Sthmphy CONHANH

BASED ON THE LATEST SYLLABUS OF MHT-CET

In butterflies like morpho butterfly, interference and diffraction of light produce varying colours on the wings instead of pigmentation.

XI

4861 MCQs

MHT-CET
 TRIUMPH
 phrsics

4861 MCQs

Salient Features

- Includes all the chapters of Std. XII as per the latest MHT-CET Syllabus
(T) Includes '4861' MCQs
© Quick Review and exhaustive subtopic wise coverage of MCQs
Compilation of all 'Important Formulae' \& 'Fundamental Constants' in relevant chapters
T Solved Previous Years' MHT-CET questions till 2023
(G) Evaluation Test for each chapter
(T) Two Model Question Papers with answer keys (Solutions provided through Q.R. codes)

To Two Question Papers \& Answer Keys of MHT-CET 2023 (Solutions provided through Q.R. codes)

- Includes Smart Keys (Key Notes For Good Practice, Shortcuts, Mindbenders, Caution, Thinking Hatke)
(T) 'Real-world applications' in each chapter

Special inclusion: ‘The physics of’ to engage students in scientific enquiry.
TVideo/pdf links via QR codes for boosting conceptual retention
(Answer keys for all the chapters and Evaluation Tests at the end of book
\rightarrow Solutions to MCQs and Evaluation Test can be accessed through Q.R. code given at the end of each chapter

Printed at: Print to Print, Mumbai
© Target Publications Pvt. Ltd.
No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.
"Don't follow your dreams; chase them!" A quote by Richard Dumbrill is perhaps the most pertinent for one who is aiming to crack entrance examinations held after Std. XII. We are aware of the aggressive competition a student appearing for such career-defining examinations experiences and hence wanted to create books that develop the necessary knowledge, tools, and skills required to excel in these examinations.
For the syllabus of MHT-CET, 80% of the weightage is given to the syllabus for XII ${ }^{\text {th }}$ standard while only 20% is given to the syllabus for $\mathrm{XI}^{\text {th }}$ standard (with inclusion of only selected topics).

We believe that although the syllabus for Std. XII and XI and MHT-CET is aligned, the outlook for studying the subject should be altered based on the nature of the examination. To score well in the MHT-CET, a student has to be not just good with the concepts but also quick to complete the test successfully. Such ingenuity can be developed through sincere learning and dedicated practice.

As a first step to MCQ solving, students should start with elementary questions. Once momentum is gained, complex MCQs with a higher level of difficulty should be practised. Such holistic preparation is the key to succeeding in the examination!
Target's Triumph MHT-CET Physics Standard XII book which covers all the chapters of Std. XII has been designed to achieve the above objectives. Beginning with basic MCQs, the book proceeds to develop competence to solve complex MCQs. It offers ample practice of recent questions from MHT-CET examinations. It also includes solutions (via QR codes) that provide explanations to help students learn how to solve the MCQs.

The sections of Quick Review, Formulae, Fundamental Constants and MCQs (Classical, Critical, Concept Fusion, Previous Years' MHT-CET Questions, Evaluation Test) form the backbone of every chapter and ensure adequate revision.

To optimise learning efficiency, multiple study techniques are included in every chapter in the form of Smart Keys (Key Notes For Good Practice, Shortcuts, Mindbenders, Caution, Thinking Hatke).

The two Model Question Papers given at the end of the book are specially prepared to gauge the student's preparedness to appear for the MHT-CET examination. Two MHT-CET 2023 Question Papers have been provided to offer students a glimpse of the complexity of the questions asked in the examination.

All the features of this book pave the way for a student to excel in the examination. The features are designed keeping the following elements in mind: Time management, easy memorization or revision, and nonconventional yet simple methods for MCQ solving. The features of the book presented on the next page will explain more about them!
We hope the book benefits the learner as we have envisioned.
Publisher
Edition: Second
The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

Disclaimer

[^0]Quick Review includes tables/charts to summarize the key points of important concepts in the chapter.
This is our attempt to help students to reinforce key concepts.

Every section is segregated sub-topic wise.
This is our attempt to cater to individualistic pace and preferences of studying a chapter in students and enable easy assimilation of questions based on the specific concept.
encompasses challenging questions which test understanding, rational thinking and application skills of students.
This is our attempt to take students from beginner to proficient level in smooth steps.

MHT-CET Previous Years' Questions section encompasses questions from MHT-CET examinations.
This is our attempt to give students practice of MHT-CET questions and advance them to acquire knack essential to solve such questions.

Formulae \& Fundamental Constants cover all of the key formulae and constants in the chapter. This is our attempt to make tools of formulae and constants accessible for students while solving problems and revising at last minute at a glance.

Classical Thinking section encompasses straight forward questions including knowledge based questions.
This is our attempt to revise chapter in its basic form and warm up students to deal with complex MCQs.

Concept Fusion section encompasses questions whose solutions require knowledge of concepts covered in different subtopics of same chapter or from different chapters.
This is our attempt to develop cognitive thinking in the students essential to solve questions involving fusion of multiple key concepts.

Smart Keys comprise a set of remarkable study techniques contrived to benefit students. This is our attempt to promote quick, innovative, and divergent thinking as well as enable the students to perceive the underlying depth and implications of concepts.

Shortcuts incorporate important theoretical or formula based short tricks, beneficial in solving MCQs.

Caution apprises students about mistakes often made ${ }^{\circ}$ while solving MCQs.

The physics of illustrates real life applications or examples related to the concept discussed.
This is our attempt to link learning to the life and make the students conscious of how Physics has touched entire spectrum of life.

- There will be three papers of Multiple Choice Questions (MCQs) in 'Mathematics', 'Physics and Chemistry' and 'Biology' of 100 marks each.
- Duration of each paper will be 90 minutes.
- Questions will be based on the syllabus prescribed by Maharashtra State Board of Secondary and Higher Secondary Education with approximately 20% weightage given to Std. XI and 80% weightage will be given to Std. XII curriculum.
- Difficulty level of questions will be at par with JEE (Main) for Mathematics, Physics, Chemistry and at par with NEET for Biology.
- There will be no negative marking.
- Questions will be mainly application based.
- Details of the papers are as given below:

Paper	Subject	Approximate No. of Multiple Choice Questions (MCQs) based on Std. XI		Mark(s) Per Question
	Total Marks			
Paper I	Mathematics	10	40	2
Paper II	Physics	10	40	100
	Chemistry	10	40	1

- Questions will be set on
i. the entire syllabus of Std. XII of Physics, Chemistry, Mathematics and Biology subjects prescribed by Maharashtra Bureau of Textbook Production and curriculum Research, Pune, and
ii. chapters / units from Std. XI curriculum as mentioned below:

Sr. No.	Subject	Chapters / Units of Std. XI
1	Physics	Motion in a plane, Laws of motion, Gravitation, Thermal properties of matter, Sound, Optics, Electrostatics, Semiconductors
2	Chemistry	Some Basic Concepts of Chemistry, Structure of Atom, Chemical Bonding, Redox Reactions, Elements of Group 1 and Group 2, States of Matter: Gaseous and Liquid States, Basic Principles of Organic Chemistry, Adsorption and Colloids, Hydrocarbons
3	Mathematics	Trigonometry - II, Straight Line, Circle, Measures of Dispersion, Probability, Complex Numbers, Permutations and Combinations, Functions, Limits, Continuity
4	Biology	Biomolecules, Respiration and Energy Transfer, Human Nutrition, Excretion and osmoregulation

Sr. No.	Textbook Chapter No.	Chapter Name	Page No.
1	1	Rotational Dynamics	1
2	2	Mechanical Properties of Fluids	48
3	3	Kinetic Theory of Gases and Radiation	90
4	4	Thermodynamics	114
5	5	Oscillations	137
6	6	Superposition of Waves	172
7	7	Wave Optics	209
8	8	Electrostatics	244
9	9	Current Electricity	282
10	10	Magnetic Fields due to Electric Current	311
11	11	Magnetic Materials	346
12	12	Electromagnetic Induction	365
13	13	AC Circuits	389
14	14	Dual Nature of Radiation and Matter	410
15	15	Structure of Atoms and Nuclei	436
16	16	Semiconductor Devices	464
		Answer Key	585
		Model Question Paper I \& Answer Key	514
		Model Question Paper II \& Answer Key	518
		MHT-CET 12	522
	MHT-CET 15 $5^{\text {th }}$ May, 2023 Question Paper \& Answer Key	527	

Practice test Papers are the only way to assess your preparedness for the Exams.
Scan the adjacent QR code to know more about our "MHT-CET Physics Test Series with
Answer Key \& Solutions" book for the MHT-CET Entrance examination.

