SAMPLE CONTENT

MHT-CET

TRIUMPH

CHEMISSIC PART BASED ON THE LATEST SYLLABUS OF MHT-CET

Fireflies glow due to chemical reactions. An electronically excited intermediate is produced that emits light as it relaxes!

Prof. Santosh Yadav M. Sc., SET, NET

Std.

Prof. Anil Thomas M.Sc., Chemistry

Ms. Mitha Soman M.Sc.

Soman Mr. Mukesh Paradiya M.Tech - IIT Bombay

Target Publications® Pvt. Ltd.

MHT-CET TRIUMPH CHEMISTRY 2073 Based on the latest Syllabus of MHT-CET PART 1 Std. XI Salient Features

- Tincludes relevant chapters of Std. XI as per the latest MHT-CET Syllabus
- Includes '2073' MCQs
- Quick Review and exhaustive subtopic wise coverage of MCQs
- Compilation of all 'Important Formulae' in relevant chapters
- Evaluation Test for each chapter
- Includes Smart Keys (Key Notes For Good Practice, Smart Code, Caution, Thinking Hatke, Shortcuts)
- * 'Real-world applications' in each chapter
- Tideo/pdf links via QR codes for boosting conceptual retention
- Answer keys for all the chapters and Evaluation Tests at the end of book
- *Solutions to MCQs and Evaluation Test can be accessed through Q.R. code given at the end of each chapter*

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd. No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

"Don't follow your dreams; chase them!" A quote by Richard Dumbrill is perhaps the most pertinent for one who is aiming to crack entrance examinations held after Std. XII. We are aware of the aggressive competition a student appearing for such career-defining examinations experiences and hence wanted to create books that develop the necessary knowledge, tools, and skills required to excel in these examinations.

For the syllabus of **MHT-CET**, 80% of the weightage is given to the syllabus for XIIth standard while only 20% is given to the syllabus for XIth standard (with inclusion of only selected topics).

We believe that although the syllabus for Std. XII and XI and MHT-CET is aligned, the outlook for studying the subject should be altered based on the nature of the examination. To score well in the MHT-CET, a student has to be not just good with the concepts but also quick to complete the test successfully. Such ingenuity can be developed through sincere learning and dedicated practice.

As a first step to MCQ solving, students should start with elementary questions. Once momentum is gained, complex MCQs with a higher level of difficulty should be practised. Such holistic preparation is the key to succeeding in the examination!

Target's **Triumph MHT-CET Chemistry Standard XI** book which covers relevant chapters of Std. XI has been designed to achieve the above objectives. Beginning with basic MCQs, the book proceeds to develop competence to solve complex MCQs. It offers ample practice of recent questions from MHT-CET examinations. It also includes solutions (via QR codes) that provide explanations to help students learn how to solve the MCQs.

The sections of Key Notes For Good Practice, Quick Review, Formulae, and MCQs (Classical, Critical, Concept Fusion, Previous Years' MHT-CET Questions, Evaluation Test) form the backbone of every chapter and ensure adequate revision.

All the features of this book pave the way for a student to excel in the examination. The features are designed keeping the following elements in mind: Time management, easy memorization or revision, and non-conventional yet simple methods for MCQ solving. The features of the book presented on the next page will explain more about them!

We hope the book benefits the learner as we have envisioned.

Publisher Edition: Second

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

Disclaimer

This reference book is transformative work based on Std. XI Chemistry Textbook; Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

© reserved with the Publisher for all the contents created by our Authors.

No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

MHT-CET PAPER PATTERN

- There will be three papers of Multiple Choice Questions (MCQs) in 'Mathematics', 'Physics and Chemistry' and 'Biology' of 100 marks each.
- Duration of each paper will be 90 minutes.
- Questions will be based on the syllabus prescribed by Maharashtra State Board of Secondary and Higher Secondary Education with approximately 20% weightage given to Std. XI and 80% weightage will be given to Std. XII curriculum.
- Difficulty level of questions will be at par with JEE (Main) for Mathematics, Physics, Chemistry and at par with NEET for Biology.
- There will be no negative marking.
- Questions will be mainly application based.
- Details of the papers are as given below:

Paper	Subject	Approximat Choice Questio	te No. of Multiple ns (MCQs) based on	Mark(s) Per	Total	
-		Std. XI	Std. XII	Question	Marks	
Paper I	Mathematics	10	40	2	100	
Paper II	Physics	10	40	1	100	
	Chemistry	10	40			
Paper III	Biology	20	80	1	100	

• Questions will be set on

the entire syllabus of Std. XII of Physics, Chemistry, Mathematics and Biology subjects prescribed by Maharashtra Bureau of Textbook Production and curriculum Research, Pune, and
 chapters / units from Std. XI curriculum as mentioned below:

Sr. No.	Subject	Chapters / Units of Std. XI
1	Physics	Motion in a plane, Laws of motion, Gravitation, Thermal properties of matter, Sound, Optics, Electrostatics, Semiconductors
2	Chemistry	Some Basic Concepts of Chemistry, Structure of Atom, Chemical Bonding, Redox Reactions, Elements of Group 1 and Group 2, States of Matter: Gaseous and Liquid States, Basic Principles of Organic Chemistry, Adsorption and Colloids, Hydrocarbons
3	Mathematics	Trigonometry - II, Straight Line, Circle, Measures of Dispersion, Probability, Complex Numbers, Permutations and Combinations, Functions, Limits, Continuity
4	Biology	Biomolecules, Respiration and Energy Transfer, Human Nutrition, Excretion and osmoregulation

Sr. No.	Textbook Chapter No.	Chapter Name	Page No.
1	1	Some Basic Concepts of Chemistry	1
2	4	Structure of Atom	16
3	5	Chemical Bonding	37
4	6	Redox Reactions	55
5	8	Elements of Group 1 and Group 2	70
6	10	States of Matter: Gaseous and Liquid States	87
7	11	Adsorption and Colloids	108
8	14	Basic Principles of Organic Chemistry	126
9	15	Hydrocarbons	149
		Answer Key	172
		Modern Periodic Table	184
		Electronic Configuration of Elements	185

Practice test Papers are the only way to assess your preparedness for the Exams. Scan the adjacent QR code to know more about our **"MHT-CET Chemistry Test Series with Answer Key & Solutions"** book for the MHT-CET Entrance examination.

Chapter

1 Some Basic Concepts of Chemistry

Elemental analysis to catch elephant poachers!!

Due to illegal poaching, the elephant population in Africa is dwindling. The relative amounts of ${}^{12}C/{}^{13}C$, ${}^{14}N/{}^{15}N$ and ${}^{86}Sr, {}^{87}Sr$ in elephant tusk/ivory vary based on the geographical locations of elephants. Elemental analysis of ivory trinkets and elephant tusks using mass spectrometer can help identify the region of Africa where the elephant lived. Thus, the origin of illegal trade can be traced and prevented.

