SAMPLE CONTENT

TRRUMPH MATHEMATICS

SOLDIPIS

to MCPS

Target Publications ${ }^{\oplus}$ Pvt. Ltd.

TRIUMPH
 MHT-CET MATHEMATICS SOLUTIONS to MCQs

Salient Features

(G) Detailed solutions provided for difficult MCQs as per the concepts emphasized in the syllabus

- Smart Keys (Caution, Shortcuts, Thinking Hatke) - Multiple Study Techniques to enhance understanding of concepts and problem solving skills
© Solutions to Evaluation Test for each chapter
(G) Solutions to Model Question Papers
- Solutions to MHT-CET 2023 Question Papers ($9^{\text {th }}$ May Shift - $1 \& 10^{\text {th }}$ May Shift - 1)

Printed at: Print to Print, Mumbai

[^0]
PREFACE

Target's Triumph MHT-CET Mathematics Solutions to MCQs book provides students with holistic comprehension of principles of Mathematics through solutions to MCQs based on the concepts emphasized in the syllabus.

It includes Smart Keys (Caution, Shortcuts and Thinking Hatke), which offer supplemental explanations for the tricky questions and are intended to help students how to approach problems in novel ways in the shortest possible time with accuracy.

- Caution apprises students about mistakes often made while solving MCQs.
- Shortcuts comprise formulae based short cuts considering their usage in solving MCQ.
- Thinking Hatke reveals quick witted approach to crack the specific question.

Solutions to Model Question Papers and MHT-CET 2023 Question Papers (9 ${ }^{\text {th }}$ May Shift - 1 $\& 10^{\text {th }}$ May Shift -1) are also included in this book.

All the features of this book are designed keeping the following elements in mind:
Time management, easy memorization or revision, and non-conventional yet simple methods for MCQ solving.

We hope the book benefits the learner as we have envisioned.
Publisher
Edition: First

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

Disclaimer

This reference book is transformative work based on Std. XI and XII Mathematics Textbook; Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
© reserved with the Publisher for all the contents created by our Authors.
No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

CONTENTS

Sr. No.	Textbook Chapter No.	Chapter Name	Page No.
Std. XI			
1	3	Trigonometry - II	1
2	5	Straight Line	40
3	6	Circle	72
4	8	Measures of Dispersion	93
5	9	Probability	101
6	1	Complex Numbers	123
7	3	Permutations and Combinations	150
8	6	Functions	165
9	7	Limits	182
10	8	Continuity	207
Std. XII			
11	1	Mathematical Logic	229
12	2	Matrices	241
13	3	Trigonometric Functions	260
14	4	Pair of Straight Lines	309
15	5	Vectors	332
16	6	Line and Plane	377
17	7	Linear Programming	423
18	1	Differentiation	444
19	2	Applications of Derivatives	492
20	3	Indefinite Integration	540
21	4	Definite Integration	594
22	5	Application of Definite Integration	642
23	6	Differential Equations	669
24	7	Probability Distributions	714
25	8	Binomial Distribution	731
		Solutions to Model Question Paper I	743
	-	Solutions to Model Question Paper II	750
	,	Solutions to MHT-CET $9^{\text {th }}$ May, 2023 Question Paper	757
		Solutions to MHT-CET $10^{\text {th }}$ May, 2023 Question Paper	766

8 Measures of Dispersion

Shortcuts

1. Standard deviation \leq Range. i.e., Variance $\leq(\text { Range })^{2}$
2. S.D. of first n natural numbers is $\sqrt{\frac{\mathrm{n}^{2}-1}{12}}$.

Classical Thinking

8.1 Range, Variance and Standard Deviation

1. (A) 2. (D)
2. (C) Range $=\mathrm{L}-\mathrm{S}=100-50=50$
3. (B) Least possible value of x

$$
\begin{aligned}
& =\text { Greatest Value }- \text { Range } \\
& =35-23 \\
& =12
\end{aligned}
$$

5. (C) Upper limit of the highest class $(\mathrm{L})=50$ Lower limit of the lowest class $(\mathrm{S})=10$
$\therefore \quad$ Range $=L-S=50-10=40$
6. (A)
7. (B)
8. (B) $\bar{x}=\frac{\sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{52}{10}=5.2$
$\therefore \quad$ Variance $=\frac{1}{\mathrm{~N}} \sum \mathrm{f}_{\mathrm{i}}\left(x_{\mathrm{i}}-\bar{x}\right)^{2}=\frac{35.6}{10}=3.56$
9. (B)
10. (C) Here, $\bar{x}=\frac{2+4+6+8+10}{5}=6$
$\therefore \quad$ variance $=\frac{1}{\mathrm{n}} \Sigma\left(x_{\mathrm{i}}-\bar{x}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{5}\left\{(2-6)^{2}+(4-6)^{2}+(6-6)^{2}\right. \\
& \\
& \left.\quad+(8-6)^{2}+(10-6)^{2}\right\} \\
& =\frac{1}{5}\{16+4+0+4+16\} \\
& =\frac{1}{5}\{40\}=8
\end{aligned}
$$

11. (A) Variance of first n natural numbers
$=\frac{\mathrm{n}^{2}-1}{12}$
...[Using Shortcut 2]
for $\mathrm{n}=20$
Variance of first 20 natural numbers $=\frac{20^{2}-1}{12}$

$$
=\frac{133}{4}
$$

12. (C)
13. (B) S.D. of $1^{\text {st }} \mathrm{n}$ natural numbers $=\sqrt{\frac{\mathrm{n}^{2}-1}{12}}$
...[Using Shortcut 2]
For $\mathrm{n}=7$,
Required S.D. $=\sqrt{\frac{7^{2}-1}{12}}=\sqrt{4}=2$
14. (A) S.D. $=\sqrt{\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}^{2}\right)-(\bar{x})^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{1}{7}(619)-(9)^{2}} \\
& =\sqrt{\frac{619-567}{7}} \\
& =\sqrt{\frac{52}{7}}
\end{aligned}
$$