Chapter

16

Semiconductor Devices

Hearing Aid
Hearing aid is an electronic device which helps hearing-impaired people listen to the sounds. Within the hearing aid, a microphone takes audio signals from the environment and converts them into electric signals. This electrical signal is further transferred to a transistor where it is amplified, smoothened and filtered out thereby enhancing the audio characteristics of the input signal. As, the transistors are smaller in size, light-weight and requires low current and low voltage values, they are considered as excellent for use.

Chapter Outline

16.1 Introduction
16.2 p-n Junction Diode as a Rectifier
16.3 Special Purpose Junction Diodes
6.3 Special Purpose Junction Diodes
16.4 Bipolar Junction Transistor (BJT)
16.5 Logic gates

Key Notes For Good Practice

- Magnitude of direct current which can be handled by diode is called current rating of diode.
- The use of transformer in a rectifier circuit has two advantages:
i. it helps to step up or step down the AC input voltage as per the requirement of the circuit
ii. it isolates the rectifier circuit from the mains supply to reduce the risk of electric shock
- In a common base transistor amplifier,
i. the input and output signals are in the same phase.
ii. there is no amplification in current of a given signal.
iii. there is an amplification in voltage and power of the given signal.
- In a common emitter transistor amplifier,
i. the input and output signals are out of phase by π or 180°.
ii. there is amplification in the current, voltage and power of the given signal.
- Common emitter transistor amplifier is preferred over common base transistor amplifier due to large current gain.
- \quad The d.c. current gain is always less than 1.
- NOR and NAND gates are called universal gates.

Quick Review

- Till the V_{BE} is less than the barrier potential, the current is very small (nearly zero).
- When V_{BE} is more than the barrier potential, the characteristic is similar to that of a forward biased diode.

- I_{C} is independent of V_{CE} as long as the collector-emitter junction is reverse biased.
- $\quad I_{C}$ is large for large values of I_{B} when V_{CE} is constant.

CE transistor as an amplifier

- For transistor operating as an amplifier, the E-B junction is forward biased while C-B junction is reverse biased.

Current amplification factor (α)

AC gain

Ratio of a small change in collector current (ΔI_{c}) to the small change in emitter current $\left(\Delta I_{E}\right)$ at constant emitter-base voltage $\left(V_{E B}\right)$ is known as ac current gain ($\alpha_{a c}$).
DC gain
Ratio of collector current $\left(I_{C}\right)$ to emitter current $\left(I_{E}\right)$ is known as dc current gain ($\alpha_{d c}$ or α). Practical value of $\alpha_{d c}$ lies between 0.95 to 0.99 i.e., less than 1 .

Base current amplification factor (β)

AC gain

Ratio of a small change in collector current $\left(\Delta I_{C}\right)$ to small change in base current $\left(\Delta I_{B}\right)$ at constant collector emitter voltage $\left(V_{C E}\right)$ is known as ac current gain ($\beta_{a c}$).

DC gain

Ratio of collector current (I_{C}) to base current $\left(I_{B}\right)$ is known as dc current gain ($\beta_{d c}$). β_{dc} always has value >1.

------ Voltage Gain (Av)

Ratio of change in output voltage $\left(\Delta V_{o}\right)$ to change in input voltage $\left(\Delta V_{i}\right)$ is known as voltage gain $\left(A_{v}\right)$.

Power Gain

Ratio of change in output power $\left(\Delta P_{o}\right)$ to the change in input power $\left(\Delta P_{i}\right)$ is known as power gain.

Logic Gates

Formulae

1. Zener diode:

i. Zener current:
a. $\quad\left(\mathrm{I}_{\mathrm{Z}_{\text {min }}}\right)=\left(\mathrm{I}_{\mathrm{Z}_{\text {max }}}\right)-\mathrm{I}_{\mathrm{L}}$
b. $\quad I_{L}=\frac{V_{Z}}{R_{L}}$
c. $\left(\mathrm{I}_{\mathrm{Z}_{\text {max }}}\right)=\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{\mathrm{s}}}$
ii. Series resistance: $\mathrm{R}_{\mathrm{s}}=\frac{\left(\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{z}}\right)}{\mathrm{I}_{\mathrm{m}_{\text {max }}}}$
iii. Zener voltage: $\mathrm{V}_{\mathrm{Z}}=\mathrm{I}_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}$
2. Current in the transistor: $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$
3. Current Gain of transistor:
i. DC current gain $\left(\alpha_{D C}\right): \alpha_{D C}=\frac{I_{C}}{I_{E}}$
ii. Current amplification factor $(\beta): \beta_{D C}=\frac{I_{C}}{I_{B}}$
iii. Relation between α and β :
a. $\quad \alpha_{D C}=\frac{\beta_{D C}}{1+\beta_{\mathrm{DC}}}$
b. $\quad \beta_{\mathrm{DC}}=\frac{\alpha_{\mathrm{DC}}}{1-\alpha_{\mathrm{DC}}}$
iv. AC current gain: $\beta_{\mathrm{AC}}=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}=\frac{\mathrm{i}_{\mathrm{C}}}{\mathrm{i}_{\mathrm{B}}}$

4. Resistance of transistor:

i. Input dynamic resistance: $r_{i}=\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\Delta \mathrm{I}_{\mathrm{B}}}$
ii. Output dynamic resistance: $\mathrm{r}_{\mathrm{o}}=\frac{\Delta \mathrm{V}_{\mathrm{CE}}}{\Delta \mathrm{I}_{\mathrm{C}}}$

5. Voltage gain:

i. $\quad A_{V}=\frac{V_{0}}{V_{\text {in }}}$
ii. $\quad \mathrm{A}_{\mathrm{V}}=-\frac{\Delta \mathrm{V}_{\mathrm{CE}}}{\mathrm{r}_{\mathrm{i}} \Delta \mathrm{I}_{\mathrm{B}}}$
iii. $\quad A_{V}=-\frac{\beta_{A C} R_{L}}{r_{i}}$

1. The output frequency for an $A C$ signal of input frequency " f " is,
$\mathrm{f}=$ For half wave rectifier
$2 \mathrm{f}=$ For full wave rectifier.
2. If both inputs of NAND gates are shorted, then it becomes NOT gate (similar is applicable for NOR gate).

Mindbenders

1. Practical diodes have some finite internal resistance. Hence there is always some internal voltage drop across the diode in a rectifier circuit resulting in some power loss.

Classical Thinking

16.1 Introduction

1. Under which of the following conditions does an avalanche breakdown in a semiconductor diode occur?
(A) When potential barrier is reduced to zero.
(B) When reverse bias exceeds a certain value.
(C) When forward bias exceeds a certain value.
(D) When forward current exceeds a certain value.
2. AC signal is preferred over DC signal because
(A) Generation of AC at a power station is more cost effective than producing DC power.
(B) The transmission of AC power is also more economic than transmitting DC power.
(C) many electronic gadgets require an AC supply.
(D) both (A) and (B).
3. Constant DC voltage is required from a variable AC voltage. Which of the following is correct order of operation?
(A) Regulator, filter, rectifier
(B) Rectifier, regulator, filter
(C) Rectifier, filter, regulator
(D) Filter, regulator, rectifier
4. Which of the following waveforms represent the wave after passing through a diode rectifier?
(A)

(B)

(C)

(D)

16.2 p-n Junction Diode as a Rectifier
5. The use of diode for rectification is:
(A) to produce a steady multidirectional current.
(B) to produce undirectional current from an alternating one.
(C) to rectify any phase difference between the current and voltage.
(D) all of these.
6. A diode rectifier
(A) converts A.C. into D.C.
(B) converts D.C. into A.C.
(C) amplifies A.C. signals.
(D) amplifies D.C. signals.
7. When output of a rectifier is in one direction only, but it's continuously varying in magnitude, then it is called
(A) alternating current
(B) pulsating direct current
(C) direct current
(D) pulsating alternating current
8. In a half wave rectifier, the r.m.s value of the A.C. component of the wave is
(A) equal to D.C. value.
(B) more than D.C. value.
(C) less than D.C. value.
(D) zero.
9. The transformer is used in rectifier circuit,
(A) to isolate the rectifier circuit.
(B) to protect the diode.
(C) to step up or step down the AC input as per requirement.
(D) All of these.
10. In half wave rectifier, the diode
(A) allows current from both positive and negative half cycles from the input.
(B) blocks the current from all the positive half cycles.
(C) blocks the current from all the negative half cycles.
(D) allows current from alternate positive and negative half cycles.
11. In a half wave rectifier the AC input source of frequency 50 Hz is used. The fundamental frequency of the output is
(A) 50 Hz
(B) 150 Hz
(C) 200 Hz
(D) 75 Hz
12. To obtain full wave rectification, we require
(A) only one diode
(B) triode
(C) two diodes
(D) transistor
13. What can be said about the output frequency of a rectifier circuit?
(A) it is always zero.
(B) it is more in case of half wave rectifier.
(C) it is more in case of full wave rectifier.
(D) it is always equal to the input frequency.
14. The effectiveness of a rectifier depends upon the
(A) the magnitude of ripple component in its output.
(B) the value of input voltage.
(C) the magnitude of reverse voltage of the diode.
(D) the value of the input frequency.
15. Which is the correct diagram of a half-wave rectifier?
(A)