Chapter Outline

- 1.1 Introduction
- 1.2 Nature of chemistry
- 1.3 Properties of matter and their measurement 1.7
- 1.4 Laws of chemical combination
- 1.5 Dalton's atomic theory1.6 Atomic and molecular masses
 - Mole concept and molar mass
 - Moles and gases

Key Notes For Good Practice

1.8

- Mass is a measure of the quantity of matter and is independent of location. Weight is the force exerted by an object and it depends on the gravity. Same object has a different weight on the Earth and the Moon, but the same mass.
- It is always good to write units at each stage of calculation, and expressing numerical quantities in same system of units for easy cancellation of units or conversion of units.
- Temperature and heat are different terms. Heat is a mode of transfer of energy while temperature is a property that determines the direction of transfer of heat.
- Note that 0 °C corresponds to 32 °F and 100 °C corresponds to 212 °F. So, every one degree rise in Celcius scale corresponds 9/5 dgree rise in Fahrenheit. Hence, we get equation, $^{\circ}F = 9/5^{\circ}C + 32$.
- Units can be repsented in two ways: For example, g/cm^3 or $g cm^{-3}$. Both are widely used.
- The law of definite composition is not true for all types of compounds. It is true for only those compounds which are obtained from one type of isotope.
- Always specify the identity of the substance while using 'mole' unit to avoid any ambiguity. i.e., 1 mole oxygen molecules and 1 mole oxygen atoms are not the same.

i unumentur constants in This chapter				
Avogadro's Constant (N _A)	6.022×10^{23} particles			
1 amu (u)	$1.66056 \times 10^{-24} \mathrm{g}$			
Molar Volume (At STP), (V _m)	22.414 L			

Fundamental Constants in This Chapter

Quick Review

Chemistry is the study of matter, its physical and chemical properties and the physical and chemical changes it undergoes under different conditions.

Physical chemistry

It deals with the study of properties of matter, the energy changes and the theories, laws and principles that explain the transformation of matter from one form to another.

Inorganic chemistry

It deals with the study of all the compounds which are not organic.

Biochemistry

It deals with chemistry of compounds and processes occurring in living organisms.

Organic chemistry

It deals with properties and reactions of compounds of carbon.

Analytical chemistry

It deals with the separation, identification and quantitative determination of the compositions of different substances.

> Classification of matter (On basis of chemical composition):

 \succ **SI Fundamental units**

(n)

 22.4 dm^3

molar mass

in dm³

		mulae 🔶 🔶 🗕 ——————————————————————————————
1.	Celsius to Fahrenheit °F = $\frac{9}{5}$ (°C) + 32	5. Number of moles $n = \frac{\text{Mass of a substance}}{\text{Molar mass of a substance}}$
2.	Celsius to Kelvin K = °C + 273.15	6. Number of molecules = Number of moles × Avogadro number = Number of moles × 6.022 × 10 ²³
3.	Atomic mass unit (1 amu) = $\frac{1}{12}$ th of a ¹² C-atom	7. Molar volume of a gas at STP $V = 22.4 \text{ dm}^3 \text{ mol}^{-1}$
4.	$= 1.66 \times 10^{-27} \text{ kg}$ Average atomic mass $= \frac{\text{Sum of (Isotopic mass × % Abundance)}}{100}$	8. Number of moles $n = \frac{\text{Volume of a gas at STP}}{\text{Molar volume of a gas}}$ $= \frac{\text{Volume of a gas at STP}}{22.4 \text{ dm}^3 \text{ mol}^{-1}}$
1.1	Introduction Which of the following statements is	(C) Two or three elements are combined in fixed proportion to form element.
1.0	 INCORRECT? (A) Technological development in sophisticated instruments has expanded our knowledge of chemistry. (B) Knowledge of chemistry is required in the studies of physics, biological sciences, applied sciences, and earth and space sciences. (C) Chemistry does not involve the study of physical properties of matter. (D) The scope of chemistry is in every aspect of life. 	 (D) Graphite is an element. 4. Following are compounds except (A) water (B) mercuric oxide (C) Table salt (D) arsenic 5. Identify mixture among the following. (A) Gold coin (B) Distilled water (C) Germanium (D) Paint 6. Which one of the following is NOT a mixture? (A) concrete (B) Gasoline (C) A rusty nail (D) Silicon
1.2	Nature of chemistry	1.5 Properties of matter and their measurement
1.	The branch of chemistry that deals with the chemistry of elements other than carbon is called (A) Physical (B) Physical (C) Inorganic (D) Organic	 Which of the following statements INCORRECT? (A) Any quantitative measurement expressed by a number followed by units (B) The SI system has six base units. (C) The arbitrarily decided and universal
2.	The branch of chemistry, which deals with the studies of properties of matter is called chemistry. (A) organic (B) inorganic (C) = historical descent for the studies of the studi	 accepted standards are called units. (D) The standard quantity is reproducible ar unchanging. 2. Which of the following is NOT CGS unit?
3.	(C) physical (D) bio Which of the following statements is INCORRECT for elements?	(A)Centimetre(B)Pound(C)Gram(D)Second

Chapter 1: Some Basic Concepts of Chemistry

- 4. One picometre is equal to 10^{-15} m (A) 10^{-12} m (B)
 - (C) 10^{12} m $10^{-9} \,\mathrm{m}$ (D)
- 5. CGS unit of density is g cm⁻³ (B) (A) $g m^{-3}$ $g L^{-1}$ (D) $g mL^{-1}$ (C)
- 6. Which is NOT a scale of temperature measurement?
 - (A) Candela (Cd)
 - (B) Degree Celsius (°C)
 - Degree Fahrenheit (°F) (C)
 - (D) Kelvin (K)
- 7. The relationship between degree Fahrenheit and degree Celsius is expressed as .
 - (A) $^{\circ}F = \frac{5}{9} (^{\circ}C) + 32$
 - $^{\circ}F = \frac{9}{5} (^{\circ}C) + 32$ (B)
 - $^{\circ}F = ^{\circ}C + 273.15$ (C)
 - $^{\circ}F = ^{\circ}C + 32$ (D)
- 1.4 Laws of chemical combination
- 1. According to the law of conservation of mass,
 - mass can be created but cannot be (A) destroyed
 - (B) mass cannot be created but can be destroved
 - mass can neither be created nor destroyed (C)
 - mass can be created and destroyed (D)
- The sum of the masses of reactants and 2. products is equal in any physical or chemical reaction. This is in accordance with law of
 - (A) multiple proportion
 - definite composition (B)
 - (C) conservation of mass
 - (D) reciprocal proportion
- If the law of conservation of mass was to hold 3. true, then 20.8 g of $BaCl_2$, on reaction with 9.8 g of H₂SO₄ will produce 7.3 g of HCl and of BaSO₄

	01 Dub 04.		
(A)	11.65 g	(B)	23.3 g
(C)	25.5 g	(D)	30.6 g

- Pure water can be obtained from various 4. sources, but it always contains hydrogen and oxygen, combined in a ratio of 1:8 by weight. This is an example of
 - law of conservation of mass (A)
 - (B) Avogadro's law
 - law of definite composition (C)
 - (D) Gay Lussac's law

- 5. A sample of pure carbon dioxide, irrespective of its source contains 27.27% carbon and 72.73% oxygen. The data supports
 - law of definite composition (A)
 - law of conservation of mass (B)
 - (C) law of reciprocal proportions
 - law of multiple proportions (D)
- In SO₂ and SO₃, the ratio of the masses of 6. oxygen that combine with a fixed mass of sulphur is 2:3. This is an example of the law of
 - constant proportion (A)
 - (B) multiple proportion
 - reciprocal proportion (C)
 - (D) conservation of mass
- 7. Two containers of the same size are filled separately with H₂ gas and CO₂ gas. Both the containers under the same T and P will contain the same .
 - number of atoms (A)
 - weight of gas (B)
 - number of molecules (C)
 - (D) number of electrons
- Which of the following reactions has the ratio of 8. volumes of reacting gases and the product as 1:2:2 (at same temperature and pressure)?
 - (A) $2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)}$
 - (B)
 - $\begin{array}{c} O_{2(g)} & + 2H_{2(g)} \longrightarrow 2H_2O_{(g)} \\ H_{2(g)} & + F_{2(g)} \longrightarrow 2HF_{(g)} \end{array}$ (C)
 - (D) $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$
- 1.5 Avogadro law
- Which of the following law states that equal 1. volumes of all gases under identical conditions of temperature and pressure contain equal number of molecules?
 - (A) Boyle's law
 - (B) Charles' law
 - Avogadro's law (C)
 - Gay Lussac's law (D)
- 1.6 Dalton's atomic theory
- 1. Dalton assumed that are the tiny, indivisible particles.
 - (A) atoms **(B)** molecules (C)
 - ions (D) elements
- 1.7 Atomic and molecular masses
- 1. 1 amu is equal to _____
 - (A) $\frac{1}{12}$ of mass of one C-12
 - $\frac{1}{14}$ of mass of one O-16 (B)
 - (C) $1 \text{ g of } H_2$
 - (D) 1.66×10^{-23} kg