15. (C) S.D. is independent of change of origin.
16. (B) Here, $\sigma_{x}=10$

Let $y=5 x+50$
$\therefore \quad \sigma_{y}=5 \sigma_{x}$
$=5(10)$
$=50$
17. (C) $\sigma=\sqrt{\frac{\sum x_{\mathrm{i}}{ }^{2}}{\mathrm{n}}-(\bar{x})^{2}}$
$\therefore \quad 4=\sqrt{\frac{\sum x_{\mathrm{i}}^{2}}{100}-(50)^{2}}$
$\therefore \quad 16=\frac{\sum x_{\mathrm{i}}^{2}}{100}-2500 \Rightarrow \sum x_{\mathrm{i}}^{2}=251600$
18. (D) If X and Y are two variables such that $Y=\frac{X}{a}(a \neq 0)$, then $\sigma_{y}=\frac{1}{|a|} \sigma_{x}$
Here, $\sigma_{x}=8$
$\therefore \quad$ S.D. of the new observations $=\frac{8}{|-2|}=4$
19. (B) $\bar{x}=\frac{2+3+\mathrm{a}+11}{4}=\frac{16+\mathrm{a}}{4}$

Now,

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{\mathrm{~N}} \Sigma(x-\bar{x})^{2} \\
\therefore \quad & (3.5)^{2}=\frac{\left(4+9+\mathrm{a}^{2}+121\right)}{4}-\left(\frac{16+\mathrm{a}}{4}\right)^{2} \\
& \Rightarrow \frac{49}{4}=\frac{134+\mathrm{a}^{2}}{4}-\frac{256+32 \mathrm{a}+\mathrm{a}^{2}}{16} \\
& \Rightarrow 3 \mathrm{a}^{2}-32 \mathrm{a}+84=0
\end{aligned}
$$

20. (D) We know that $\sigma(\mathrm{ax}+\mathrm{b})=|\mathrm{a}|(\sigma(x))$

So $\sigma(1-4 x)=|-4| \sigma(x)=4 \times 2.6=10.4$
21. (B) As S.D. is independent of change of origin. S.D. of $y_{1}-3, y_{2}-3, \ldots, y_{\mathrm{n}}-3$ is also 6 .

So, their variance is 36 .

8.2 Standard Deviation for Combined data, Coefficient of variation

1. (B) Here, $\sigma_{1}^{2}=4, \sigma_{2}^{2}=5, \bar{X}_{1}=2, \bar{X}_{2}=4$ and $n_{1}=n_{2}=5$
$\therefore \quad \overline{\mathrm{X}}=\frac{\mathrm{n}_{1} \overline{\mathrm{X}}_{1}+\mathrm{n}_{2} \overline{\mathrm{X}}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=3$
$\mathrm{d}_{1}=\bar{X}_{1}-\overline{\mathrm{X}}=2-3=-1$,
$\mathrm{d}_{2}=\overline{\mathrm{X}}_{2}-\overline{\mathrm{X}}=4-3=1$
Let σ^{2} be the combined variance. Then,

$$
\begin{aligned}
\sigma^{2} & =\frac{\mathrm{n}_{1}\left(\sigma_{1}^{2}+\mathrm{d}_{1}^{2}\right)+\mathrm{n}_{2}\left(\sigma_{2}^{2}+\mathrm{d}_{2}^{2}\right)}{\mathrm{n}_{1}+\mathrm{n}_{2}} \\
& =\frac{(4+1)+(5+1)}{2}=\frac{11}{2}
\end{aligned}
$$

2. (D) C.V. $=\frac{\text { S.D. }}{\mid \text { Mean } \mid} \times 100=\frac{19.76}{35.16} \times 100$
3. (A) We have, C.V. $=50$ and S.D. $=20$
$\therefore \quad$ C.V. $=\frac{\text { S.D. }}{\mid \text { Mean } \mid} \times 100$
$\therefore 50=\frac{20}{\mid \text { Mean } \mid} \times 100 \times$
$\therefore \quad \mid$ Mean $\left\lvert\,=\frac{20}{50} \times 100\right.$
$\therefore \quad$ Mean $=40$
4. (C) Coefficient of variation $=\frac{\sigma}{\bar{x}} \times 100$
$\therefore 60=\frac{21}{\bar{x}} \times 100$

$$
\Rightarrow \bar{x}=35
$$

5. (B) Coefficient of variation $=\frac{\sigma}{\bar{x}} \times 100$
$\therefore \quad 7.2=\frac{\sqrt{3.24}}{\bar{x}} \times 100$
$\therefore \quad \bar{x}=\frac{\sqrt{3.24}}{7.2} \times 100=25$
6. (D) $\frac{\sigma}{|\bar{x}|} \times 100=16$ and $\bar{x}=25$
$\Rightarrow \sigma=4$
$\Rightarrow \sigma^{2}=16$
7. (C) $\bar{x}=\frac{530}{10}=53, \sum x_{\mathrm{i}}=530, \sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}=70$
\therefore S.D. $=\sigma=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\mathrm{n}}}=\sqrt{\frac{70}{10}}=\sqrt{7}=2.64$
$\therefore \quad$ C.V. $=\frac{\sigma}{|\bar{x}|} \times 100=\frac{2.64}{53} \times 100=4.98$
8. (C) Coefficient of variation $=\frac{\text { S.D. }}{\mid \text { Mean } \mid} \times 100$

$$
\begin{aligned}
& \Rightarrow 45=\frac{\sigma}{12} \times 100 \\
& \Rightarrow \sigma=\frac{45 \times 12}{100}=\frac{540}{100}=5.4
\end{aligned}
$$

9. (C) S.D. $(\sigma)=\sqrt{\frac{250}{10}}=\sqrt{25}=5$

Hence, coefficient of variation $=\frac{\sigma}{\text { mean }} \times 100$

$$
=\frac{5}{50} \times 100=10
$$

Critical Thinking

8.1 Range, Variance and Standard Deviation

1. (D) Variance $=\frac{\sum x_{\mathrm{i}}^{2}}{\mathrm{n}}-(\bar{x})^{2}$

$$
\begin{aligned}
& =\frac{\left(2^{2}+4^{2}+\ldots+100^{2}\right)}{50}-\left(\frac{2+4+\ldots+100}{50}\right)^{2} \\
& =\frac{4\left(1^{2}+2^{2}+\ldots .+50^{2}\right)}{50}-(51)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =4\left(\frac{50 \times 51 \times 101}{50 \times 6}\right)-(51)^{2} \\
& =3434-2601=833
\end{aligned}
$$