(C)

(D)

16. In the diagram, the input is across the terminals A and C and the output is across B and D . Then the output is
(A) zero
(B) same as input
(C) full-wave rectified
(D) half-wave rectified

17. The maximum efficiency of full-wave rectifier is
(A) 100%
(B) 25.20%
(C) 40.6%
(D) 81.2%
16.3 Special Purpose Junction Diodes
18. Which of the following semi-conducting devices is used as voltage regulator?
(A) LASER diode
(B) Zener diode
(C) Solar cell
(D) Photo diode
19. A Zener diode
(A) has negative temperature coefficient of resistance.
(B) has sharp breakdown at low reverse voltage.
(C) rectifies Zener voltage.
(D) works only in forward bias.
20. Zener breakdown takes place if
(A) doped impurity is low.
(B) doped impurity is high.
(C) less impurity in N-type.
(D) less impurity in P-type.
21. When used in a circuit, Zener diode is always
(A) forward biased.
(B) reverse biased.
(C) both forward and reverse.
(D) connected in series.
22. Breakdown voltage of a zener diode is 5 volt. It can regulate the voltage output of a power supply
(A) below 5 volt only.
(B) above 5 volt upto a certain maximum voltage.
(C) from zero volt to a certain maximum voltage.
(D) from zero volt to infinite volt.
23. When a zener diode is used as a voltage stabiliser, it is connected
i. in series with a load.
ii. in parallel with a load.
iii. in forward bias.
iv. in reverse bias.
(A) i and iii are correct
(B) i and iv are correct
(C) ii and iv are correct
(D) ii and iii are correct
24. Electron hole pairs are generated in a photodiode
(A) when light enters in its depletion region.
(B) when light enters in its junction.
(C) when photon energy $\mathrm{h} v>\mathrm{E}_{\mathrm{g}}$.
(D) (A) and (C)
25. Photocurrent in a photodiode depends upon
(A) biasing of junction.
(B) number of electron holes.
(C) density of diode material.
(D) intensity of incident radiation.
26. In photodiode, dark current is
(A) the leakage current.
(B) the current due to minority charge carriers.
(C) the current when light energy emerges out of the diode.
(D) the current when no light energy falls on the diode.
27. In remote controlled receivers, the sensor are
(A) LEDs
(B) Solar cells
(C) Photodiodes
(D) Zener diodes
28. Which of the following is NOT an application of photodiode?
(A) Detection of optical signal
(B) Object counters
(C) Optocouplers
(D) Data profiling
29. Usually Si is used in the designing of photodiodes because
(A) it is portable.
(B) it is easily available.
(C) it requires less forward biasing.
(D) current due to thermally generated minority carriers is quite small.
30. Solar cell is based on the principle of
(A) formation of electron-hole pairs with incident light.
(B) formation of electron-hole pairs with heating.
(C) formation of electron-hole pairs with potential.
(D) all of these
31. A solar cell works on the principle of
(A) photoelectricity.
(B) photographic camera.
(C) photovoltaic conversion.
(D) photosynthesis.
32. A solar cell is a p-n junction operating in
(A) reverse bias condition.
(B) unbiased condition.
(C) forward bias condition.
(D) in both forward and reverse bias condition.
33. In LED, intensity of emitted light
(A) increases with forward current.
(B) decreases with forward current.
(C) increases with reverse current.
(D) decreases with reverse current.
34. A light emitting diode is
(A) always used in forward biased condition.
(B) always used in reverse biased condition.
(C) never used in forward biased condition.
(D) used in both forward and reverse biased position depending upon its application.
35. Colour of light emitted by LED depends on
(A) its reverse bias.
(B) its forward bias.
(C) type of semiconductor.
(D) rectifier.
36. Barrier potential in LED depends on type of
(A) impurity
(B) junction
(C) biasing
(D) semiconductors
37. The brightness of LED can be controlled by
(A) applied potential differences.
(B) by changing the value of series resistance.
(C) by changing the value of parallel resistance.
(D) none of these
38. Barrier potential in $\mathrm{Ga}-\mathrm{As}-\mathrm{P}$ LED is about
(A) 5 volt
(B) 0.5 volt
(C) 1.5 volt
(D) 2.5 volt
39. In a Zener-regulated power supply, a 10 V battery is connected in series with a resistance of 200Ω and a zener diode. The zener diode maintains a constant voltage drop of 5 V across a load resistance of 500Ω. The current drawn by the load resistance will be
(A) 0.025 A
(B) $\quad 0.050 \mathrm{~A}$
(C) $\quad 0.01 \mathrm{~A}$
(D) $\quad 0.015 \mathrm{~A}$

16.4 Bipolar Junction Transistor (BJT)

1. Transistor consists of two junction diodes which are connected
(A) one after another.
(B) back to back.
(C) one across another.
(D) one upon other.
2. Transistors are essentially
(A) power driven devices.
(B) current driven devices.
(C) voltage driven devices.
(D) resistance driven devices.
3. How many electrodes are there in a transistor?
(A) 2
(B) 3
(C) 4
(D) 5
4. The amplifier converts
(A) A.C. into D.C. voltage.
(B) D.C. into A.C. voltage.
(C) low input signal to high output signal.
(D) high input signal to low output signal.
5. The arrow head on the transistor symbol always points in the direction of
(A) flow of holes in the emitter region.
(B) flow of electrons in the emitter region.
(C) minority carriers flow in the emitter region.
(D) majority carriers flow in the emitter region.
6. In a transistor, the emitter current is
(A) slightly more than collector current.
(B) slightly less than collector current.
(C) equal to the collector current.
(D) equal to the base current.
7. The transistors provide good power amplification when they are used in
(A) common collector configuration.
(B) common emitter configuration.
(C) common base configuration.
(D) any configuration.
8. The part of a transistor which is heavily doped to produce a large number of majority carriers is
(A) Base
(B) Emitter
(C) Collector
(D) All of these
9. Least doped region in a transistor
(A) Collector
(B) Base
(C) Emitter
(D) Either emitter or collector
10. In the three parts of a transistor, 'Emitter' is of
(A) large size and lightly doped.
(B) moderate size and heavily doped.
(C) thin size and heavily doped.
(D) large size and moderately doped.
11. The symbol given in figure represents
(A) npn transistor
(B) pnp transistor
(C) Forward biased p-n junction diode
(D) Reverse biased p-n

12. A transistor can be used as \qquad .
(A) a full-wave rectifier
(B) an amplifier
(C) a half-wave rectifier
(D) an insulator
13. In a CE amplifier, the input ac signal to be amplified is applied across
(A) forward biased emitter-base junction
(B) reverse biased collector-base junction
(C) reverse biased emitter-base junction
(D) forward biased collector-base junction
14. In CE transistor amplifier, the collector junction has \qquad bias.
(A) reverse, reverse
(B) forward, forward
(C) reverse, forward
(D) forward, reverse
15. In npn transistor, if $\mathrm{I}_{\mathrm{E}}=$ emitter current, $\mathrm{I}_{\mathrm{B}}=$ base current and $\mathrm{I}_{\mathrm{C}}=$ collector current, then
(A) $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}+\mathrm{I}_{\mathrm{B}}$
(B) $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{E}}$
(C) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}$
(D) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{B}}$
16. When n-p-n transistor is used as an amplifier,
(A) electrons move from base to collector.
(B) holes move from emitter to base.
(C) electrons move from collector to base.
(D) holes move from base to collector.
17. In case of $n-p-n$ transistors, the collector current is always less than the emitter current because
(A) collector side is reverse biased and emitter side is forward biased.
(B) after electrons are lost in the base, only remaining ones reach the collector.
(C) collector side is forward biased and emitter side is reverse biased.
(D) collector being reverse biased attracts less electrons.
18. The input characteristics of a transistor in CE mode is the graph obtained by plotting
(A) I_{B} against I_{C} at constant V_{CE}
(B) I_{B} against V_{BE} at constant V_{CE}
(C) I_{B} against I_{C} at constant V_{BE}
(D) I_{B} against $V_{C E}$ at constant $V_{B E}$
19. The dynamic output resistance (r_{o}) of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor in a common emitter mode is given by
(A) $\quad \mathrm{r}_{\mathrm{o}}=\left.\frac{\Delta \mathrm{V}_{\mathrm{EB}}}{\Delta \mathrm{I}_{\mathrm{E}}}\right|_{\mathrm{V}_{\mathrm{CR}}=\text { constant }}$
(B) $\quad \mathrm{r}_{\mathrm{o}}=\left.\frac{\Delta \mathrm{V}_{\mathrm{CB}}}{\Delta \mathrm{I}_{\mathrm{C}}}\right|_{\mathrm{V}_{\mathrm{CB}}=\text { constant }}$
(C) $\quad r_{\mathrm{o}}=\left.\frac{\Delta \mathrm{V}_{\mathrm{CE}}}{\Delta \mathrm{I}_{\mathrm{C}}}\right|_{\mathrm{V}_{\mathrm{B}}=\text { constant }}$
(D) $\quad r_{o}=\left.\frac{\Delta \mathrm{V}_{\mathrm{CE}}}{\Delta \mathrm{I}_{\mathrm{C}}}\right|_{\mathrm{I}_{\mathrm{B}}=\text { consant }}$
20. A transistor when connected in common emitter mode has a
(A) high input resistance and a low output resistance.
(B) low input resistance and low output resistance.
(C) low input resistance and a high output resistance.
(D) high input resistance and a high output resistance.
21. In the study of transistor as an amplifier, if $\alpha=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{E}}$ and $\beta=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ where, $\mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{B}}$ and I_{E} are the collector, base and emitter currents, then
(A) $\beta=\frac{1-\alpha}{\alpha}$
(B) $\beta=\frac{\alpha}{1-\alpha}$
(C) $\beta=\frac{\alpha}{1+\alpha}$
(D) $\beta=\frac{1+\alpha}{\alpha}$
22. For a transistor, in a common emitter arrangement, the alternating current gain β is given by
(A) $\beta=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}$
(B) $\beta=\frac{\Delta \mathrm{I}_{\mathrm{B}}}{\Delta \mathrm{I}_{\mathrm{C}}}$
(C) $\beta=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{E}}}$
(D) $\beta=\frac{\Delta \mathrm{I}_{\mathrm{E}}}{\Delta \mathrm{I}_{\mathrm{C}}}$