2.	Isotopes are the atoms of the same element	1 /. 1	One mole of CO_2 contains
	(A) different atomic masses	1	(A) 6.022×10^{-3} atoms of O
	(B) same atomic masses		(C) 18.1×10^{23} molecules of CO ₂
	(C) different number of electrons	1	(D) 3 atoms of CO_2
	(D) different number of protons	8	One mole of $H_{2}O$ corresponds to
3.	is the sum of average atomic masses		(A) 1 mole of hydrogen atoms
	of the atoms of the elements which constitute		(B) 6.022×10^{23} atoms of hydrogen and
	the molecule.	1	6.022×10^{23} atoms of oxygen
	(A) Molecular mass	1	(C) $18 \text{ g of } \text{H}_2\text{O}$
	(B) Atomic weight		(D) 1 g of H_2O
	(C) Percentage weight	9.	1 atom of an element weighs 1.792×10^{-22} g.
	(D) Percentage volume	1	The atomic mass of the element is
1.8	Mole concept and molar mass	1	$\begin{array}{cccc} (A) & 1.192 \\ (C) & 64 \\ (D) & 108 \\ (D) & 1$
1	1 mole atoms = atoms		(C) 04 (D) 108
1.	(A) 6.021×10^{21} (B) 6.024×10^{24}	10.	What is the mass of 0.5 mole of ozone molecule? (A) $= 8 \pi$
	(C) 6.051×10^{15} (D) 6.022×10^{23}	1 1 1	(A) $8 g$ (B) $16 g$ (C) $24 g$ (D) $48 g$
2	One is the collection of	 4.4	$(C) 2 + g \qquad (D) + 0 g$
4.	6.022×10^{23} atoms /molecules/ions	11.	is is the number of molecules in 16 g of oxygen gas
	(A) kg (B) g	i !	$(A) = 6.022 \times 10^{23}$ (B) 3.011×10^{23}
	$\begin{array}{c} (C) & mole \\ (C) & mole \\ (D) & cm \\ (C) & cm \\ $	ļ	(C) 3.011×10^{22} (D) 1.5×10^{23}
3	One mole of oxygen gas weighs	10	Moles and gases
5.	(A) $1 g$ (B) $8 g$	1 1.7	Moles and gases
	(C) $32 g$ (D) $6.022 \times 10^{23} g$	1.	One mole of any gas occupies a volume of
4	The molar mass of hydrogen peroxide is 34		22.4 dm ⁻ at (A) standard temperature (0 °C) and pressure
т.	What is the unit of molar mass?		(1 atm)
	(A) g (B) mol	į	(B) standard temperature (298 K) and
	(C) $g \mod^{-1}$ (D) $\mod g^{-1}$		pressure (1 atm)
5.	1 mole of benzene is equal to $g C_{\epsilon} H_{\epsilon}$	1 1 1	(C) standard temperature (100 °C) and
0.	(A) 70 (B) 72	1	(D) standard temperature (273 K) and
	(C) 10 (D) 78	1	pressure (10 atm)
6.	How many molecules are present in one gram of	2	The number of S atoms in 22.4 dm ³ of SO ₂ gas
	hydrogen gas?		at STP is .
	(A) 6×10^{23} (B) 3×10^{23}		(A) $6.0\overline{22 \times 10^{20}}$ (B) 6.022×10^{23}
	(C) 2.5×10^{23} (D) 1.5×10^{23}	 	(C) 22.4×10^{20} (D) 22.4×10^{23}
	Critical	Think	ing 🔶 🔶 🔶 🗕 ———————————————————————————
		1	
1.2	Nature of chemistry	 	(C) Diamond is the hardest known substance.
1.	Identify the INCORRECT statement about		(D) All of these
11	metals.	3.	Identify INCORRECT statement.
	(A) They are brittle.		(A) Pure substances have a definite chemical
	(B) They can be hammered into thin sheets.	 	composition.
	(C) They cannot be drawn into wire.	1	(B) Composition of a mixture can be varied to
	(D) They have a lustre.		any extent.
2.	Which of the following show(s) exceptions to	 	(C) Water and table salt are examples of a
	general properties of nonmetals?	 	(D) The constituents of a community of the
	 (A) Diamonu and loume nave lustre. (B) Graphite is good conductor of electricity. 	1	(U) The constituents of a compound can be easily separated by physical methods
	(E) Gruphice is good conductor of cicculotty.		cushy separated by physical methods.

- 4. Which of the following statements is INCORRECT?
 - (A) Constituent substances in a mixture retain their separate identities.
 - (B) Suspension of an insoluble solid in a liquid is an example of heterogeneous mixture.
 - (C) Mixture of any two liquids is an example of homogeneous mixtures.
 - (D) Mixtures can be separated into pure components by simple physical methods.
- 5. Which of the following is INCORRECT match?
 - (A) Homogeneous mixture: Solution (An aqueous solution of sugar)
 - (B) Heterogeneous mixture: Suspension (of sand in water)
 - (C) Element: Gold
 - (D) Compound: A rusty nail
- 6. Which of the following is(are) CORRECT match(es)?
 - (A) Solid: Particles are held tightly in perfect order.
 - (B) Liquid: Particles are close to each other but can move around within the liquid.
 - (C) Gas: Particles are far apart as compared to that of solid and liquid.
 - (D) All of these
- **1.3** Properties of matter and their measurement
- 1. In 1960, the general conference of weights and measure, proposed revised metric system, called units.

$\overline{(A)}$	CGS	(B)	MKS
(C)	FPS	(D)	SI

- 2. The SI unit of volume is expressed as
 - (A) $(metre)^3$
 - (B) $(\text{centimetre})^3$
 - (C) litre
 - (D) millilitre
- 3. Which of the following relations for expressing volume of a sample is INCORRECT?
 - (A) $1 L = 10^3 mL$
 - (B) $1 \text{ dm}^3 = 1 \text{ L}$
 - (C) $1 L = 10^3 m^3$
 - (D) $1 L = 10^3 cm^3$
- 4. Identify the CORRECT statement.
 - (A) The mass of a body varies as its position changes.
 - (B) The SI unit of length is centimetre.
 - (C) A burette is used to prepare a known volume of a solution.
 - (D) The mass of a body is more fundamental property than its weight.

Convert 40 °C temperature to degree Fahrenheit.

 (A) 104 °F
 (B) 86 °F
 (C) 313 °F
 (D) 233 °F

 Convert 50 °F temperature to degree Celsius.