2. (C) Here,

$$
\begin{aligned}
& \mathrm{N}=\sum \mathrm{f}_{\mathrm{i}}=12, \sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}=132, \sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}^{2}=1692 \\
\therefore \quad & \mathrm{~V}(\mathrm{X})=\frac{1692}{12}-\left(\frac{132}{12}\right)^{2}=141-121=20
\end{aligned}
$$

3. (D) Since, root mean square \geq A.M.

$$
\begin{aligned}
& \therefore \quad \sqrt{\frac{\sum_{i=1}^{n} x_{1}^{2}}{n}} \geq \frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}}{\mathrm{n}} \\
& \\
& \quad \Rightarrow \sqrt{\frac{400}{\mathrm{n}}} \geq 5 \\
& \quad \Rightarrow \frac{400}{\mathrm{n}} \geq 25 \Rightarrow \mathrm{n} \leq 16
\end{aligned}
$$

4. (A) It is given that each of the two populations has 100 observations which are 100 consecutive integers. So, sum of the squares of deviations from their respective means are same.
$\therefore \quad \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}} \Rightarrow \frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=1$
5. (C) Let the unknown numbers be x and y.

Mean $=8$
$\Rightarrow \frac{2+4+10+12+14+x+y}{7}=8$
$\Rightarrow x+y=14$
Variance $=16$
$\Rightarrow \frac{2^{2}+4^{2}+10^{2}+12^{2}+14^{2}+x^{2}+y^{2}}{7}$ $-(\text { mean })^{2}=16$
$\Rightarrow 460+x^{2}+y^{2}=7\left[16+(8)^{2}\right]$
$\Rightarrow 460+x^{2}+y^{2}=560$
$\Rightarrow x^{2}+y^{2}=100$
Solving (i) and (ii), we get
$x=6, y=8$ or $x=8, y=6$
$\therefore \quad$ Product $=48$
6. (C) Since, mean $=6$
$\therefore \quad \frac{\mathrm{a}+\mathrm{b}+8+5+10}{5}=6$
$\Rightarrow \mathrm{a}+\mathrm{b}=7$
$\Rightarrow(\mathrm{a}-6)=(1-\mathrm{b})$
$6.80=\frac{\sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}}{\mathrm{n}}$
$\Rightarrow 6.80=\frac{(\mathrm{a}-6)^{2}+(\mathrm{b}-6)^{2}+4+1+16}{5}$
$\Rightarrow 34=(\mathrm{a}-6)^{2}+(\mathrm{b}-6)^{2}+21$
$\Rightarrow(\mathrm{a}-6)^{2}+(\mathrm{b}-6)^{2}=13$
$\Rightarrow(1-\mathrm{b})^{2}+(\mathrm{b}-6)^{2}=13 \quad \ldots .[$ From (i)]
$\Rightarrow \mathrm{b}^{2}-2 \mathrm{~b}+1+\mathrm{b}^{2}-12 \mathrm{~b}+36=13$
$\Rightarrow 2 \mathrm{~b}^{2}-14 \mathrm{~b}+24=0$
$\Rightarrow \mathrm{b}^{2}-7 \mathrm{~b}+12=0$
$\Rightarrow \mathrm{b}=3,4$
$\therefore \quad \mathrm{b}=3 \Rightarrow \mathrm{a}=4$ and

$$
b=4 \Rightarrow \mathrm{a}=3
$$

7. (D) Using Shortcut 1, we get
$\operatorname{Var}(\mathrm{X}) \leq(\text { Range })^{2}$
i.e., $\operatorname{Var}(x) \leq(\mathrm{b}-\mathrm{a})^{2}$
8. (B) Corrected $\sum x^{2}=2830-20^{2}+30^{2}=3330$ Corrected $\sum x=170-20+30=180$
$\therefore \quad$ Corrected Variance $=\frac{3330}{15}-\left(\frac{180}{15}\right)^{2}$

$$
=78
$$

9. (C) Mean $\bar{x}=\frac{31+32+33+\ldots .+47}{17}$

$$
=\left[\frac{\frac{17}{2}(31+47)}{17}\right] \quad \ldots .\left[\because S_{n}=\frac{n}{2}\left(a+t_{n}\right)\right]
$$

$\Rightarrow \bar{x}=39$
Now,

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{\mathrm{~N}} \Sigma(x-\bar{x})^{2} \\
&=\frac{1}{17}\left[(31-39)^{2}+(32-39)^{2}+\ldots .+(47-39)^{2}\right] \\
&=\frac{1}{17}\left[8^{2}+7^{2}+6^{2}+\ldots .+1^{2}+0+1^{2}+2^{2}+\ldots+8^{2}\right] \\
&=\frac{2}{17}\left[1^{2}+2^{2}+3^{2}+\ldots .+8^{2}\right] \\
&=\frac{2}{17}\left[\frac{1}{6}(8)(8+1)(2 \times 8+1)\right] \\
& \quad \ldots .\left[\because \sum_{x=1}^{n} x^{2}=\frac{1}{6}[\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)]\right]
\end{aligned}
$$

$$
=24
$$

$\therefore \quad$ S.D. $=\sigma=\sqrt{24}=2 \sqrt{6}$
10. (B) Corrected $\sum x=40 \times 200-50+40=7990$
\therefore Corrected $=\bar{x}=\frac{7990}{200}=39.95$
Incorrect $\sum x^{2}=\mathrm{n}\left[\sigma^{2}+\bar{x}^{2}\right]$

$$
\begin{aligned}
& =200\left[15^{2}+40^{2}\right] \\
& =365000
\end{aligned}
$$

Corrected $\sum x^{2}=365000-2500+1600$

$$
=364100
$$

\therefore Corrected $\sigma=\sqrt{\frac{364100}{200}-(39.95)^{2}}=14.98$
11. (B) Let $x_{1}, x_{2}, \ldots, x_{30}$ be actual weights of 30 fishes and $y_{1}, y_{2}, \ldots, y_{30}$ be the weights of fishes taken from misaligned increasing scale. Then,
$y_{\mathrm{i}}=x_{\mathrm{i}}+2 ; \mathrm{i}=1,2, \ldots, 30$
$\Rightarrow \overline{\mathrm{Y}}=\overline{\mathrm{X}}+2$ and $\sigma_{\mathrm{Y}}=\sigma_{\mathrm{X}}$
$\ldots[\because$ Standard deviation is independent
of change of origin]
$\Rightarrow 30=\overline{\mathrm{X}}+2$ and $\sigma_{\mathrm{Y}}=2$
$\Rightarrow \overline{\mathrm{X}}=28$ and $\sigma_{\mathrm{Y}}=2$
12. (C)