16.5 Logic gates

1. Logic gates are the building blocks of a
(A) digital system.
(B) analog system.
(C) abacus system.
(D) communication system.
2. Boolean algebra is essentially based on
(A) symbol
(B) logic
(C) numbers
(D) truth
3. The Boolean expression for $O R$ function is
(A) $\mathrm{Y}=\mathrm{A}+\mathrm{B}$
(B) $\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}$
(C) $\mathrm{Y}=\mathrm{A}-\mathrm{B}$
(D) $\mathrm{Y}=\mathrm{A}$
4. Which logic gate is similar to a function of two series switches?
(A) AND gate
(B) OR gate
(C) NAND gate
(D) XOR
5. Symbol

(A) NAND gate
(B) NOR gate
(C) NOT gate
(D) XNOR gate
6. The figure represents a digital
(A) XOR gate.
(B) OR gate.
(C) AND gate.
(D) NOR gate.

7. An OR gate gives a logic 1 output
(A) only when all inputs are logical 1.
(B) only when any two inputs are logical 1.
(C) when all inputs are logical 0 .
(D) when any one input is logical 1.
8. The logic behind 'NOR' gate is that which gives
(A) high output when both the inputs are low.
(B) low output when both the inputs are low.
(C) high output when both the inputs are high.
(D) high output when one of the inputs are is high.
9. The output of a NAND gate is 0
(A) if both inputs are 0 .
(B) if one input is 0 and the other input is 1 .
(C) if both inputs are 1 .
(D) either if both inputs are 1 or if one of the inputs is 1 and the other 0 .
10. Which gate can be obtained by shorting both the input terminals of a NOR gate.
(A) OR
(B) NOT
(C) AND
(D) NAND
11. Assertion: NAND or NOR gates are called digital building blocks.
Reason: The repeated use of NAND (or NOR) gates can produce all the basic or complicated gates.
(A) Assertion is True, Reason is True; Reason is a correct explanation for Assertion
(B) Assertion is True, Reason is True; Reason is not a correct explanation for Assertion
(C) Assertion is True, Reason is False
(D) Assertion is False but, Reason is True.
12. Truth table given below represents

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
0	1	0
1	0	0
1	1	0

(A) AND gate
(B) OR gate
(C) NAND gate
(D) NOR gate
13. The given truth table is for

Input		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
0	1	1
1	0	1
1	1	0

(A) NAND gate
(B) AND gate
(C) NOR gate
(D) OR gate

The physics of
Solar cell....

When sunlight strikes a solar cell formed using a p-n junction, it acts like a battery, with + and -terminals. How does a solar cell convert solar energy into electricity?
The answer is at the end of this chapter.

Critical Thinking

16.2 p-n Junction Diode as a Rectifier

1. In half-wave rectifier, if in the output waveform pattern (starting from $\mathrm{T}=0$) the time for first waveform is indicated by $\mathrm{T} / 2$, then the time for third wave form is,
(A) T
(B) $\frac{3 \mathrm{~T}}{2}$
(C) $\quad 2 \mathrm{~T}$
(D) $\frac{5 \mathrm{~T}}{2}$
2. In a full wave rectifier, input A.C. current has a frequency ' v '. The output frequency of current is
(A) $\frac{v}{2}$
(B) v
(C) $2 v$
(D) 320 Hz
3. Ripple frequency at the output of bridge rectifier when the transformer primary is connected to A.C. mains supply is
(A) 100 Hz
(B) 50 Hz
(C) 25 Hz
(D) 75 Hz
4. A full wave rectifier circuit along with the input and output voltages is shown in the figure

The contribution to output voltage from diode 2 is
(A) A, C
(B) B, D
(C) B, C
(D) A, D

16.3 Special Purpose Junction Diodes

1. Consider the following statements (i) and (ii) and identify the correct choice of the given answers.
(i) A Zener diode is always connected in reverse bias.
(ii) The potential barrier of a p-n junction lies between 0.1 to 0.3 V approximately.
(A) (i) and (ii) are correct.
(B) (i) and (ii) are wrong.
(C) (i) is correct but (ii) is wrong.
(D) (i) is wrong but (ii) is correct.
2. A Zener diode has a breakdown voltage of 5 V with a maximum power dissipation of 240 mW . The maximum current the diode can handle will be
(A) 50 mA
(B) 48 mA
(C) 46 mA
(D) 44 mA
3. In a Zener regulator, if source voltage is 30 V , series resistance is of $1.5 \mathrm{k} \Omega$, load resistance is of $2 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{Z}}=10 \mathrm{~V}$, the Zener current will be
(A) 13.33 mA
(B) 5 mA
(C) 10 mA
(D) 8.33 mA
4. The reverse breakdown voltage of a Zener diode is 5.6 V in the given circuit.

The current I_{z} through the Zener is:
(A) 10 mA
(B) 17 mA
(C) 15 mA
(D) 7 mA
5. In the circuit given, the current through the zener diode is

(A) 10 mA
(B) 6.67 mA
(C) 5 mA
(D) 3.33 mA
6. In the circuit shown below, the power dissipated in Zener diode is,

(A) 0.0144 W
(B) 0.144 W
(C) 1.44 W
(D) 14.4 W
7. The graph given below represents the $\mathrm{I}-\mathrm{V}$ characteristics of a Zener diode. Which part of the characteristics curve is most relevant for its operation as a voltage regulator?

(A) ab
(B) bc
(C) cd
(D) de
8. For obtaining maximum power from a solar cell, it should be operated in
(A) knee portion of V-I characteristics.
(B) any portion of V-I characteristics.
(C) level part of V-I characteristics.
(D) falling part of V-I characteristics.
9. A typical solar cell develops a voltage of about
(A) 5 V
(B) 10 V to 15 V
(C) 0.5 V to 1 V
(D) 0.5 mV
10. LED constructed by Silicon carbide, Zinc selenide emit radiation of \qquad -.
(A) blue colour
(B) red colour
(C) orange colour
(D) brown colour
16.4 Bipolar Junction Transistor (BJT)

1. In transistor, forward bias is always smaller than the reverse bias. The correct reason is
(A) to avoid excessive heating of transistor.
(B) to maintain a constant base current.
(C) to produce large voltage gain.
(D) to provide high current.
2. If α-current gain of a transistor is 0.98 . What is the value of β-current gain of the transistor?
(A) 0.49
(B) 49
(C) 4.9
(D) 5
3. Current amplification factor in CE mode amplifier is 99 . If the input base current is 20 microampere, the current through emitter is
(A) $\quad 20 \mu \mathrm{~A}$
(B) $2000 \mu \mathrm{~A}$
(C) $\quad 1980 \mu \mathrm{~A}$
(D) $2020 \mu \mathrm{~A}$
4. The current gain of a transistor in common emitter circuit is 25 , then the ratio of emitter current to base current is
(A) $\frac{25}{26}$
(B) 26
(C) $\frac{1}{25}$
(D) $\frac{26}{25}$
5. In an npn transistor the collector current is 24 mA . If 80% of electrons reach collector its base current in mA is
(A) 36
(B) 26
(C) 16
(D) 6
6. In the case of constants α and β of a transistor,
(A) $\alpha=\beta$
(B) $\beta<1, \alpha>1$
(C) $\alpha \beta=1$
(D) $\beta>1, \alpha<1$
7. In a transistor circuit shown here, the base current is $35 \mu \mathrm{~A}$. The value of the resistor R_{b} is