Chapter 1: Some Basic Concepts of Chemistry

- (A) 323 °C
 (B) 10 °C

 (C) 223 °C
 (D) −10 °C
- **1.4** Laws of chemical combination
- 1. Two samples of lead oxide were separately reduced to metallic lead by heating in a current of hydrogen. The weight of lead from one oxide was half the weight of lead obtained from the other oxide. The data illustrates
 - (A) law of reciprocal proportions
 - (B) law of constant proportions
 - (C) law of multiple proportions
 - (D) law of equivalent proportions
- 2. Hydrogen and oxygen combine to form H_2O_2 and H_2O containing 5.93% and 11.29% of hydrogen respectively. The data illustrates
 - (A) law of conservation of mass
 - (B) law of definite composition
 - (C) law of reciprocal proportion
 - (D) law of multiple proportion
- Two elements, A and B, combine to form a compound in which 'a' g of A combines with 'b₁' and 'b₂' g of B respectively. According to law of multiple proportion, _____.
 - $(A) \quad b_1 = b_2$

(C)

- (B) b_1 and b_2 bear a simple whole number ratio
- (C) a is always equal to b_1
- (D) no relation exists between b_1 and b_2
- 4. The law of multiple proportions is illustrated by the compounds _____.
 - (A) carbon monoxide and carbon dioxide
 - (B) potassium bromide and potassium chloride
 - (C) ordinary water and heavy water (D_2O)
 - (D) calcium hydroxide and barium hydroxide
- 5. The mass of sulphur dioxide produced by burning 16 g of sulphur in excess of oxygen in contact process is _____ g. (Average atomic mass: S = 32 u, O = 16 u).
 (A) 16 (B) 32
 (C) 64 (D) 128
- 6. How many litres of ammonia will be formed when 2 L of N₂ and 2 L of H₂ are allowed to react?
 (A) 0.665 (B) 1.0

1.33 (D) 4.00

1.6	Dalton's atomic theory	1.8	Mole concept and molar mass
1.	 Which of the following statements is FALSE according to Dalton's atomic theory? (A) Chemical reactions involve only the reorganization of atoms. (B) Law of conservation of mass can be 	1.	The number of moles of sodium oxide in 620 gis(A) 1 mol(B) 10 moles(C) 18 moles(D) 100 moles
	 (B) Law of conservation of mass can be explained by assuming that total number of atoms in the reactants and products remain same. (C) During chemical reactions, atoms are neither created nor destroyed 	2.	1 mol of CH ₄ contains (A) 6.02×10^{23} atoms of C (B) 12 g of H (C) 1.81×10^{23} molecules of CH ₄ (D) 3.0 g of carbon
	(D) Atoms of the same element have different properties.	3.	The mass of 1 atom of hydrogen is (A) 1 g (B) 0.5 g (C) 1.6×10^{-24} g (D) 2.2×10^{-24} g
1.7	Atomic and molecular masses	 	(C) 1.6×10 g (D) 3.2×10 g
1.	Which of the following is the value of amu? (A) 1.57×10^{-24} kg (B) 1.66×10^{-24} kg (C) 1.99×10^{-23} kg (D) 1.66×10^{-27} kg	4.	How many moles of electrons weigh one kilogram? (A) 6.022×10^{23}
2.	What will be the mass of one atom of ${}^{12}C?$ (A) 1 a.m.u. (B) 1.9923 × 10 ⁻²³ g	1 1 1 1 1	(B) $\frac{1}{9.108} \times 10^{31}$ (C) $\frac{6.022}{2.122} \times 10^{54}$
3	(C) 1.6603×10^{-1} g (D) 6 a.m.u. For practical purpose the average atomic mass	1 1 1	(D) $\frac{1}{1} \times 10^8$
0.	of oxygen (which is an isotopic mixture of ${}^{16}\text{O}$, ${}^{17}\text{O}$ and ${}^{18}\text{O}$) is assumed to be equal to	5.	9.108×6.022 The number of atoms in 4.25 g of NH_3 is
	(A)15.0 u(B)16.0 u(C)17.0 u(D)18.0 u		approximately (A) 1×10^{23} (B) 2×10^{23}
4.	The natural isotopic abundance of 10 B is 19.60 % and 11 B is 80.40 %. The exact isotopic	6.	(C) 4×10^{23} (D) 6×10^{23} Which of the following has maximum number
	masses are 10.13 and 11.009 u respectively. Theaverage atomic mass of boron is u.(A) 10.84 (B) 11.00 (C) 10.00 (D) 10.55		of atoms?(A) 18 g of H_2O (B) 16 g of O_2 (C) 4.4 g of CO_2 (D) 16 g of CH_4
5.	An element, X has the following isotopic	7.	The number of sulphur atoms present in 0.2 moles of S_8 molecules is
	200 X : 90% ; 199 X : 8.0% ; 202 X : 2.0% The weighted average atomic mass of the	 	(A) 4.82×10^{-3} (B) 9.63×10^{22} (C) 9.63×10^{23} (D) 1.20×10^{23}
	naturally occurring element X is close to (A) 200 u (B) 210 u	8.	The number of oxygen atoms in 4.4 g of CO_2 is approximately
	(C) 205 u (D) 199 u The molecular mass of CeHeCl in u is	 	(A) 1.2×10^{23} (B) 6×10^{22} (C) 6×10^{23} (D) 12×10^{23}
~ =	(A) $112.5 u$ (B) $48.5 u$ (C) $78 u$ (D) $118.5 u$	9.	The number of atoms present in 0.05 g of water is
7.	The mass of one molecule of O_2 in grams is [Given: average atomic mass of	 	(A) 1.67×10^{23} (B) 1.67×10^{22} (C) 5.05×10^{21} (D) 1.67×10^{21}
	$\frac{1}{O = 16 \text{ u and } 1 \text{ u} = 1.66 \times 10^{-24} \text{ g}}{(A) 32.0 \times 10^{-24} \text{ g}} (B) 26.6 \times 10^{-24} \text{ g}}$	10.	What amount of dioxygen (in gram) contains 1.8×10^{22} molecules?
8.	(C) 16.0×10^{-24} g (D) 53.1×10^{-24} g The formula mass of KCl in u is .	 	(A)0.0960(B)0.960(C)9.60(D)96.0
	[Given : atomic mass of $K = 39.1 \text{ u}$, Cl = 35.5 u]	11.	The weight of a molecule of the compound $C_{60}H_{122}$ is

ecule of the compound

 $1.09 \times 10^{-21} \text{ g}$ 1.4×10^{-21} (B) (A) g 5.025×10^{23} g 16.023×10^{23} g (C) (D)

8

(A) 149.2 u

74.6 u

(C)

(B)

(D)

78.2 u

113.7 u

3.