Class	$\mathbf{f}_{\mathbf{i}}$	$\boldsymbol{x}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}=\boldsymbol{x}_{\mathbf{i}}-\mathbf{A}$, $\mathbf{A}=\mathbf{2 5}$	$\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}^{\mathbf{2}}$
$0-10$	1	5	-20	-20	400
$10-20$	3	15	-10	-30	300
$20-30$	4	25	0	0	0
$30-40$	2	35	10	20	200
Total	$\mathbf{1 0}$			$-\mathbf{3 0}$	$\mathbf{9 0 0}$

$\sigma^{2}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}^{2}}{\sum \mathrm{f}_{\mathrm{i}}}-\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)^{2}=\frac{900}{10}-\left(\frac{-30}{10}\right)^{2}$
$\sigma^{2}=90-9=81$
$\Rightarrow \sigma=9$
13. (C) Let $a, a, \ldots n$ times and $-a,-a,-a,-a, \ldots$ n
times i.e., mean $=0$ and
S.D. $=\sqrt{\frac{\mathrm{n}(\mathrm{a}-0)^{2}+\mathrm{n}(-\mathrm{a}-0)^{2}}{2 \mathrm{n}}}$
$\therefore \quad 2=\sqrt{\frac{n \mathrm{n}^{2}+\mathrm{na}^{2}}{2 \mathrm{n}}}=\sqrt{\mathrm{a}^{2}}= \pm \mathrm{a}$
Hence, $|\mathrm{a}|=2$.

8.2 Standard Deviation for Combined data, Coefficient of variation

1. (C) Here, $\bar{x}=13, \bar{y}=17, \sigma_{x}=3, \sigma_{y}=2, \mathrm{n}_{x}=20$, $\mathrm{n}_{y}=30$
Combined mean $\left(\bar{x}_{\mathrm{c}}\right)=\frac{\mathrm{n}_{x} \bar{x}+\mathrm{n}_{y} \bar{y}}{\mathrm{n}_{x}+\mathrm{n}_{y}}$

$$
\begin{aligned}
& =\frac{20(13)+30(17)}{20+30} \\
& =15.4
\end{aligned}
$$

Now, $\mathrm{d}_{x}=\bar{x}-\bar{x}_{\mathrm{c}}=13-15.4=-2.4$
$\mathrm{d}_{y}=\bar{y}-\bar{x}_{\mathrm{c}}=17-15.4=1.6$
\therefore Combined standard deviation $\left(\sigma_{\mathrm{c}}\right)$

$$
\begin{aligned}
& =\sqrt{\frac{\mathrm{n}_{x}\left(\sigma_{x}^{2}+\mathrm{d}_{x}^{2}\right)+\mathrm{n}_{y}\left(\sigma_{y}^{2}+\mathrm{d}_{y}{ }^{2}\right)}{\mathrm{n}_{x}+\mathrm{n}_{y}}} \\
& =\sqrt{\frac{20\left[3^{2}+(-2.4)^{2}\right]+30\left(2^{2}+1.6^{2}\right)}{20+30}} \\
& =3.14
\end{aligned}
$$

2. (A) Let $\mathrm{n}_{1}=60, \mathrm{n}_{2}=120, \bar{x}_{1}=35.4, \bar{x}_{2}=30.9$, $\sigma_{1}=4, \sigma_{2}=5$
Combined mean $\left(\bar{x}_{\mathrm{c}}\right)=\frac{\mathrm{n}_{1} \bar{x}_{1}+\mathrm{n}_{2} \bar{x}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$

$$
\begin{aligned}
& =\frac{60 \times 35.4+120 \times 30.9}{60+120} \\
& =\frac{2124+3708}{180} \\
& =\frac{5832}{180}=32.4
\end{aligned}
$$

Now, $\mathrm{d}_{1}=\bar{x}_{1}-\bar{x}_{\mathrm{c}}=35.4-32.4=3$
$\mathrm{d}_{2}=\bar{x}_{2}-\bar{x}_{\mathrm{c}}=30.9-32.4=-1.5$
\therefore Combined standard deviation $\left(\sigma_{\mathrm{c}}\right)$
$=\sqrt{\frac{\mathrm{n}_{1}\left(\sigma_{1}{ }^{2}+\mathrm{d}_{1}{ }^{2}\right)+\mathrm{n}_{2}\left(\sigma_{2}{ }^{2}+\mathrm{d}_{2}{ }^{2}\right)}{\mathrm{n}_{1}+\mathrm{n}_{2}}}$
$=\sqrt{\frac{60\left(4^{2}+3^{2}\right)+120\left[5^{2}+(-1.5)^{2}\right]}{60+120}}$
$=\sqrt{\frac{4770}{180}}$
$=\sqrt{26.5}=5.15$
3. (B) Here,
$\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}=30, \sum_{\mathrm{i}=1}^{\mathrm{n}} y_{\mathrm{i}}=40, \sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}^{2}=220, \sum_{\mathrm{i}=1}^{\mathrm{n}} y_{\mathrm{i}}^{2}=340$
$\bar{x}=\frac{\sum x_{\mathrm{i}}}{\mathrm{n}}=\frac{30}{5}=6$,
$\bar{y}=\frac{\sum y_{\mathrm{i}}}{\mathrm{n}}=\frac{40}{5}=8$
Combined mean $\left(\bar{x}_{\mathrm{c}}\right)=\frac{\mathrm{n}_{x} \bar{x}+\mathrm{n}_{y} \bar{y}}{\mathrm{n}_{x}+\mathrm{n}_{y}}$

$$
=\frac{5(6)+5(8)}{5+5}=7
$$

Now, $\mathrm{d}_{x}=\bar{x}-\bar{x}_{\mathrm{c}}=6-7=-1$
$\mathrm{d}_{y}=\bar{y}-\bar{x}_{\mathrm{c}}=8-7=1$

$$
\begin{aligned}
& \sigma_{x}^{2}=\frac{1}{\mathrm{n}} \sum x_{\mathrm{i}}^{2}-(\bar{x})^{2}=\frac{1}{5}(220)-(6)^{2} \\
&=44-36=8 \\
& \sigma_{y}^{2}=\frac{1}{\mathrm{n}} \sum y_{\mathrm{i}}^{2}-(\bar{y})^{2}=\frac{1}{5}(340)-(8)^{2}= \\
&=68-64 \\
&=4
\end{aligned}
$$