(A) $123.5 \mathrm{k} \Omega$
(B) $257 \mathrm{k} \Omega$
(C) $380.05 \mathrm{k} \Omega$
(D) $280.0 \mathrm{k} \Omega$
8. The input resistance of a common emitter transistor amplifier, if the output resistance is $500 \mathrm{k} \Omega$, the current gain $\alpha=0.98$ and power gain is 6.0625×10^{6}, is
(A) 198Ω
(B) 300Ω
(C) 100Ω
(D) 400Ω
9. The collector supply voltage in CE transistor amplifier is 10 V . The base current is $10 \mu \mathrm{~A}$ in the absence of the signal voltage and the voltage between the collector and the emitter is 4 V . The current gain (β) of a transistor is 200 , then the value of the load resistance R_{L} \qquad -
(A) $1 \mathrm{k} \Omega$
(B) $2 \mathrm{k} \Omega$
(C) $3 \mathrm{k} \Omega$
(D) $4 \mathrm{k} \Omega$
10. $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{b}}$ and V_{c} are emitter, base and collector voltage respectively for npn transistor in CE mode. Amplifier works for the combination of biasing voltage equal to
(A) $\mathrm{V}_{\mathrm{e}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{b}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{c}}=+5 \mathrm{~V}$
(B) $\mathrm{V}_{\mathrm{e}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{b}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{c}}=-5 \mathrm{~V}$
(C) $\mathrm{V}_{\mathrm{e}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{b}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{c}}=+5 \mathrm{~V}$
(D) $\mathrm{V}_{\mathrm{e}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{b}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{c}}=-5 \mathrm{~V}$
11. For circuit shown in figure, $\mathrm{I}_{\mathrm{E}}=4 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$. What are the values of α and I_{C} respectively?
(A) $0.99,3.96 \mathrm{~mA}$
(B) $0.97,4.04 \mathrm{~mA}$
(C) $1.01,3.96 \mathrm{~mA}$
(D) $0.99,4.04 \mathrm{~mA}$

12. In a common-emitter transistor, the current gain is 80 . What is the change in collector current when the change in base current is $250 \mu \mathrm{~A}$?
(A) $80 \times 250 \mu \mathrm{~A}$
(B) $\quad(250-80) \mu \mathrm{A}$
(C) $(250+80) \mu \mathrm{A}$
(D) $250 / 80 \mu \mathrm{~A}$
13. For a common base configuration of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor, $\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}}=0.96$. Then maximum current gain in common emitter configuration will be
(A) 12
(B) 24
(C) 6
(D) 5
14. For a transistor, the current gain is 0.8 . The transistor is connected in common emitter configuration. The change in the collector current when the base current changes by 6 mA is
(A) 6 mA
(B) 4.8 mA
(C) 24 mA
(D) 8 mA
15. In CE NPN transistor 10^{10} electrons enter the emitter in $10^{-6} \mathrm{~s}$ when it is connected to battery. About 5\% electrons recombine with holes in the base. The current gain of the transistor is
\qquad . $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$
(A) 0.98
(B) 19
(C) 49
(D) 0.95
16. In a common base amplifier circuit, calculate the change in base current if that in the emitter current is 2 mA and $\alpha=0.98$.
(A) 0.04 mA
(B) 1.96 mA
(C) 0.98 mA
(D) 2 mA
17. Consider an npn transistor amplifier in common-emitter configuration. The current gain of the transistor is 100 . If the collector current changes by 1 mA , what will be the change in emitter current
(A) 1.1 mA
(B) 1.01 mA
(C) 0.01 mA
(D) 10 mA
18. The current gain of a transistor in commonemitter configuration is 80 . If the emitter current be 8.1 mA , then what is the collector current?
(A) 8.1 mA
(B) 8.0 mA
(C) 0.1 mA
(D) 1.0 mA
19. The r.m.s. value of the base current of a transistor is $10 \mu \mathrm{~A}$. What is the current gain (β) if the peak value of the a.c. collector current is 1.414 mA ?
(A) 50
(B) 75
(C) 100
(D) 125
20. In the circuit shown in the figure, the input voltage V_{i} is $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$ and $\mathrm{V}_{\mathrm{CE}}=0$. The values of $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and β are given by
(A) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, $\beta=250$
(B) $\mathrm{I}_{\mathrm{B}}=25 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$, $\beta=200$
(C) $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$, $\beta=250$
(D) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$, $\beta=125$

21. A change of 0.04 V takes place between the base and the emitter when an input signal is connected to the CE transistor amplifier. As a result, $20 \mu \mathrm{~A}$ change takes place in the base current and a change of 2 mA takes place in the collector current. Find the input resistance and A.C. current gain.
(A) $2 \mathrm{k} \Omega, 100$
(B) $1 \mathrm{k} \Omega, 100$
(C) $2 \mathrm{k} \Omega, 200$
(D) $1 \mathrm{k} \Omega, 200$
22. The dc common emitter current gain of a n-p-n transistor is 50 . The potential difference applied across the collector and emitter of a transistor used in CE configuration is, $\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}$. If the collector resistance, $\mathrm{R}_{\mathrm{C}}=4 \mathrm{k} \Omega$, the base current (I_{B}) and the collector current $\left(\mathrm{I}_{\mathrm{C}}\right)$ are
(A) $\mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$
(B) $\mathrm{I}_{\mathrm{B}}=0.5 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$
(C) $\mathrm{I}_{\mathrm{B}}=5 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
(D) $\mathrm{I}_{\mathrm{B}}=1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$
23. For CE transistor amplifier, the audio signal voltage across the collector resistance of $2 \mathrm{k} \Omega$ is 4 V . If the current amplification factor of the transistor is 100 and the base resistance is $1 \mathrm{k} \Omega$, then the input signal voltage is
(A) 15 mV
(B) 10 mV
(C) 20 mV
(D) 30 mV
24. A npn transistor is connected in common emitter configuration in a given amplifier. A load resistance of 800Ω is connected in the collector circuit and the voltage drop across it is 0.8 V . If the current amplification factor is 0.96 and the input resistance of the circuit is 192Ω, the voltage gain and the power gain of the amplifier will respectively be
(A) 4,4
(B) $4,3.69$
(C) $4,3.84$
(D) $3.69,3.84$

16.5 Logic gates

1. This symbol represents
(A) NOT gate
(B) OR gate
(C) AND gate

(D) NOR gate
2. Given below are symbols for some logic gates

The XOR gate and NOR gate respectively are
(A) 1 and 2
(B) 2 and 3
(C) 3 and 4
(D) 1 and 4
3. In negative logic, logic state 1 corresponds to
(A) negative voltage.
(B) zero voltage.
(C) more negative voltage.
(D) lower voltage level.
4. What is the name of the gate obtained by the combination shown in figure?
(A) XOR
(B) NOR
(C) NAND

(D) NOT
5. What is the Boolean expression for the gate circuit shown in the figure?
(A) $\overline{\mathrm{A} \cdot \mathrm{B}}=\mathrm{X}$
(B) $\mathrm{A}+\mathrm{B}=\mathrm{X}$
(C) $\mathrm{A} \cdot \mathrm{B}=\mathrm{X}$

(D) $\overline{\mathrm{A}+\mathrm{B}}=\mathrm{X}$
6. The output (Y) of the combination of gates is

(A) $\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}$
(B) $\mathrm{Y}=\mathrm{A}+\mathrm{B}$
(C) $\mathrm{Y}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
(D) $\mathrm{X}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
7. The combination of the gates shown in the figure produces

(A) NOR
(B) AND
(C) OR
(D) NAND
8. In the circuit below, A and B represent two inputs and C represents the output. The circuit represents

(A) OR gate
(B) NOR gate
(C) AND gate
(D) NAND gate
9. The circuit diagram shown here corresponds to the logic gate,

(A) NAND
(B) NOR
(C) AND
(D) OR
10. Which of the following gives reversible operation?
(A)

(B)

(C)

(D)

11. In the following combinations of logic gates, the outputs of i , ii and iii are respectively
(i)

(ii)

(iii)

(A) $0,1,1$
(B) $0,1,0$
(C) $1,1,0$
(D) $1,0,1$
12. The given electrical network is equivalent to

(A) AND gate
(B) OR gate
(C) NOR gate
(D) NOT gate
13. Which one of the following truth table represents an AND gate?
i.

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
1	0	0
0	1	0
1	1	0

ii.

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	0
0	1	0
1	0	0
1	1	1

iii.