Chapter 1: Some Basic Concepts of Chemistry

12. The numbers of moles of BaCO₃, which contain 1.5 moles of oxygen atoms is _____.

(A)	0.5	(B)	1
(C)	3	(D)	6.02×10^{23}

- The number of moles of oxygen in 1 L of air containing 21% oxygen by volume in standard conditions is _____.
 - (A) 0.0093 mol (B) 0.186 mol
 - (C) 0.21 mol (D) 2.10 mol
- 14. Which one of the following pairs of gases contains the same number of molecules?
 - (A) 16 g of O_2 and 14 g of N_2
 - (B) 8 g of O_2 and 22 g of CO_2
 - $(C) \quad 28 \ g \ of \ N_2 \ and \ 22 \ g \ of \ CO_2$
 - (D) $32 \text{ g of } O_2 \text{ and } 32 \text{ g of } N_2$
- **15.** The number of water molecules in 1 litre of water is
 - (A) 18 (B) 18×1000
 - (C) N_A (D) 55.55 N_A
- 16. The number of water molecules is maximum in
 - (A) 18 gram of water
 - (B) 18 moles of water
 - (C) 18 molecules of water
 - (D) 1.8 gram of water
- **1.9** Moles and gases
- 1. 0.5 mole of nitrogen gas represents _____
 - (A) 6.02×10^{23} N₂ molecules
 - (B) 22.4 L of N_2 at S.T.P.
 - (C) $11.2 \text{ L of } N_2 \text{ at } \text{S.T.P.}$
 - (D) none of these
- 2. The volume occupied by $4.4 \text{ g of } \text{CO}_2$ at STP is

$\overline{(A)}$	0.1 L	(B)	0.224 I
(C)	2.24 L	(D)	22.4 L

- 1. Identify the CORRECT statements.
- (I) The mass of one mole of a substance in grams is called its molar mass.
- (II) The formula mass of a substance is the sum of atomic masses of the atoms present in the formula.
- (III) One mole is the amount of a substance that contains as many entities or particles as there are atoms in exactly 12 g of the carbon-12 isotope.
 - (A) I, II (B) II, III
 - (C) I, III (D) I, II, III
- Under similar conditions, same mass of oxygen and nitrogen is taken. The ratio of their volumes will be _____.
 (A) 7:8 (B) 3:5
 - (A)7:8(B)3:5(C)6:5(D)9:2

- 11.2 cm^3 of oxygen gas at STP containsmoles of oxygen gas.(A) 0.0005(B) 0.01(C) 0.029(D) 0.5
- 4. The volume in dm^3 occupied by 60.0 g of ethane at STP is _____. (A) 22.4 (B) 44.8

Platinum alloy as an International Prototype of the Kilogram

Have you ever wondered what is the reference for 1 kilogram???? It has been defined as the mass of the International Prototype of the Kilogram (IPK). The prototype is made of platinum-iridium (Pt-Ir) cylinder that is stored in an airtight jar at International Bureau of Weights and Measures in France. Pt-Ir was chosen because its mass remains constant for an extremely long time and it is resistant to the attack of different chemicals. This reference standard is used to calibrate or standardize different measuring devices such as analytical balances.

(A)

Concept Fusion

3. Which of the following is a compound?

- Diamond (B) Charcoal
- (C) Baking soda (D) 22 Carat Gold
- 4. Two elements, X (Atomic mass 16) and Y (Atomic mass 14) combine to form compounds A, B and C. The ratio of different masses of Y that combine with fixed mass of X in A, B and C is 1:3:5. If 32 parts by mass of X combine with 84 parts by mass of Y in B, then in C, 16 parts by mass of X will combine with .
 - (A) 14 parts by mass of Y
 - (B) 42 parts by mass of Y
 - (C) 70 parts by mass of Y
 - (D) 82 parts by mass of Y

- Haemoglobin contains 0.33% of iron by weight. 5. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (At. wt. of Fe = 56 u) present in one molecule of haemoglobin is 2 (C) 4 (D) (A) 1 **(B)**
- 6. In a flask, the weight ratio of $CH_4(g)$ and $SO_2(g)$ at 298 K and 1 bar is 1 : 2. The ratio of the number of molecules of $SO_2(g)$ and $CH_4(g)$ is 1:4 (B) 4:1 (C) 1:2 (D) 2:1 (A)
- 7. 1 mL of water has 25 drops. Let N_0 be the Avogadro number. What is the number of molecules present in 1 drop of water? (Density of water = 1 g/mL)

- (A) $\frac{0.02}{9}$ N₀ (B) $\frac{18}{25} N_0$ $\frac{0.04}{25}$ N₀ (C) $\frac{25}{18}$ N₀ (D)

8. One mole of oxygen gas at STP is equal to:

 6.022×10^{23} molecules of oxygen 6.022×10^{23} atoms of oxygen (A)

- (B)
- 16 g of oxygen (C)
- (D) 3.2 g of oxygen
- 9. At S.T.P., the volume of 7.5 g of gas is 5.6 L. The gas is
 - NO (A) (C)
- (B) N_2O CO_2 (D)
- CO

MHT-CET Previous Years' Questions

9.

- What is the quantity of hydrogen gas liberated 1. when 46 g sodium reacts with excess ethanol? [2017]
 - (B) 2.0×10^{-3} kg (D) 2.4×10^{-2} kg (A) 2.4×10^{-3} kg (C) 4.0×10^{-3} kg
- 2. Which symbol replaces the unit of atomic mass, amu? [2018] (A) u (B) A (C) Μ (D) n
- What is the SI unit of density? [2018] 3. $g m^{-3}$ (A) $g \text{ cm}^{-3}$ (B) (C) kg m^{-3} kg cm⁻³ (D)
- Boron has two isotopes with atomic masses **4**. 10 and 11. If its average atomic mass is 10.81, the abundance of lighter isotope is

[2019] 20% (B) 81% (C) 19% (D) 80%

[2019]

The temperature of 32 °C is equivalent to 5.

(A)

(A)

69 °F (\mathbf{R}) 70 °F

(C) $85.6 ^{\circ}\text{F}$ (D) $89.6 ^{\circ}\text{F}$	()		(-)		
	(C)	85.6 °F	(D)	89.6°F	

The number of molecules present in 100 mL of 6. water is (Given, Density of water-1 g/cc)

[2019]

- (A) 33.45×10^{23} (C) 1.083×10^{24} g (B) 3.345×10^{23} (D) 1.083×10^{23}
- 7. The volume of 1 mole of any pure gas at standard temperature and pressure is always equal to [2019] (A) 22.414 m^3 **(B)** 0.022414 m^3 2.2414 m³ (D) 0.22414 m^3 (C)
- 8. The units nanometer and picometer are related [2020] as $1 \text{ nm} = 10^{-12} \text{ pm}$ $1 \text{ nm} = 10^{-3} \text{ pm}$ $1 \text{ nm} = 10^{-9} \text{ pm}$ (B) (A) $1 \text{ nm} = 10^3 \text{ pm}$ (D) (C)

- Which among the following elements has highest number of atoms in 1 g each? (At. No.: Au 197, Na = 23, Cu = 63.5, Fe = 56) [2020]
 - Fe_(s) Au_(s) (A) **(B)** (C) $Na_{(s)}$ (D) $Cu_{(s)}$
- 10. Pure samples of copper carbonate synthesized in laboratory and found naturally if both contains 51.35% copper, 38.91% carbon and 9.74% oxygen by weight. This is an accordance with

[2020]

- Law of definite proportion (A)
- Law of conservation of mass **(B)**
- (C) Law of multiple proportion
- Law of combining volumes (D)
- Which of the following set of compounds does 11. NOT demonstrate the law of multiple proportions? [2020] SO₂, SO₃ (A) H_2O, H_2O_2 (B) (C) H_2O , CO_2 , CH_4 (D) NO, NO₂ How many atoms of argon are present in 3.99 g 12.
- of it? (Atomic mass = 39.9) [2020] (A) 6.022×10^{22} 3.011×10^{21} (B) 3.011×10^{21} 3.011×10^{22} (D) (C)
- The number of moles of ammonia present in 13. 5.6 dm³ of its volume at STP is [2020] (A) 0.25 (B) 1.0 0.50 (C) (D) 0.75
- 14. In the reaction, $2KClO_{3(s)} \longrightarrow 2KCl_{(s)} + 3O_{2(g)}$; $\Delta H^{\circ} = -78$ kJ. If 33.6 L of oxygen gas is liberated at STP, what is the mass of $KCl_{(s)}$ produced? (Atomic mass: K = 39, $Cl = 35.5 \text{ g mol}^{-1}$) [2020] (A) 7.45 g (B) 48.0 g (C) 24.0 g (D) 74.5 g