\therefore Combined standard deviation $\left(\sigma_{\mathrm{c}}\right)$
$=\sqrt{\frac{\mathrm{n}_{x}\left(\sigma_{x}{ }^{2}+\mathrm{d}_{x}^{2}\right)+\mathrm{n}_{y}\left(\sigma_{y}{ }^{2}+\mathrm{d}_{y}{ }^{2}\right)}{\mathrm{n}_{x}+\mathrm{n}_{y}}}$
$=\sqrt{\frac{5\left[8+(-1)^{2}\right]+5\left[4+(1)^{2}\right]}{5+5}}$
$=\sqrt{\frac{70}{10}}$
$=\sqrt{7}=2.65$
4. (A) Let n_{1} and n_{2} be the number of boys and girls respectively.
Let $\mathrm{n}=200, \bar{x}_{\mathrm{c}}=65, \bar{x}_{1}=70, \bar{x}_{2}=62, \sigma_{1}=8$,
$\sigma_{2}=10$
Here, $\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}$
$\therefore \quad \mathrm{n}_{1}+\mathrm{n}_{2}=200$
Combined mean $\left(\bar{x}_{\mathrm{c}}\right)=\frac{\mathrm{n}_{1} \bar{x}_{1}+\mathrm{n}_{2} \bar{x}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$\therefore \quad 65=\frac{\mathrm{n}_{1}(70)+\mathrm{n}_{2}(62)}{200}$
$\therefore 70 \mathrm{n}_{1}+62 \mathrm{n}_{2}=13000$
$\therefore \quad 35 \mathrm{n}_{1}+31 \mathrm{n}_{2}=6500$
Solving (i) and (ii), we get
$\mathrm{n}_{1}=75, \mathrm{n}_{2}=125$
$\therefore \quad$ Number of boys $=75$
$\mathrm{d}_{1}=\bar{x}_{1}-\bar{x}_{\mathrm{c}}=70-65=5$
$\mathrm{~d}_{2}=\bar{x}_{2}-\bar{x}_{\mathrm{c}}=62-65=-3$

Combined S.D. $\left(\sigma_{\mathrm{c}}\right)$
$=\sqrt{\frac{\mathrm{n}_{1}\left(\sigma_{1}{ }^{2}+\mathrm{d}_{1}{ }^{2}\right)+\mathrm{n}_{2}\left(\sigma_{2}{ }^{2}+\mathrm{d}_{2}{ }^{2}\right)}{\mathrm{n}_{1}+\mathrm{n}_{2}}}$
$=\sqrt{\frac{75(64+25)+125(100+9)}{200}}$
$=\sqrt{\frac{6675+13625}{200}}$
$=\sqrt{\frac{20300}{200}}=\sqrt{101.5}=10.07$
5. (B) Here, $\bar{x}=\frac{75+78+80+86+91+88+83}{7}$

$$
=\frac{581}{7}=83
$$

$\sum x_{\mathrm{i}}=581, \sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}=196$
\therefore S.D. $=\sigma=\sqrt{\frac{1}{\mathrm{n}} \sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}}=\sqrt{\frac{1}{7}(196)}=5.29$
$\therefore \quad$ C.V. $=\frac{\sigma}{|\bar{x}|} \times 100=\frac{5.29}{83} \times 100=6.37$
6. (C) Here, $\sum \mathrm{f}_{\mathrm{i}}=50, \sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}=3130$,
$\sum \mathrm{f}_{\mathrm{i}}\left(x_{\mathrm{i}}-\bar{x}\right)^{2}=106$
$\therefore \quad \bar{x}=\frac{\sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{3130}{50}=62.6$
$\therefore \quad \sigma=\sqrt{\frac{1}{\mathrm{~N}} \sum \mathrm{f}_{\mathrm{i}}\left(x_{\mathrm{i}}-\bar{x}\right)^{2}}=\sqrt{\frac{106}{50}}=1.46$
Now, Variance $=\sigma^{2}=2.12$
$\therefore \quad$ C.V. $=\frac{\sigma}{|\bar{x}|} \times 100=2.33$
7. (B) C.V. $=\frac{\sigma}{\bar{x}} \times 100$

When C.V. $=55, \sigma=22$
$55=\frac{22}{\bar{x}_{1}} \times 100$
$\Rightarrow \bar{x}_{1}=\frac{22}{55} \times 100=40$
For C.V. $=65, \sigma=39$
$\bar{x}_{2}=\frac{39}{65} \times 100=60$
$\therefore \quad$ Means are 40, 60 .
8. (C) C.V. of $\mathrm{A}=\frac{\sigma_{A}}{\bar{x}} \times 100$
$\therefore \quad 4=\frac{\sigma_{\mathrm{A}}}{\bar{x}} \times 100$
$\Rightarrow \sigma_{\mathrm{A}}=\frac{4 \bar{x}}{100}$
and C.V. of $\mathrm{B}=\frac{\sigma_{B}}{\bar{x}} \times 100$
$\therefore \quad 2=\frac{\sigma_{B}}{\bar{x}} \times 100$
$\Rightarrow \sigma_{\mathrm{B}}=\frac{2 \bar{x}}{100}$
From (i) and (ii),
$\sigma_{\mathrm{A}}=2 \sigma_{\mathrm{B}}$