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
1	0	1
0	1	1
1	1	0

(A) iv
(B) iii
(C) ii
(D) i
14. The output of digital circuit shown in the figure is

(A) $\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
(B) $\overline{\mathrm{A} \cdot \mathrm{B}}$
(C) $\mathrm{A}+\mathrm{B}$
(D) $\mathrm{A} \cdot \mathrm{B}$
15. Which logic gate is represented by the following logic gates?
(A) NOR
(B) NAND
(C) AND

(D) OR
16. The output Y of the logic circuit given below is

(A) $\overline{\mathrm{A}}+\mathrm{B}$
(B) $\overline{\mathrm{A}}$
(C) $\overline{(\overline{\mathrm{A}}+\mathrm{B})} \cdot \overline{\mathrm{A}}$
(D) $\overline{(\overline{\mathrm{A}}+\mathrm{B})} \cdot \mathrm{A}$
17. What is the output Y in the following circuit, when all the three inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are first 0 and then 1 ?

(A) 1,1
(B) 0,1
(C) 0,0
(D) 1,0
18. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are inputs to gate and x is its output, then, as per the following time graph, the gate is:
a.

b.

c.

d.

x .

(A) AND
(B) OR
(C) NAND
(D) NOT
19. The circuit diagram shows a logic combination with the states of outputs X, Y and Z given for inputs P, Q, R and S all at state 1 . When input P and R change to state 0 with input Q and S still at 1 , the states of outputs X, Y and Z change to
(A) $1,0,0$
(B) $1,1,1$

(C)
$0,1,0$

(D) $0,0,1$
20. The truth table of the combination of the logic gates shown in the figure is

(A)

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	0
1	0	1
0	1	1
1	1	1

(B)

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	0
1	0	0
0	1	0
1	1	1

(C)

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
1	0	0
0	1	0
1	1	0

(D)

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
1	0	1
0	1	1
1	1	0

A diode which finds extensive use in rolling displays, traffic control light system etc. A light emitting diode can emit light of a particular colour when forward biased.

Concept Fusion

1. Identify the semiconductor devices whose characteristics are given below, in the order (a), (b), (c), (d) :

(a)

(c)

(b)

(d)
(A) Zener diode, Simple diode, Light dependent resistance solar cell
(B) Solar cell, Light dependent resistance, Zener diode, Simple diode
(C) Zener diode, Solar cell, Simple diode, Light dependent resistance
(D) Simple diode, Zener diode, Solar cell, Light dependent resistance
2. In a Zener diode, the reverse bias voltage is 3 V and the width of the depletion region is $300 \AA$, the electric field intensity will be \qquad
(A) 10^{4}
(B) 10^{6}
(C) 10^{8}
(D) 10^{-2}
3. An LED is constructed from a p-n junction diode using GaAsP. The energy gap is 1.9 eV . The wavelength of the light emitted will be equal to
(A) $654 \times 10^{-11} \mathrm{~m}$
(B) $10.4 \times 10^{-26} \mathrm{~m}$
(C) 654 nm
(D) $654 \AA$

MHT-CET Previous Years' Questions

1. Which of the following is correct, about doping in a transistor?
[2005]
(A) Emitter is lightly doped, collector is heavily doped and base is moderately doped.
(B) Emitter is lightly doped, collector is moderately doped and base is heavily doped.
(C) Emitter is heavily doped, collector is lightly doped and base is moderately doped.
(D) Emitter is heavily doped, collector is moderately doped and base is lightly doped.
2. How many NAND gates are needed to form an AND gate?
[2010]
(A) 2
(B) 3
(C) 4
(D) 5
3. In common base circuit of a transistor, current amplification factor is 0.95 . Calculate the emitter current if base current is 0.2 mA [2014]
(A) 2 mA
(B) 4 mA
(C) 6 mA
(D) 8 mA
4. Which logic gate produces 'LOW' output when any of the inputs is 'HIGH'?
[2015]
(A) AND
(B) OR
(C) NAND
(D) NOR
5. The schematic symbol of light emitting diode is (LED)
[2016]
(A)

Cathode
(B)

Cathode
(C) Anode

(D)

6. Photodiode is a device
[2017]
(A) which is always operated in reverse bias.
(B) which is always operated in forward bias.
(C) in which photo current is independent of intensity of incident radiation.
(D) which may be operated in forward or reverse bias.
7. For a transistor, α_{dc} and β_{dc} are the current ratios, then the value of $\frac{\beta_{\mathrm{dc}}-\alpha_{\mathrm{dc}}}{\alpha_{\mathrm{dc}} \cdot \beta_{\mathrm{dc}}}$ is [2017]
(A) 1
(B) 1.5
(C) 2
(D) 2.5
8. A transistor is used as a common emitter amplifier with a load resistance $2 \mathrm{k} \Omega$. The input resistance is 150Ω. Base current is changed by $20 \mu \mathrm{~A}$ which results in a change in collector current by 1.5 mA . The voltage gain of the amplifier is
[2018]
(A) 900
(B) 1000
(C) 1100
D) 1200
9. An n-p-n transistor conducts when
[2019]
(A) both collector and emitter are positive with respect to the base.
(B) both collector and emitter are negative with respect to the base.
(C) collector is positive and emitter is negative with respect to the base.
(D) collector is positive and emitter is at same potential as the base.
10. To obtain an output $\mathrm{Y}=1$ from the following circuit, the inputs must be
[2019]

(A)
$\begin{array}{lll}\text { A } & \text { B } & \text { C } \\ 1 & 0 & 1\end{array}$
(B) $\begin{array}{ccc}\mathrm{A} & \mathrm{B} & \mathrm{C} \\ 0 & 1 & 0\end{array}$
$\begin{array}{lll}\text { A } & \text { B } & \text { C } \\ 1 & 0 & 0\end{array}$
(D) $\begin{array}{lll}\mathrm{A} & \mathrm{B} & \mathrm{C} \\ 1 & 1 & 0\end{array}$
(C)
11. For which logic gate the following statement is true? The output is high if and only if all inputs are high.
[2020]
(A) OR
(B) NAND
(C) AND
(D) NOR
12. In light emitting diode (LED), light is given out due to
[2020]
(A) emission of holes and electrons
(B) recombination of holes and electrons
(C) diffusion of holes
(D) drifting of electrons
13. Which one of the following symbols represents a photodiode?
[2020]

(1)

(2)

(3)

(4)
(A) (3)
(B)
(C)
(2) (D)
(4)
14. For a transistor, the current ratio $\alpha_{\mathrm{dc}}=\frac{69}{70}$.

The current gain β_{dc} is
[2021, 2015]
(A) 66
(B) 67
(C) 69
(D) 71
15. The output Y in the following circuit will be 'ONE' if and only if
[2021]

(A) B is 'ONE' (1)
(B) A is 'ZERO' (0)
(C) A is 'ONE'
(1)
(D) B is 'ZERO'
(0)
16. For a transistor, $\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)$ is equal to [2021]
(A) two
(B) three
(C) one
(D) zero
17. A semiconductor with band gap energy of $3.31 \times 10^{-19} \mathrm{~J}$ is used to fabricate a p-n junction photo diode. It can detect the signal of wavelength
[Planck's constant $=6.62 \times 10^{-34} \mathrm{Js}$, velocity of light $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$]
[2021]
(A) $6400 \AA$
(B) $6800 \AA$
(C) $7000 \AA$
(D) $6000 \AA$
18. In the (C.E.) transistor, emmiter current is 16 mA and base current is 2 mA . The value of (current ratio) α_{dc} and β_{dc} respectively is
[2021]
(A) $\frac{8}{7}, \frac{1}{7}$
(B) $7, \frac{7}{8}$
(C) $\frac{7}{8}, 7$
(D) $\frac{8}{7}, 7$
19. The frequency of a given a.c. signal is ' N ' Hz . When it is connected to a half wave rectifier, the number of output pulses given by the rectifier in 1 second is
[2021]
(A) $\frac{\mathrm{N}}{4}$
(B) $\frac{\mathrm{N}}{2}$
(C) N
(D) 2 N
20. In the following logic circuit, output Y_{1} and Y_{2} are
[2021]

(A) $\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=0$
(B) $\mathrm{Y}_{1}=1, \mathrm{Y}_{2}=1$
(C) $\mathrm{Y}_{1}=0, \mathrm{Y}_{2}=0$
(D) $\quad \mathrm{Y}_{1}=0, \mathrm{Y}_{2}=1$
21. In common emitter transistor, the input characteristics are shown
[2021]

(A) Q
(B) S
(C) R
(D) P
22. Combination of NAND gates is shown in the figure, it is equivalent to
[2021]

(A) AND gate
(B) NOR gate
(C) OR gate
(D) X-OR gate
23. Which of the following gates will give an output ' 1 ' for the given inputs?
[2021]

(A) II and III
(B) I and IV
(C) I and II
(D) II and IV
24. For a two input AND gate, the four entries are shown in the truth table. Identify the correct ones out of these ($\mathrm{A}, \mathrm{B}=$ input, $\mathrm{Y}=$ output)