		Cha	apter 1: Some Basic Concepts of Chemistry
15. 16.	Which gas among the following contains maximum number of molecules at STP? (Molar masses in g mol ⁻¹ : $CO_2 = 44$, Ar = 39.9, $CH_4 = 16$, $O_2 = 32$) [2020] (A) 13.3 g of Ar (B) 11 g of CO_2 (C) 24.0 g of O_2 (D) 16.0 g of CH ₄ What is the number of moles and total number	26. 27.	How many grams of H ₂ O are present in 0.25 mol of it? [2021] (A) 0.25 g (B) 5.4 g (C) 4.5 g (D) 6.1 g How many atoms of argon are present in 52 mole of it? (At. Mass of Ar = 39) [2021] (A) 1.1×10^{23} (B) 1.5×10^{25}
	of atoms respectively present in 5.6 cm ³ of ammonia gas at STP? [2020] (A) 1.505 mol and 6.022×10^{20} atoms (B) 2.05 mol and 1.50×10^{20} atoms (C) 2.50×10^{-4} mol and 6.022×10^{20} atoms (D) 2.50×10^{-3} mol and 1.5×10^{20} atoms	28.	(A) 1.1×10^{25} (B) 1.3×10^{23} (C) 3.1×10^{25} (D) 1.2×10^{23} What is the volume occupied by 24 g methanegas at STP?[2021](A) 33.6 dm^3 (B)(C) 67.2 dm^3 (D)44.8 dm^3
17.	The volume of oxygen required for complete combustion of 0.25 mole of methane at STP is [2020] (A) 22.4 dm ³ (B) 5.6 dm ³ (C) 11.2 dm ³ (D) 7.46 dm ³	29.	What amount of oxygen is used at STP to obtain9 g water from sufficient amount of hydrogengas?[2021](A) 5.6 dm³(B) 22.4 dm³(C) 16.8 dm³(D) 11.2 dm³
18.	Calculate mass of 3.01×10^{24} atoms of an element having atomic mass 21.13. [2020] (A) 118.5 g mol ⁻¹ (B) 105.65 g mol ⁻¹ (C) 84.54 g mol ⁻¹ (D) 42.27 g mol ⁻¹	30.	What is the volume (in dm³) occupied by 75 g ethane at STP? [2021] (A) 60.0 (B) 56.0 (C) 22.4 (D) 44.8
19.	 "A given compound always contains exactly the same proportion of elements by weight" is a statement of [2021] (A) Law of combining volumes of gases (B) Law of conservation of mass (C) Law of multiple proportion (D) Law of definite proportion 	31. 32.	How many moles of urea are present in 5.4 g? (Molar mass = 60) [2021] (A) 2.9 (B) 0.09 (C) 1.2 (D) 2.4 What is the density of water in kg dm ⁻³ if its density in g cm ⁻³ is 0.8632 [2022]
20.	What is the total number of molecules present in 224 cm³ of a gas at STP?[2021](A) 6.022×10^{20} (B) 6.022×10^{23} (C) 6.022×10^{22} (D) 6.022×10^{21}	33.	(A) 7.86 (B) 0.863 (C) 8.63 (D) 4.60 Find the number of hydrogen atoms present in O
21.	Number of molecules present in 5.4 g of urea is(Molar mass = 60 g mol^{-1})[2021](A) 6.0×10^{22} (B) 5.4×10^{22} (C) 9.0×10^{22} (D) 3.5×10^{23}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22.	What is the mass of 44.8 dm³ of methane gas under STP conditions?[2021](A) 24 g(B) 32 g(C) 48 g(D) 16 g	34.	Mass of one molecule of oxygen in amu and in gram respectively is [2022] (A) $16 \text{ u}, 6.0 \times 10^{-24} \text{ g}$ (B) $32 \text{ u}, 53.13 \times 10^{-24} \text{ g}$
23.	Which of the following pair of compounds does not explain law of multiple proportions? [2021] (A) SO ₂ and SO ₃ (B) O ₂ and O ₃ (C) CO and CO ₂ (D) H_2O and H_2O_2	35.	(C) 53.13×10^{-24} u, 32 g (D) 42 u, 5.313×10^{-24} g How many moles of oxygen gas at STP are equivalent to 5.6 litre?
24.	Find the value of -197 °C temperature in Kelvin. [2021] (A) 47 K (B) 76 K (C) 470 K (D) 760 K		(A) $\frac{1}{8}$ mole (B) $\frac{1}{2}$ mole
25.	What is the SI unit of density?[2021](A) kg dm3(B) kg m3(B) kg m3(C) kg m3(D) kg dm3	 	(C) 1 mole (D) $\frac{1}{4}$ mole

®

36. Which of the following species has highest mass? [2022] (A) 10 mL of water at room temperature (B) $\frac{1}{2}$ mole of CH ₄	 46. What volume of ammonia is formed when 10 dm³ dinitrogen reacts with 30 dm³ dihydrogen at same temperature and pressure? [2023] (A) 30 dm³ (B) 20 dm³ (C) 15 dm³ (D) 10 dm³
 (C) 1 mole of carbon atom (D) 3.011 × 10²³ atoms of oxygen 37. Find the quantity of dihydrogen required to prepare 2 L ammonia gas from 1 L dinitrogen. 	47. What is number of atoms present in 2.24 dm ³ NH _{3(g)} at STP? [2023] (A) 6.022×10^{22} (B) 2.4088×10^{23} (C) 1.8066×10^{22} (D) 6.022×10^{23}
[2022] (A) 2 L (B) 1 L (C) 3 L (D) $\frac{3}{2}$ L (B) $\frac{3}{2}$ L	48. What is the mass of $\text{KClO}_{3(s)}$ required to liberate 22. 4 dm ³ oxygen at STP during thermal decomposition? (Molar Mass of $\text{KClO}_{3(s)} = 122.5 \text{ g/mol}$) [2023] (A) 122.5 g (B) 81.67 g
38. How many molecules of water are present in a drop of volume 0.05 mL ? [2022] (A) 6.00×10^{21} (B) 1.67×10^{21} (C) 2.0×10^{21} (D) 5.02×10^{21} 39. Identify the gas from following so that 1 litre of	(A) 122.5 g (B) 01.07 g (C) 10.25 g (D) 8.16 g 49. What is the number of molecules of dinitrogen present in 22.4 cm ³ at STP? [2023] (A) 2.24×10^{20} (B) 6.022×10^{20}
it weighs 1.16 g at STP. (A) C_2H_2 (B) CH_4 (C) O_2 (D) CO	(C) 4.4×10^{20} (D) 3.011×10^{20} 50. What is the mass in gram of 1 atom of an element if it's atomic mass is 10 u? [2023]
40. Which of the following species has the lowest mass? [2022] (A) $\frac{1}{4}$ mole of CH ₄ gas (B) $\frac{2}{4}$ 011 × 10 ²³ stems of surger	(A) 2.06056×10^{-23} g (B) 1.66056×10^{-23} g (C) 1.06056×10^{-24} g (D) 3.66056×10^{-25} g
(B) $3.011 \times 10^{\circ}$ atoms of oxygen (C) 1 g atom of carbon (D) 6.022×10^{23} molecules of water	51. Which of the following pair of compounds demonstrates the law of multiple proportions? [2023]
41. What volume of water vapours will be produced when 10 volume of dihydrogen gas reacts with 5 volume of dioxygen gas?[2022] [2022] (A) 100 (B) 5 (C) 10 (D) 50	 (A) CH₄, CCl₄ (B) BF₃, NH₃ (C) CO, CO₂ (D) NO₂, CO₂ 52. What volume of CO_{2(g)} at STP is obtained by complete combustion of 6 g carbon? [2023]
 42. Nitrogen reacts with hydrogen to produce ammonia. What is the ratio of reacting volume of nitrogen, hydrogen and ammonia gas respectively according to Gay-Lussac law? [2022] (A) 1:2:3 (B) 3:1:2 	 (A) 22.4 dm³ (B) 11.2 dm³ (C) 5.6 dm³ (D) 2.24 dm³ 53. What is the total number of moles of atoms present in 3.2 g methane? [2023] (A) 4 mol (B) 3 mol (C) 2 mol (D) 1 mol
 (A) 1.2.5 (B) 5.1.2 (C) 1.3.2 (C) 1.3.2 (D) 2: 1.3 43. What is the value of temperature in degree Fahrenheit if the temperature in degree Celsius is 60? [2022] 	54. What is the volume in dm ³ occupied by 60 g ethane at STP? [2023] (A) 11.2 (B) 22.4 (C) 44.8 (D) 56
 (A) 65 °F (B) 140 °F (C) 108 °F (D) 33 °F 44. How many moles of helium gas occupies 22.4 L 	 55. Identify numerical value from following that has same value in °C and °F? [2023] (A) -8 (B) -11.2
at 0 °C and at 1 atmospheric pressure? [2022] (A) 0.11 (B) 1.11 (C) 1.0 (D) 0.9	 (C) -40.0 (D) 0 56. Identify the physical quantity that is measured in Candela
45. Calculate the mass of 200 atoms of sodium. (Atomic mass of sodium = 23 g mol ⁻¹) [2022] (A) 7.64×10^{-21} g (B) 4.37×10^{-23} g (C) 5.12×10^{-22} g (D) 3.82×10^{-21} g	 (A) Energy (B) Work (C) Force (D) Luminous intensity