MHT-CET Previous Years' Questions

1. (A) Note that: Required variance $=$ Variance of first 10 natural numbers
.$[\because$ Variance is independent of change of origin]

$$
\begin{aligned}
& =\frac{10^{2}-1}{12} \\
& =8.25
\end{aligned}
$$

...[Using Shortcut 2]
2. (A) Mean $=\frac{2+3+11+x}{4}=\frac{16+x}{4}$

Variance $=\frac{1}{\mathrm{n}} \sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}$
$\Rightarrow \frac{49}{4}=\frac{1}{4}\left[\left(2-\left(\frac{16+x}{4}\right)\right)^{2}+\left(3-\left(\frac{16+x}{4}\right)\right)^{2}\right.$
$\left.+\left(11-\left(\frac{16+x}{4}\right)\right)^{2}+\left(x-\left(\frac{16+x}{4}\right)\right)^{2}\right]$

$$
\begin{aligned}
& \Rightarrow \frac{49}{4}=\frac{1}{4}\left[\frac{(x+8)^{2}}{16}+\frac{(x+4)^{2}}{16}\right. \\
& \left.+\frac{(28-x)^{2}}{16}+\frac{(3 x-16)^{2}}{16}\right] \\
& 784=\left(x^{2}+16 x+64\right)+\left(x^{2}+8 x+16\right) \\
& +\left(784-56 x+x^{2}\right)+\left(9 x^{2}-96 x+256\right) \\
& \Rightarrow 12 x^{2}-128 x+336=0 \\
& \Rightarrow 3 x^{2}-32 x+84=0 \\
& \Rightarrow x=6 \text { or } x=\frac{14}{3}
\end{aligned}
$$

3. (C) Co-efficient of variation $=\frac{\text { S.D. }}{\text { Mean }} \times 100$
C.V. of Physics $=\frac{3}{20} \times 100=15$
C.V. of Chemistry $=\frac{2}{25} \times 100=8$
C.V. of Mathematics $=\frac{4}{23} \times 100=17.39$
C.V. of Biology $=\frac{5}{27} \times 100=18.52$
\therefore Biology shows the highest variability in marks.
4. (D) $\overline{\mathrm{X}}=\frac{\sum x_{\mathrm{i}}}{\mathrm{N}}=\frac{528}{16}=33$
$\sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}=9158$
Variance $=\frac{1}{\mathrm{~N}} \sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}$

$$
=\frac{9158}{16}=572.375
$$

5. (D) C.V. $=\frac{\text { S.D }}{\mid \text { Mean } \mid} \times 100$

$$
=\frac{12}{72} \times 100=16.67 \%
$$

6. (B) Co-efficient of variation $=\frac{\text { S.D. }}{\text { Mean }} \times 100$
C.V. of $\mathrm{A}=\frac{12}{80} \times 100=15$
C.V. of $B=\frac{6}{75} \times 100=8$
C.V. of $\mathrm{C}=\frac{8}{70} \times 100=11.43$
C.V. of $\mathrm{D}=\frac{10}{72} \times 100=13.89$
C.V. is the least for division B.
7. (A) S.D. $=\sqrt{\frac{1}{\mathrm{n}}\left(\sum_{\mathrm{i}=1} x_{\mathrm{i}}^{2}\right)-(\bar{x})^{2}}$

$$
=\sqrt{\frac{3050}{50}-6^{2}}=5
$$

8. (A) First 10 multiples of 3 are $3,6,9,12,15,18$, 21, 24, 27, 30.

$$
\begin{aligned}
\text { Variance }= & \frac{1}{\mathrm{n}}\left(\sum x_{\mathrm{i}}^{2}\right)-(\bar{x})^{2} \\
= & \frac{1}{10}\left[3^{2}\left(1^{2}+2^{2}+\ldots+10^{2}\right)\right] \\
& -\left\{\frac{1}{10}[3(1+2+\ldots+10)]\right\}^{2} \\
= & \frac{1}{10} \times 3465-(16.5)^{2} \\
= & 74.25
\end{aligned}
$$

9. (D) Using Shortcut 2, we get

$$
2=\sqrt{\frac{\mathrm{n}^{2}-1}{12}}
$$

$$
\Rightarrow \mathrm{n}=7
$$

10. (B) Here, $\sum \mathrm{f}_{\mathrm{i}}=20, \sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}=141, \sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}^{2}=1051$

$$
\begin{aligned}
\operatorname{Var}(\mathrm{X}) & =\frac{\sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}^{2}}{\sum \mathrm{f}_{\mathrm{i}}}-(\bar{x})^{2} \\
& =\frac{1051}{20}-\left(\frac{141}{20}\right)^{2} \\
& =52.55-49.70 \\
& =2.85
\end{aligned}
$$

11. (C) Here, $\sum \mathrm{f}_{\mathrm{i}}=(x+1)^{2}+2 x-5+x^{2}-3 x+x$

$$
=2 x^{2}+2 x-4
$$

$$
\sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}=2(x+1)^{2}+3(2 x-5)+5\left(x^{2}-3 x\right)+7 x
$$

$$
=7 x^{2}+2 x-13
$$

$\mathrm{N}=20$
...[Given]
$\Rightarrow \sum \mathrm{f}_{\mathrm{i}}=20$
$\Rightarrow 2 x^{2}+2 x-4=20$
$\Rightarrow x=-4,3$
$\Rightarrow x=3$
$[\because x \in \mathrm{~N}]$
Now mean $(\bar{x})=\frac{\sum \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}}{\mathrm{N}}$

$$
=\frac{7(3)^{2}+2(3)-13}{20}
$$

$$
=2.8
$$

12. (A) Variance $=\frac{1}{\mathrm{~N}} \sum x^{2}-\left(\frac{\sum x}{\mathrm{~N}}\right)^{2}$

$$
\begin{aligned}
& =\frac{18000}{60}-\left(\frac{960}{60}\right)^{2} \\
& =44
\end{aligned}
$$

13. (C) $\operatorname{Var}(\mathrm{X})=\frac{1}{\mathrm{~N}} \sum x_{\mathrm{i}}^{2}-\left(\frac{\sum x_{\mathrm{i}}}{\mathrm{N}}\right)^{2}$

$$
=\frac{16.9}{10}-\left(\frac{12}{10}\right)^{2}=0.25
$$

S.D. $=\sqrt{0.25}=0.5$
14. (B) Mean $(\bar{x})=\frac{\sum x_{\mathrm{i}}}{50}$
$\Rightarrow 16=\frac{\sum x_{\mathrm{i}}}{50} \Rightarrow \sum x_{\mathrm{i}}=800$
Standard Deviation $=\sqrt{\frac{\sum x_{i}^{2}}{50}-(\bar{x})^{2}}$
$\Rightarrow 16=\sqrt{\frac{\sum x_{i}^{2}}{50}-(16)^{2}}$
$\Rightarrow \sum x_{\mathrm{i}}^{2}=\left(16^{2}+16^{2}\right) 50 \Rightarrow \sum x_{\mathrm{i}}^{2}=25600$
Now, required mean $=\frac{\sum\left(x_{\mathrm{i}}-5\right)^{2}}{50}$
$=\frac{\sum x_{\mathrm{i}}^{2}+25 \times 50-10 \sum x_{\mathrm{i}}}{50}$
$=\frac{25600+1250-8000}{50}$
$=377$
15. (D) Variance remains the same i.e., 6