Entry	\mathbf{A}	\mathbf{B}	\mathbf{Y}
1	0	1	0
2	1	0	0
3	1	1	1
4	0	0	1

[2021]
(A) 1 and 2 only
(B) 1,2 and 3 only
(C) 1, 3 and 4 only
(D) 2 and 4 only
25. The output Y when all the three inputs A, B, C are first low and then high will be respectively

[2022]
(A) 0,1
(B) 1,0
(C) 1,1
(D) 0,0
26. A transistor is used as a common emitter amplifier with a load resistance $2 \mathrm{k} \Omega$. The input resistance is 150Ω. Base current is changed by $20 \mu \mathrm{~A}$ which results in a change in collector current by 1.5 mA . The voltage gain of the amplifier is
[2022]
(A) 1100
(B) 1200
(C) 900
(D) 1000
27. Identify the devices which work on solar energy.
i. Photodiode
ii. Photovoltaic cell
iii. LED
iv. Photo thermal devices.
[2022]
(A) ii, iv
(B) ii, iii
(C) i, ii
(D) i, iv
28. In common emitter transistor amplifier, the output voltage and input voltage have a phase difference of
[2022]
(A) $\pi^{\text {c }}$
(B) $0^{\text {c }}$
(C) $\frac{\pi^{\mathrm{c}}}{2}$
(D) $\frac{5 \pi^{\mathrm{c}}}{6}$
29. The output characteristic of a transistor in common emitter (CE) mode is the graph obtained by plotting
[2022]
(A) I_{C} against I_{B} at constant $V_{C E}$.
(B) I_{C} against V_{CE} at constant I_{B}.
(C) I_{C} against I_{B} at constant $V_{B E}$.
(D) I_{C} against $V_{B E}$ at constant I_{B}.
30. For a NAND gate, the inputs and outputs are given below.

Input A	Input B	Output Y
0	1	C
0	0	D
1	0	E
1	1	F

The values taken by C, D, E, F are respectively
[2022]
(A) $0,1,0,0$
(B) $1,0,1,1$
(C) $0,1,0,1$
(D) $1,1,1,0$
31. In a full wave rectifier circuit without filter, the output current is
[2022]
(A) a constant direct current.
(B) a sinusoidal current.
(C) an eddy current.
(D) unidirectional but not steady current.
32. The logic gate for which only when an odd number of 'high' or ' 1 ' at its inputs gives 'high' or ' 1 ' at the output is
[2022]
(A) Ex - OR gate
(B) OR gate
(C) NAND gate
(D) NOR gate
33. A common emitter transistor amplifier has a current gain of 50 . If the load resistance is $4 \mathrm{k} \Omega$ and input resistance is 500Ω, the voltage gain of the amplifier is
[2022]
(A) 100
(B) 300
(C) 200
(D) 400
34. A transistor is connected in CE mode. The collector volatage is 6 volt and voltage drop across a resistor of 728Ω in the collector circuit is 70×10^{-2} volt. If $\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}}=0.96$ then base current will be approximately
[2022]
(A) $20 \mu \mathrm{~A}$
(B) $40 \mu \mathrm{~A}$
(C) $30 \mu \mathrm{~A}$
(D) $\quad 60 \mu \mathrm{~A}$
35. In an $n-p-n$ transistor circuit, the emitter current is 10 mA . If 90% of the emitted electrons reach the collector, the base current is
[2022]
(A) 9 mA
(B) 2 mA
(C) 1 mA
(D) 8 mA
36. To obtain the truth-table shown, from the following logic circuit, the gate G should be

[2023]
(A) AND
(B) NAND
(C) OR
(D) NOR
37. The digital logic circuit is as shown in figure. The Boolean expression for the output Y is.
[2023]

(A) $\overline{\mathrm{A}}+(\overline{\mathrm{B}+\mathrm{C}})$
(B) $\overline{\mathrm{A}} \cdot(\overline{\mathrm{B}+\mathrm{C}})$
(C) $\overline{\mathrm{A}}+(\overline{\mathrm{B} \cdot \mathrm{C}})$
(D) $\overline{\mathrm{A}} \cdot(\overline{\mathrm{B} \cdot \mathrm{C}})$
38. In a transistor, in common emitter configuration, the ratio of power gain to voltage gain is
[2023]
(A) α
(B) $\frac{\beta}{\alpha}$
(C) $\beta \alpha$
(D) β
39. Choose the CORRECT statement of the following.
[2023]
(A) The zener voltage does not depend on amount of doping.
(B) For a heavily doped zener diode, the breakdown occurs at high reverse voltage.
(C) For a heavily doped zener diode the breakdown occurs at a lower reverse voltage.
(D) A lightly doped zener diode has lower breakdown voltage.

Junction Transistor

A device that helped make a sensational advancement of the field of electronics is a bipolar junction transistor which is commercially available as per the requirement of a circuitary or application. Circuits vividly used in amplifiers, integrated, wireless systems, temperature sensors, logarithmic converters etc. employ transistors.

Evaluation Test

1. An npn transistor circuit is arranged as shown in figure. It is

(A) a common-base amplifier circuit.
(B) a common-emitter amplifier circuit.
(C) a common-collector amplifier circuit.
(D) rectifier circuit.
2. A zener-regulated power supply consists of a 9 V battery connected in series with a resistance of 100Ω and a zener diode. The zener diode maintains a constant voltage drop of 4 V across a load resistance of 400Ω. The current drawn by the load resistance will be
(A) 0.025 A
(B) 0.050 A
(C) 0.01 A
(D) 0.015 A
3. The current gain α of a transistor is 0.94 . The change in collector current corresponding to a change of 0.5 mA in the base current in a common emitter arrangement is
(A) 1.52 mA
(B) 2.38 mA
(C) 3.45 mA
(D) 7.83 Ma
4. In the circuit shown below, current passing through R_{L} and zener diode is,

(A) $\frac{1}{12} \mathrm{~A}, \frac{3}{40} \mathrm{~A}$
(B) $\frac{1}{40} \mathrm{~A}, \frac{1}{120} \mathrm{~A}$
(C) $\frac{1}{40} \mathrm{~A}, \frac{7}{120} \mathrm{~A}$
(D) $\frac{1}{30} \mathrm{~A}, \frac{7}{30} \mathrm{~A}$
5. A solar cell
(A) converts the radiant energy of sun into electrical power.
(B) converts the radiant energy of sun into heat.
(C) reflects all the light from sun.
(D) absorbs energy and converts into sound energy.
6. Assertion: A transistor has its base made thin.

Reason: A thin base makes the transistor stable.
(A) If both assertion and reason are true and reason is the correct explanation of assertion
(B) If both assertion and reason are true but reason is not be correct explanation of assertion
(C) If assertion is true but reason is false
(D) If assertion is false but reason is true
7. The input resistance of a CE amplifier is 400Ω and the load resistance is $4 \mathrm{k} \Omega$. A change of base current by $10 \mu \mathrm{~A}$ results in the change of collector current by 2 mA . The voltage gain of the amplifier is
(A) 500
(B) 1000
(C) 1500
(D) 2000
8. The circuit below represents a

(A) OR gate
(B) AND gate
(C) NOR gate
(D) NAND gate
9. Generally, the base of a transistor has a thickness of the order of
(A) $10^{-6} \mathrm{~m}$
(B) $10^{-3} \mathrm{~m}$
(C) 0.1 m
(D) 1 cm
10. The following input voltage is passed through a NOT gate.

Which one of the following is the output?
(A)

(B)

(C)

$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}$
11. In case of a bipolar transistor $\beta=45$. The potential drop across the collector resistance of $1 \mathrm{k} \Omega$ is 5 V . The base current is approximately
(A) $222 \mu \mathrm{~A}$
(B) $55 \mu \mathrm{~A}$
(C) $111 \mu \mathrm{~A}$
(D) $45 \mu \mathrm{~A}$
12. In the following circuit, $\mathrm{Y}=1$ for the inputs A and B respectively equal to

(A) 0,0
(B) 0,1
(C) 1,0
(D) 1,1
13. A common-emitter amplifier, has an input resistance of 500Ω and an output resistance of $40 \mathrm{k} \Omega$. If the current gain is 75 , then power gain of the transistor is
(A) 1.2×10^{5}
(B) 2.3×10^{5}
(C) 3.6×10^{5}
(D) 4.5×10^{5}
14. A transistor has $\alpha=0.96$. If the emitter current is 8 mA , what are the values of collector and base currents?
(A) $7.8 \mathrm{~mA}, 0.5 \mathrm{~mA}$
(B) $7.7 \mathrm{~mA}, 0.3 \mathrm{~mA}$
(C) $7.6 \mathrm{~mA}, 0.2 \mathrm{~mA}$
(D) $7.5 \mathrm{~mA}, 0.1 \mathrm{~mA}$
15. A transistor is connected in common-emitter (CE) configuration. The collector-supply is 10 V and the voltage drop across 500Ω in the collector circuit is 4 V . If the current-gain factor (α) is 0.96 , the base-current is
(A) 0.11 mA
(B) 0.22 mA
(C) 0.33 mA
(D) 0.44 mA
16. In the combination of the following gates the output Y can be written in terms of inputs A and B as