Г

		Ch	apter 1: Some Basic Concepts of Chemistry			
57.	How many moles of nitrogen atoms are present in 8 g of ammonium nitrate? (Molar mass of ammonium nitrate = 80) [2023] (A) 0.1 mol (B) 0.2 mol (C) 0.4 mol (D) 0.8 mol Which from following substances consists of total 1 mole atoms in it? (Molar mass of	61. 62.	What is the number of moles of carbon and hydrogen atoms respectively in 46 gram methoxymethane? [2023] (A) 2 and 6 (B) 3 and 6 (C) 4 and 4 (D) 4 and 3 Which among the following elements contains the highest number of atoms in 1 g? (At. Mass Na = 23, Fe = 56, Cu = 63.5, Au = 197) [2023]			
	[2023] (A) 4.25 g NH ₃ (B) 1.8 g H ₂ O (C) 2.8 g N ₂ (D) 4.4 g CO ₂	63.	 (A) Cu (B) Na (C) Au (D) Fe Thermal decomposition of 10 g solid CaCO₂ is 			
59.	(C)2.0 g H2(D)1.1 g CO2Which of the following temperature values in Fahrenheit (°F) is equal to 50 °C?[2023](A)90 °F(B)100 °F(C)110 °F(D)122 °FAccording to reaction	64.	carried out in closed vessel, calculate the masses of $CaO_{(s)}$ and $CO_{2(g)}$ formed respectively. [2023] (A) 6 g and 4 g (B) 4.5 g and 5.5 g (C) 4 g and 6 g (D) 5.6 g and 4.4 g Which of the following is NOT a SI unit?[2023]			
60.	According to reaction, $Mg_{(s)} + 2HCl_{(aq)} \longrightarrow MgCl_{2(aq)} + H_{2(g)}\uparrow$ Calculate the mass of Mg required to liberate	65.	 (A) kg (B) K (C) dm³ (D) s What is the number of molecules present in 			
	4.48 dm ³ H ₂ at STP. (Molar mass of Mg = 24 g mol ⁻¹) [2023] (A) 12 g (B) 4.8 g (C) 6 g (D) 2.4 g Evaluat	tion Te	0.1 kg of NaOH? (Molar mass of NaOH = 40 g mol ⁻¹) [2023] (A) 6.022×10^{24} (B) 1.5055×10^{24} (C) 6.022×10^{25} (D) 1.5055×10^{23} est			
1.	Mass of 112 mL of oxygen gas at STP would be $\overrightarrow{(A)}$ 0.32 g (B) 0.64 g $\overrightarrow{(C)}$ 0.16 c (D) 0.06 c	7.	One requires 0.01 mole of NaOH. The mass of NaOH to be taken is (A) 0.04 g (B) 0.4 g (C) 40 g (D) 40 g			
2.	(C) 0.16 g (D) 0.96 g The largest number of molecules is present in $\overline{(A)}$ 54 g of nitrogen tetroxide (B) 28 g of carbon dioxide (C) 36 g of water (D) 46 g of ethyl alcohol	8.	(C) 4.0 g (D) 40 g A sample of phosphorus trichloride (PCl ₃) contains 1.4 moles of the substance. How many atoms are there in the sample? (A) 4 (B) 5.6 (C) 8.431×10^{23} (D) 3.372×10^{24} The INCORRECT statement for 14 g of CO is			
3.	The mass of a molecule of water is [Consider N _A = 6×10^{23}] (A) 3×10^{-26} kg (B) 3×10^{-25} kg (C) 1.5×10^{-26} kg (D) 2.5×10^{-26} kg	- J • 	(A) it occupies 2.24 L at NTP (B) it corresponds to $\frac{1}{2}$ mole of CO			
4.	The modern atomic weight scale is based on (A) ${}^{12}C$ (B) ${}^{16}O$ (C) ${}^{1}H$ (D) ${}^{13}C$		 (C) it corresponds to half mole of N₂ (D) it corresponds to 3.01×10²³ molecules of CO 			
5.	The number of moles of neon (At. Wt = 20 u) in 52 g of neon is (A) 1 (B) 2.6 (C) 52 (D) 20.8	10.	The number of atoms of oxygen in 6.02×10^{24} CO molecules is (A) 1×10^{24} (B) 3.01×10^{24} (C) 6.02×10^{23} (D) 6.02×10^{24}			
6.	SI unit of amount of a substance is(A) metre(B) mole(C) ampere(D) candela	11.	One nanometre =m. (A) 10^9 (B) 10^{-15} (C) 10^{-9} (D) 10^{-12}			

20.

- The number of moles of helium in 'y' g of helium gas is equal to _____.
 - (A) $y \times 4$ (B) y / 2
 - (C) y/4 (D) $y \times 2$
- 13. Which of the following is NOT a fundamental SI unit?

Candela

- (A) Metre (B)
- (C) Ampere (D) Gram
- 14. The number of molecules in 22.4 dm³ of nitrogen gas at STP is _____.
 - (A) 6.022×10^{20}
 - (B) 6.022×10^{23}
 - (C) 22.4×10^{20}
 - (D) 22.4×10^{23}
- **15.** In an experiment, 2.16 g of copper was dissolved in nitric acid followed by ignition of the nitrate, which gave 2.70 g of copper oxide. In another experiment, 1.46 g of copper on heating in a current of air gave 1.83 g of copper oxide.