Mean $(\bar{x})=\frac{\text { Sum of observations }}{15}$
$\Rightarrow 10=\frac{\text { Sum of observations }}{15}$
\Rightarrow Sum of observations $=150$
Now, each observation is increased by 8 .
New mean $=\frac{150+8(15)}{15}=18$
16. (C) Mean $=5$
...[Given]
$\therefore \quad$ Mean $=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}}{\mathrm{n}}$
$\Rightarrow 5=\frac{3+5+7+\mathrm{a}+\mathrm{b}}{5}$
$\Rightarrow \mathrm{a}+\mathrm{b}=10$
S.D. $=2$
\therefore S.D. $=\sqrt{\frac{\sum x_{\mathrm{i}}^{2}}{\mathrm{n}}-(\bar{x})^{2}}$
$\Rightarrow(2)^{2}=\frac{3^{2}+5^{2}+7^{2}+\mathrm{a}^{2}+\mathrm{b}^{2}}{5}-(5)^{2}$
$\Rightarrow 4=\frac{83+\mathrm{a}^{2}+\mathrm{b}^{2}}{5}-25$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=62$
Now, (i) $\Rightarrow \mathrm{a}+\mathrm{b}=10$
Squaring both sides, we get
$(a+b)^{2}=100$
$\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}=100$
$38=2 \mathrm{ab}$
..[From (ii)]
$\therefore \quad \mathrm{ab}=19$
Note that the required quadratic equation is expressed as
$x^{2}-(a+b) x+a b=0$
$\therefore \quad x^{2}-10 x+19=0$
17. (D) When each item of a data is multiplied by λ, variance is multiplied by λ^{2}.
\therefore New variance $=3^{2} \times 16$

$$
\begin{aligned}
& =9 \times 16 \\
& =144
\end{aligned}
$$

18. (C) Given that $\mathrm{n}=50, \bar{x}=16$ and $\sigma_{x}^{2}=256$

$$
\begin{align*}
& \therefore \quad \sigma_{x}^{2}=\frac{1}{\mathrm{n}}\left(\sum_{\mathrm{i}=1}^{50} x_{\mathrm{i}}^{2}\right)-(\bar{x})^{2} \\
& \therefore \quad 256=\frac{1}{50}\left(\sum_{\mathrm{i}=1}^{50} x_{\mathrm{i}}^{2}\right)-256 \\
& \therefore \quad \frac{1}{50}\left(\sum_{\mathrm{i}=1}^{50} x_{\mathrm{i}}^{2}\right)=512 \\
& \therefore \quad \sum_{\mathrm{i}=1}^{50} x_{\mathrm{i}}^{2}=25600 \tag{i}
\end{align*}
$$

Now $\sum_{i=1}^{50}\left(x_{i}-5\right)^{2}$
$=\sum_{\mathrm{i}=1}^{50} x_{\mathrm{i}}^{2}+25 \times 50-10 \sum_{\mathrm{i}=1}^{50} x_{\mathrm{i}}$
$=25600+1250-8000$
\ldots...From (i) and (ii)]
$=18850$
$\therefore \quad$ Required Mean $=\frac{\sum_{\mathrm{i}=1}^{50}\left(x_{\mathrm{i}}-5\right)^{2}}{50}=\frac{18850}{50}=377$
19. (B) Variance $=\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}^{2}-\bar{x}^{2}$

Here, $\mathrm{n}=4$ and variance $=5$
$\therefore \quad 5=\frac{1}{4}\left[(-1)^{2}+(0)^{2}+(1)^{2}+\mathrm{k}^{2}\right]$

$$
-\left(\frac{-1+0+1+\mathrm{k}}{4}\right)^{2}
$$

$\therefore \quad 5=\frac{2+\mathrm{k}^{2}}{4}-\frac{\mathrm{k}^{2}}{16}$
$\therefore \quad 80=8+4 \mathrm{k}^{2}-\mathrm{k}^{2}$
$\therefore \quad 3 \mathrm{k}^{2}=72$
$\therefore \quad \mathrm{k}^{2}=24$
$\therefore \mathrm{k}=2 \sqrt{6}$ $\ldots[\because \mathrm{k}>0]$
20. (A) Note that standard derivation is independent of change of origin.
$\therefore \quad$ S.D. of $x_{\mathrm{i}}=$ S.D. of $\left(x_{\mathrm{i}}-2\right)$
$\therefore \quad$ S.D. of $\left(x_{\mathrm{i}}-2\right)$
$=\sqrt{\frac{1}{n} \sum_{i=1}^{20}\left(x_{i}-2\right)^{2}-\left[\frac{\sum\left(x_{i}-2\right)}{n}\right]^{2}}$
$=\sqrt{\frac{100}{20}-(1)^{2}}$
$=2$
\Rightarrow Requird S.D. $=2$
21. (D) $\sigma^{2}=\frac{1}{2 n}\left[1^{2}+2^{2}+3^{2}+\ldots+(2 n)^{2}\right]$

$$
\begin{aligned}
& \quad-\left(\frac{1+2+3+\ldots+2 n}{2 n}\right)^{2} \\
& =\frac{1}{2 n}\left[\frac{2 n(2 n+1)(4 n+1)}{6}\right]-\left[\frac{1}{2 n} \times \frac{2 n(2 n+1)}{2}\right]^{2} \\
& =\frac{(2 n+1)(4 n+1)}{6}-\left(\frac{2 n+1}{2}\right)^{2} \\
& =\frac{2 n+1}{2}\left(\frac{4 n+1}{3}-\frac{2 n+1}{2}\right) \\
& =\frac{2 n+1}{2}\left(\frac{2 n-1}{6}\right)=\frac{4 n^{2}-1}{12}
\end{aligned}
$$

22. (D) When each term of a data is multiplied by λ, variance is multiplied by λ^{2}.
$\therefore \quad$ New variance $=2^{2} \times 5=20$

