - I (for Q. 1 to Q. 5)

The electric interaction between two charged bodies can be expressed in terms of the forces they exert on each other. Coulomb made the first quantitative investigation of the force between electric charges. He used point charges at rest to study the interaction. In due course, he formulated a law.

This law states that the force of attraction or repulsion between two point charges at rest is directly proportional to product of the charges and inversely proportional to square of the distance between them. This force acts along the line joining the two charges. If q_1 and q_2 are the charges separated by distance r then force of attraction or repulsion between them is

given by, $F = K \frac{|q_1q_2|}{r^2}$ where, K is proportionality constant which equals to $\frac{1}{4\pi\epsilon_0}$.

- 1. A charge of q C is divided into two charges q_1 and q_2 and kept at distance r from each other so that they will exert maximum force upon each other then,
 - (A) $q_1 = q_2 = \frac{q}{2}$ (B) $q_1 = 0, q_2 = q$ (C) $q_1 = q, q_2 = 0$ (D) $q_1 = \frac{q}{4}, q_2 = \frac{3q}{4}$
- Two point charges separated by distance r in vacuum are attracting each other by force of 80 N. If the entire system is kept in medium of dielectric constant 80 without changing other parameters then, new force will be
 - (A) 1 N repulsion (B) 1 N attraction
 - (C) 80 N repulsion (D) 80 N attraction
- 3. The charges and coordinates of two charged particles held fix in xy plane are, $q_1 = +5.0 \ \mu\text{C}$, $x_1 = 4 \ \text{cm}$, $y_1 = 0 \ \text{cm}$, $q_2 = -2.0 \ \mu\text{C}$, $x_1 = 0 \ \text{cm}$, $y_1 = 3 \ \text{cm}$ then magnitude of electrostatic force acting on q_2 will be

(A)	36 N repulsion	(B)	36 N attraction
(C)	10 N repulsion	(D)	10 N attraction

 Two tiny conducting balls of identical mass and identical charge q hang from non conducting threads of length L. The equilibrium separation between the balls assuming θ between them is very small will be

5. Two spheres each having mass 1 kg and charge $50 \ \mu\text{C}$ are placed on an inclined plane as shown in the figure. Neglecting the force of friction, find the acceleration of sphere A.

Passage - II (for Q. 6 to Q. 10)

A system of closely spaced electric charges forms a continuous charge distribution.

On macroscopic level, quantisation of charges is ignored. For a charged body with reasonable size, its charge distribution is treated as continuous.

The continuous distribution can be categorized as linear, surface and volume charge distribution.

When charge is distributed along a line, charge distribution is called linear charge distribution. When charge is distributed over a surface, charge distribution is called surface charge distribution. When charge is distributed over the volume of an object, it is called volume charge distribution.

6. How many electrons need to be added to an isolated spherical conductor of radius 10 cm to produce an electric field of 1000 N/C, just outside the conductor?

(A)
$$6.9 \times 10^9$$
 (B) 6.9×10^{20}
(C) 3.5×10^{10} (D) 3.5×10^{20}

 A charge is distributed along an infinite curved line in space with linear charge distribution λ. Then amount of force on a point charge q kept at a certain distance from a line depends upon

(A)
$$q \int \frac{\lambda}{r^2}$$
 (B) $q \int \frac{\lambda}{r^2} dl \hat{r}$
(C) $q \int \frac{\lambda}{r} \hat{r} dl$ (D) $q \int \frac{\lambda}{r}$

Page no. 206 to 228 are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes**

CUET (UG) - 2022 Question Paper

6th August 2022 (Slot - 2)

Electric charges and fields

- 1. Electric field at the surface of a conducting shell of radius 'r' is measured as X. Electric field at a distance 3r from the centre of the shell is:
 - (A) (B) (C) (D) Х

Electrostatic potential and capacitance

2. The equivalent capacitance between the points A and B in the network given below is-

(C)
$$\frac{40}{3}\mu F$$
 (D) 10 μ

A charge + 10μ C is placed at (0 mm, 0 mm) 3. Another charge -5μ C is moved from (3 mm, 0 mm) to (0 mm, 3 mm). Work done by the external agency is

(A)	0 J	(B)	-150 J
(C)	+ 150 J	(D)	- 300 J

Current electricity

(A) 20 µF

- 4. In a meter bridge, null point is found at a distance of 20 cm from the end A, then the resistance of 10 Ω is replaced by another resistance of 20 Ω , the null
 - (A) 20 cm
 - (B) 30 cm
 - (C) 15 cm
 - (D) 40 cm

Changing current through 1V cell and through 5. 2 Ω resistor respectively is

Correct temperature dependence of Resistivity 6. of copper (ρ) is shown by

7. The mobility of charge carriers increases with

- (A) increase in average collision time interval
 - increase in the electric field (B)
 - increase in the mass of the charge carriers (C)
- decrease in the charge of the mobile carriers (D)

Moving charges and magnetism

8. Consider an infinitely long conductor XY carrying current (x) A. A rectangular loop carrying current 2 A is placed parallel to it in the same plane. The two conductors are found to exert a force of 1.8×10^{-5} N/m. Find the value of x.

Give your CUET (UG) exam preparation the **TECHNOLOGY BOOST!**

Practice more than 5000 MCQs of PCMB for just ₹999/-

Our books to help you crack the CUET (UG) Exam

ractice Test

() (2 (3 (a) (b) (b)

(A)- 40"

(B)+ 40°

(C)- 80°

(0)-20

Cet the next one right too

Which of the following temperature will read the same value on Celsius and Fahrenheit

73

AP

Scan QR Code to download the app

Visit Our Website

Transforming lives through learning.

2nd floor, Aroto Industrial Premises CHS, Above Surya Eye Hospital, 63-A, P. K. Road, Mulund (W), Mumbai 400 080

Tel: 88799 39712 / 13 / 14 / 15 Website: www.targetpublications.org Email: mail@targetpublications.org

Explore our range of **NEET & JEE Books**