The percentage of copper in copper oxide is and the above data illustrate the law of

- (A) 20 %, definite proportion
- (B) 80 %, multiple proportion
- (C) 20 %, multiple proportion
- (D) 80 %, definite proportion

16. Identify the INCORRECT statement.

- (A) The atoms of different elements are present in a compound in a fixed and definite ratio.
- (B) Particles of an element consist of only one type of atoms.
- (C) Constituent particles of pure substances have fixed composition.
- (D) All the properties of a compound are same as that of its constituent elements.

 17. The formula mass of $CaSO_4$ is _____.

 [Atomic mass of Ca = 40 u, S = 32 u and O = 16 u]

 (A) 120 u
 (B) 136 u

 (C) 145 u
 (D) 156 u

18. Which of the following is CORRECT?

(A) $1 L = 1 dm^3$

- (B) $1 L = 10 dm^3$
- (C) $10 L = 1 dm^3$
- (D) $1 L = 1 m^3$
- 19. If law of conservation of mass was to hold true, then 20.8 g of BaCl₂ on reaction with 9.8 g of H₂SO₄ will produce 7.3 g of HCl and BaSO₄ equal to _____.
 (A) 11.65 g (B) 23.3 g

(A)	11.65 g	(B)	23.3 g
(C)	25.5 g	(D)	30.6 g

- Which of the following pairs of substances illustrates the law of multiple proportions?
 - $(A) \quad CO \text{ and } CO_2$
 - $(B) \quad H_2O \text{ and } D_2O$
 - (C) NaCl and NaBr
 - $(D) \qquad MgO \,and \, Mg(OH)_2$
- 21. Two containers of the same size are filled separately with H_2 gas and CO_2 gas. Both the containers under the same temperature and pressure will contain the same _____.
 - (A) number of atoms
 - (B) mass of gas
 - (C) number of molecules
 - (D) number of electrons
- 22. Substances which CANNOT be broken down into simpler substances by chemical process are called _____.
 - (A) elements (B) molecules
 - (C) compounds (D) all of these
- 23. Which of the following exists as a diatomic gas? (A) Neon (B) Argon
 - (C) Helium (D) Nitrogen
- 24. The element whose atom has mass of 10.86×10^{-26} kg is _____. (A) boron (B) calcium
 - (A) boron(B)(C) silver(D)
 - (C) silver (D) zinc

25. Boron has two stable isotopes, ¹⁰B (19 %) and ¹¹B (81 %). The atomic mass that should appear for boron in the periodic table is _____.

- (A) 10.8 amu (B) 10.2 amu
- (C) 11.2 amu (D) 10.0 amu
- 26. Avogadro number is the number of particles present in _____.
 - (A) 1 molecule (B) 1 atom
 - (C) 1 kg (D) 1 mole
- 27. One mole of H₂O corresponds to _____
 - (A) 22.4 litres at 1 atm and 0 $^{\circ}$ C
 - (B) 12.04×10^{23} atoms of hydrogen and 6.02×10^{23} atoms of oxygen
 - (C) 18 g H₂O
 - (D) all of these
- 28. If N_A is the Avogadro's number then number of valence electrons in 4.2 g of nitride ions N^{3-} is
- 29. Which one of the following pairs of gases contains the same number of molecules?
 - (A) 16 g of O_2 and 14 g of N_2
 - (B) 8 g of O_2 and 22 g of CO_2
 - (C) $28 \text{ g of } N_2 \text{ and } 22 \text{ g of } CO_2$
 - (D) $32 \text{ g of } O_2 \text{ and } 32 \text{ g of } N_2$

Chapter 1: Some Basic Concepts of Chemistry

30.	Number of moles of water in 488 g of $BaCl_2.2H_2O$ is(At. wt. of $Ba = 137$ u)(A) 2 moles(B) 4 moles(C) 3 moles(D) 5 moles	34. The mass of carbon present in 0.5 mole of $K_4[Fe(CN)_6]$ is (A) 1.8 g (B) 18 g (C) 3.6 g (D) 36 g					
31.	The CGS units of density is: (A) $g cm^{-3}$ (B) $kg m^{-3}$ (C) $g dm^{-3}$ (D) $kg cm^{-3}$	35. In SO ₂ and SO ₃ , the ratio of the masses of oxygen which combine with a fixed mass of sulphur is $2 \cdot 3$. This is an example of the law of					
32.	11.2 cm ³ of hydrogen gas at STP contains	 (A) constant proportion (B) multiple proportion 					
	(A)0.0005 mol(B)0.01 mol(C)0.029 mol(D)0.5 mol	 (D) Intuitible proportion (C) reciprocal proportion (D) conservation of mass 					
33.	If N_A is the Avogadro's number then number of electrons in 2 moles of helium (He) is (A) 4 N_A (B) 3 N_A (C) 2 N_A (D) N_A						

Answer Key of the chapter: Some Basic Concepts of Chemistry & Evaluation Test is given at the end of the book.

Solutions to the relevant questions of this chapter & Evaluation Test can be accessed by scanning the adjacent QR code in *Quill - The Padhai App*.

Chapter 1: Some Basic Concepts of Chemistry

Cla	ssical Th	inking	* * *	·		-				
1.1:	1. (C)									
1.2:	1. (C)	2. (C)	3. (C)	4. (D)	5. (D)	6. (D)				
1.3:	1. (B)	2. (B)	3. (D)	4. (A)	5. (B)	6. (A)	7. (B)			
1.4:	1. (C)	2. (C)	3. (B)	4. (C)	5. (A)	6. (B)	7. (C)	8. (B)		
1.5:	1. (C)									
1.6:	1. (A)									
1.7:	1. (A)	2. (A)	3. (A)							
1.8:	1. (D) 11. (B)	2. (C)	3. (C)	4. (C)	5. (D)	6. (B)	7. (A)	8. (C)	9. (D)	10. (C)
1.9:	1. (A)	2. (B)			0					
Cri	itical Thi	nking	• • •							
1.2:	1. (A)	2. (D)	3. (D)	4. (C)	5. (D)	6. (D)				
1.3:	1. (D)	2. (A)	3. (C)	4. (D)	5. (A)	6. (B)				
1.4:	1. (C)	2. (D)	3. (B)	4. (A)	5. (B)	6. (C)				
1.6:	1. (D)									
1.7:	1. (D)	2. (B)	3. (B)	4. (A)	5. (A)	6. (A)	7. (D)	8. (C)		
1.8:	1. (B) 11. (A)	2. (A) 12. (A)	3. (C) 13. (A)	4. (D) 14. (A)	5. (D) 15 (D)	6. (D) 16. (B)	7. (C)	8. (A)	9. (C)	10. (B)
1.9:	1. (C)	2. (C)	3. (A)	4. (B)						

Give your MHT-CET exam preparation the **TECHNOLOGY BOOST!**

> Practice more than 23,000 MCQs for just

Use Coupon Code QUILLPADHAI2023

Quill Target -

etice Test

()

(2) (3) (4) (6) (6)

(A)- 40°

(B)+ 40°

(C)- 80°

(0)-20

Cet the next one right too

ch of the followin

8

AP

- Also available for Xth, XIth, XIIth, NEET & JEE
- Practice chapter-wise & full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Scan QR Code to download the app

Visit our website to know more about our range of books for Xth, XIth, XIIth, NEET & JEE

Visit Our Website

Target Publications® Pvt. Ltd. Transforming lives through learning.

Address: B2, 9th Floor, Ashar, Road No. 16/Z, Wagle Industrial Estate, Thane (W)- 400604

Tel: 88799 39712 / 13 / 14 / 15 Website: www.targetpublications.org Email: mail@targetpublications.org

Explore our range of MHT-CET **Books**