Evaluation Test

1. (D) When each item of a data is multiplied by λ, variance is multiplied by λ^{2}.
Hence, new variance $=5^{2} \times 9=225$
2. (C) S. D. of first n natural numbers
$=\sqrt{\frac{1}{\mathrm{n}} \Sigma x^{2}-\left(\frac{\Sigma x}{\mathrm{n}}\right)^{2}}$ $\ldots\left[\because \bar{x}=\frac{\Sigma x}{\mathrm{n}}\right]$
$=\sqrt{\frac{n(n+1)(2 n+1)}{6 n}-\left[\frac{n(n+1)}{2 n}\right]^{2}}$
$=\sqrt{\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\left(\frac{\mathrm{n}+1}{2}\right)^{2}}$
$=\sqrt{\frac{\mathrm{n}+1}{2}\left(\frac{2 \mathrm{n}+1}{3}-\frac{\mathrm{n}+1}{2}\right)}$
$=\sqrt{\frac{n+1}{2}\left(\frac{4 n+2-3 n-3}{6}\right)}$
$=\sqrt{\frac{\mathrm{n}^{2}-1}{12}}$
3. (B) Let $y=\frac{\mathrm{a} x+\mathrm{b}}{\mathrm{c}}$ i.e., $y=\frac{\mathrm{a}}{\mathrm{c}} x+\frac{\mathrm{b}}{\mathrm{c}}$
i.e., $y=\mathrm{A} x+\mathrm{B}$, where $\mathrm{A}=\frac{\mathrm{a}}{\mathrm{c}}, \mathrm{B}=\frac{\mathrm{b}}{\mathrm{c}}$
$\therefore \quad \bar{y}=\mathrm{A} \bar{x}+\mathrm{B}$
$\therefore \quad y-\bar{y}=\mathrm{A}(x-\bar{x})$
$\Rightarrow(y-\bar{y})^{2}=\mathrm{A}^{2}(x-\bar{x})^{2}$
$\Rightarrow \Sigma(y-\bar{y})^{2}=\mathrm{A}^{2} \Sigma(x-\bar{x})^{2}$
$\Rightarrow \mathrm{n} . \sigma_{y}^{2}=\mathrm{A}^{2} \cdot \mathrm{n} \sigma_{x}^{2} \Rightarrow \sigma_{y}^{2}=\mathrm{A}^{2} \sigma_{x}^{2}$
$\Rightarrow \sigma_{y}=|\mathrm{A}| \sigma_{x}$
$\Rightarrow \sigma_{y}=\left|\frac{\mathrm{a}}{\mathrm{c}}\right| \sigma_{x}$
Thus, new S.D. $=\left|\frac{\mathrm{a}}{\mathrm{c}}\right| \sigma$
4. (D) $\sum_{\mathrm{j}=1}^{18}\left(x_{\mathrm{j}}-8\right)=9 \Rightarrow \sum_{\mathrm{j}=1}^{18} x_{\mathrm{j}}=153$
and $\sum_{\mathrm{j}=1}^{18}\left(x_{\mathrm{j}}-8\right)^{2}=45$
$\Rightarrow \sum_{\mathrm{j}=1}^{18}\left(x_{\mathrm{j}}^{2}-16 x_{\mathrm{j}}+64\right)=45$
$\Rightarrow \sum_{\mathrm{j}=1}^{18} x_{\mathrm{j}}^{2}=45-64 \times 18+16 \sum_{\mathrm{j}=1}^{18} x_{\mathrm{j}}$
$=45-1152+2448$
$=1341$
\therefore Standard deviation $=\sqrt{\frac{\sum x_{\mathrm{j}}^{2}}{\mathrm{n}}-\left(\frac{\sum x_{\mathrm{j}}}{\mathrm{n}}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{1341}{18}-\left(\frac{153}{18}\right)^{2}} \\
& =\sqrt{74.5-72.25} \\
& =1.5
\end{aligned}
$$

5. (D)
6. (C) Let the two unknown items be x and y, then Mean $=4$
$\Rightarrow \frac{1+2+6+x+y}{5}=4$
$\Rightarrow x+y=11$
and variance $=5.2$
$\Rightarrow \frac{1^{2}+2^{2}+6^{2}+x^{2}+y^{2}}{5}-(\text { mean })^{2}=5.2$
$\Rightarrow 41+x^{2}+y^{2}=5\left[5.2+(4)^{2}\right]$
$\Rightarrow 41+x^{2}+y^{2}=106$
$\Rightarrow x^{2}+y^{2}=65$
Solving (i) and (ii) for x and y, we get
$x=4, y=7$ or $x=7, y=4$
7. (B) Here $\mathrm{n}_{1}=5, \bar{x}_{1}=8, \sigma_{1}^{2}=18, \mathrm{n}_{2}=3$
$\bar{x}_{2}=8, \sigma_{2}^{2}=24$
$\bar{x}=$ combined mean $=\frac{5 \times 8+3 \times 8}{5+3}=\frac{64}{8}=8$
Combined variance $=\frac{\mathrm{n}_{1}\left(\sigma_{1}^{2}+\mathrm{d}_{1}^{2}\right)+\mathrm{n}_{2}\left(\sigma_{2}^{2}+\mathrm{d}_{2}^{2}\right)}{\mathrm{n}_{1}+\mathrm{n}_{2}}$,
where $\mathrm{d}_{1}=\bar{x}_{1}-\bar{x}, \mathrm{~d}_{2}=\bar{x}_{2}-\bar{x}$
Now, $\mathrm{d}_{1}=8-8 ; \mathrm{d}_{2}=8-8=0$
Combined variance $=\frac{5(18)+3(24)}{5+3}$

$$
\begin{aligned}
& =\frac{90+72}{8} \\
& =\frac{162}{8} \\
& =20.25
\end{aligned}
$$

Give your MHT-CET exam preparation the TECHNOLOGY BOOST!

Use Coupon Code QUILLPADHAI2023

Also available for $\mathrm{X}^{\text {th }}, \mathrm{XI}^{\text {th }}, \mathrm{XII}{ }^{\text {th }}$, NEET \& JEE

- Practice chapter-wise \& full syllabus MCQs in test format

Quill

- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Scan QR Code
to download the app

Visit our website to know more about our range of books for X $^{\text {th }}$, XI $^{\text {th }}$, XII ${ }^{\text {th }}$, NEET $\&$ JEE

Visit Our Website

[^0]: (C) Target Publications Pvt. Ltd.

 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