(A) $\overline{\mathrm{A} \cdot \mathrm{B}}$
(B) $\mathrm{A} \cdot \overline{\mathrm{B}}+\overline{\mathrm{A}} \cdot \mathrm{B}$
(C) $\overline{\mathrm{A} \cdot \mathrm{B}}+\mathrm{A} \cdot \mathrm{B}$
(D) $\overline{\mathrm{A}+\mathrm{B}}$
17. The maximum wavelength which a photodiode can detect with $\mathrm{E}_{\mathrm{g}}=0.74 \mathrm{eV}$ is,
(A) 1680 nm
(B) 1764 nm
(C) 1847 nm
(D) 1932 nm

The An
 Solar Cell

Solar cell uses p-n junction to convert sunlight directly into electricity. The solar cell consists of p type semiconductor surrounding an n-type semiconductor. Charge layers form at the junction between the two types of semiconductors leading to an electric field E pointing from the n-type towards the p-type layer. The outer covering of p-type material is so thin that sunlight penetrates into the charge layers and ionizes some of the atoms there. In the process of ionization, the energy of the sunlight causes a negative electron to be ejected from the atom, leaving behind a positive hole. The electric field in the charge layers causes the electron and the hole to move away from the junction. The electron moves into the n-type material, and the hole moves into the p-type material. As a result, the sunlight causes the solar cell to develop negative and positive terminals much like the terminals of a battery. The current that a single solar cell can provide is small, so applications of solar cells often use many of them mounted to form large panels.

Answer Key of the chapter: Semiconductor Devices \& Evaluation Test is given at the end of the book.

Solutions to the relevant questions of this chapter \& Evaluation Test can be accessed by scanning the adjacent QR code in Quill - The Padhai App.

Chapter 1: Rotational Dynamics

Classical Thinking

1.2:	1. (A)		3. (D)				7. (C)	8. (D)	9. (A)	10. (D)
	11. (A)	12. (A)	13. (B)	14. (B)	15. (C)	16. (C)				
1.3:	1. (A)	2. (C)	3. (B)	4. (A)	5. (D)	6. (C)				
1.4:	$\begin{aligned} & \text { 1. (C) } \\ & \text { 11. (C) } \end{aligned}$	2. (C)	3. (B)	4. (C)	5. (A)	6. (A)	7. (A)	8. (B)	9. (B)	10. (D)
1.5:	1. (C)	2. (C)	3. (A)	4. (C)	5. (D)	6. (A)	7. (D)	8. (A)	9. (C)	10. (A)
	11. (D)	12. (B)	13. (C)							
1.6:	1. (A)	2. (B)	3. (B)	4. (D)	5. (D)					
1.7:	1. (C)	2. (C)	3. (B)	4. (B)	5. (D)	6. (C)	7. (C)	8. (A)	9. (B)	10. (C)
1.8:	1. (B)	2. (D)	3. (C)	4. (D)	5. (A)	6. (C)	7. (C)	8. (B)		
1.9:	1. (B)	2. (C)	3. (A)	4. (A)	5. (B)	6. (D)	7. (A)	8. (D)		
1.10:	1. (A)	2. (C)	3. (D)	4. (D)	5. (B)	6. (A)				
1.11:	1. (C)	2. (C)	3. (D)	4. (A)	5. (A)	6. (D)	7. (A)	8. (D)	9. (D)	

Critical Thinking

1.2:

1. (D)	2. (D)	3. (A)	4. (B)	5. (C)	6. (C)	7. (D)	8. (A)	9. (C)
10. (C)								
11. (C)	12. (B)	13. (B)	14. (B)	15. (D)	16. (D)	17. (B)	18. (B)	19. (B)
21. (B)	22. (A)	23. (D)	24. (D)	25. (B)	26. (A)			

1.3:

1. (D) 2. (A) 3. (A) 4. (A) 5. (C)
2. (D) $\quad 7$. (B)
3. (B) 9. (A)
4. (C)
5. (D)
6. (B) 13. (A)
7. (A)
8. (B)
9. (A)
10. (B)
11. (D)
12. (C)
13. (D)
14. (A) 22. (C) 23. (B) 24. (A) 25. (B)
15. (B) 27. (B)
16. (C) 29. (D)
17. (B) 31. (A) 32. (A)

1.4:	1. (B)	2. (B)	3. (A)	4. (B)	5. (A)	6. (B)	7. (A)	8. (A)
	9. (A)	10. (C)						

1.5:

1. (C)
2. (C)
3. (B) 4. (C)
4. (D)
5. (A)
6. (C)
7. (B)
8. (A) 10. (C)
9. (A)
10. (B)
11. (B)
12. (D)
13. (B)
14. (B)
15. (C)
16. (D) 19. (C)
17. (A)
18. (B) 32. (A) 33. (A) 34. (D)
1.6: \quad 1. (A) 2. (A) \quad 3. (A) \quad 4. (D) \quad 5. (B)

1.7:	1. (B)	2. (B)	3. (C)	4. (D)	5. (D)	6. (B)	7. (B)	8. (C)	9. (D)	10. (D)
	11. (C)	12. (C)	13. (C)	14. (A)	15. (B)	16. (A)	17. (B)	18. (B)	19. (B)	20. (C)
	21. (B)	22. (A)								

1.8:	$\begin{aligned} & \text { 1. (A) } \\ & \text { 11. (A) } \end{aligned}$	$\begin{aligned} & \text { 2. (B) } \\ & \text { 12. (D) } \end{aligned}$		4. (D)	5. (A)	6. (B)	7. (D)	8. (C)	9. (C)	10. (A)
1.9:	$\begin{aligned} & \text { 1. (D) } \\ & \text { 11. (D) } \end{aligned}$	2. (D)	3. (C)	4. (B)	5. (C)	6. (B)	7. (C)	8. (C)	9. (C)	10. (D)
1.10:	$\begin{aligned} & \text { 1. (B) } \\ & \text { 11. (C) } \end{aligned}$	2. (C)	3. (C)	4. (A)	5. (A)	6. (B)	7. (A)	8. (C)	9. (D)	10. (B)
1.11:	$\begin{aligned} & \text { 1. (C) } \\ & \text { 11. (A) } \end{aligned}$	$\begin{aligned} & \text { 2. (A) } \\ & \text { 12. (C) } \end{aligned}$	$\begin{aligned} & \text { 3. (D) } \\ & \text { 13. (A) } \end{aligned}$	$\begin{aligned} & \text { 4. (B) } \\ & \text { 14. (C) } \end{aligned}$	$\begin{array}{r} \text { 5. (A) } \\ \text { 15. (B) } \end{array}$	$\begin{array}{r} \text { 6. (C) } \\ \text { 16. (C) } \end{array}$	$\begin{aligned} & \text { 7. (A) } \\ & \text { 17. (D) } \end{aligned}$	8. (B)	9. (A)	10. (A)

Concept Fusion

1. (B)	2. (D)	3. (A)	4. (A)	5. (B)	6. (D)	7. (A)	8. (A)	9. (B)	10. (C)
11. (A)	12. (A)	13. (C)	14. (A)	15. (C)	16. (A)	17. (B)	18. (B)	19. (D)	20. (C)
21. (A)	22. (B)	23. (A)	24. (D)	25. (A)	26. (A)	27. (C)	28. (A)	29. (C)	30. (C)
31. (A)	32. (D)	33. (A)	34. (B)	35. (D)	36. (B)	37. (C)	38. (C)	39. (D)	40. (A)

Give your MHT-CET exam preparation the TECHNOLOGY BOOST!

Practice more than 23,000 MCQs for just ₹ 649/-

Use Coupon Code QUILLPADHAl2023

Also available for $\mathrm{X}^{\mathrm{th}}, \mathrm{Xl}^{\mathrm{th}}, \mathrm{XIIth}$, NEET \& JEE

 - Practice chapter-wise \& full syllabus MCQs in test formatQuill - Get instant verification of your answer

- Detailed analysis of every test on completion
- Option to save questions for future reference

Visit our website to know more about our range of books for X $^{\text {th }}$, Xl $^{\text {th }}, ~ X I I^{\text {th }}, ~ N E E T ~ \& ~ J E E ~$

Visit Our Website

Target pullaitions Put Lud
 Transforming lives through learning.
 Address:

B2, $9^{\text {th }}$ Floor, Ashar, Road No. 16/Z,
Wagle Industrial Estate, Thane (W)- 400604
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org
Email: mail@targetpublications.org

[^0]: This reference book is transformative work based on Std. XII Physics Textbook; Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.
 No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

