

MHT-GET

TRIUMPH

CHEMISTRY

 BASED ON THE LATEST SYLLABUS OF MHT-CET

Written in accordance with the latest MHT-CET Paper Pattern prescribed by State Common Entrance Test Cell, Maharashtra State

MHT-CET TRIUMPH
 CHEMISTRY
 2073 MCQs
 Based on the latest Syllabus of MHT-CET

PART 1

Std. XI

Salient Features

(T) Includes relevant chapters of Std. XI as per the latest MHT-CET Syllabus

- Includes '2073' MCQs

Quick Review and exhaustive subtopic wise coverage of MCQs
Compilation of all 'Important Formulae' in relevant chapters
(o) Evaluation Test for each chapter
(6) Includes Smart Keys (Key Notes For Good Practice, Smart Code, Caution, Thinking Hatke, Shortcuts)

- 'Real-world applications' in each chapter
(G) Video/pdf links via QR codes for boosting conceptual retention

To Answer keys for all the chapters and Evaluation Tests at the end of book
*- Solutions to MCQs and Evaluation Test can be accessed through Q.R. code given at the end of each chapter

Printed at: Pri nt to Print, Mumbai

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

"Don't follow your dreams; chase them!" A quote by Richard Dumbrill is perhaps the most pertinent for one who is aiming to crack entrance examinations held after Std. XII. We are aware of the aggressive competition a student appearing for such career-defining examinations experiences and hence wanted to create books that develop the necessary knowledge, tools, and skills required to excel in these examinations.

For the syllabus of MHT-CET, 80% of the weightage is given to the syllabus for XII ${ }^{\text {th }}$ standard while only 20% is given to the syllabus for $\mathrm{XI}^{\text {th }}$ standard (with inclusion of only selected topics).

We believe that although the syllabus for Std. XII and XI and MHT-CET is aligned, the outlook for studying the subject should be altered based on the nature of the examination. To score well in the MHT-CET, a student has to be not just good with the concepts but also quick to complete the test successfully. Such ingenuity can be developed through sincere learning and dedicated practice.

As a first step to MCQ solving, students should start with elementary questions. Once momentum is gained, complex MCQs with a higher level of difficulty should be practised. Such holistic preparation is the key to succeeding in the examination!

Target's Triumph MHT-CET Chemistry Standard XI book which covers relevant chapters of Std. XI has been designed to achieve the above objectives. Beginning with basic MCQs, the book proceeds to develop competence to solve complex MCQs. It offers ample practice of recent questions from MHT-CET examinations. It also includes solutions (via QR codes) that provide explanations to help students learn how to solve the MCQs.

The sections of Key Notes For Good Practice, Quick Review, Formulae, and MCQs (Classical, Critical, Concept Fusion, Previous Years' MHT-CET Questions, Evaluation Test) form the backbone of every chapter and ensure adequate revision.

All the features of this book pave the way for a student to excel in the examination. The features are designed keeping the following elements in mind: Time management, easy memorization or revision, and nonconventional yet simple methods for MCQ solving. The features of the book presented on the next page will explain more about them!

We hope the book benefits the learner as we have envisioned.
Publisher
Edition: Second

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

Disclaimer

[^0]
$-\downarrow$ FEATURES $\downarrow \downarrow \downarrow$ -

Quick Review includes tables/charts to summarize the key points/important chemical reactions in the chapter.
This is our attempt to help students to reinforce key concepts.

Classical Thinking section encompasses straight forward questions including knowledge based questions.
This is our attempt to revise chapter in its basic form and warm up students to deal with complex MCQs.

Concept Questions Fusion section encompasses questions whose solutions require knowledge of concepts covered in different subtopics of same chapter or from different chapters.
This is our attempt to develop cognitive thinking in the students essential to solve questions involving fusion of multiple key concepts.

QR Code includes

- Video/pdf links for boosting conceptual retention
- Solutions to MCQs and Evaluation Test for each chapter

Smart Keys comprise a set of remarkable study techniques contrived to benefit students. This is our attempt to promote quick, innovative, and divergent thinking as well as enable the students to perceive

Caution apprises students about mistakes often made ${ }^{\bullet}$ while solving MCQs.

Every section is segregated subtopic wise.
This is our attempt to cater to individualistic pace and preferences of studying a chapter in students and enable easy assimilation of questions based on the specific concept.

Each chapter includes real-world applications or examples related to the concept discussed. This is our attempt to link learning to the life and make students conscious of how Chemistry is related to everything we see, feel, touch and taste.
the underlying depth and implications of concepts.

Shortcuts mportant theoretical or formula based short tricks, beneficial in solving MCQs.

Key Notes For Good Practice
includes thoughtful/logical key concepts and common misconceptions in the chapter.

Smart Code showcases simple and smart mnemonic created for selected concepts.

Thinking Hatke reveals quick witted approach to crack the specific question.

- There will be three papers of Multiple Choice Questions (MCQs) in 'Mathematics', 'Physics and Chemistry' and 'Biology' of 100 marks each.
- Duration of each paper will be 90 minutes.
- Questions will be based on the syllabus prescribed by Maharashtra State Board of Secondary and Higher Secondary Education with approximately 20% weightage given to Std. XI and 80% weightage will be given to Std. XII curriculum.
- Difficulty level of questions will be at par with JEE (Main) for Mathematics, Physics, Chemistry and at par with NEET for Biology.
- There will be no negative marking.
- Questions will be mainly application based.
- Details of the papers are as given below:

Paper	Subject	Approximate No. of Multiple Choice Questions (MCQs) based on		Mark(s) Per Question	Total Marks
		Std. XI	Std. XII		
Paper I	Mathematics	10	40	2	100
Paper II	Physics	10	40	1	100
	Chemistry	10	40		
Paper III	Biology	20	80	1	100

- Questions will be set on
i. the entire syllabus of Std. XII of Physics, Chemistry, Mathematics and Biology subjects prescribed by Maharashtra Bureau of Textbook Production and curriculum Research, Pune, and
ii. chapters / units from Std. XI curriculum as mentioned below:

Sr. No.	Subject	Chapters / Units of Std. XI
1	Physics	Motion in a plane, Laws of motion, Gravitation, Thermal properties of matter, Sound, Optics, Electrostatics, Semiconductors
2	Chemistry	Some Basic Concepts of Chemistry, Structure of Atom, Chemical Bonding, Redox Reactions, Elements of Group 1 and Group 2, States of Matter: Gaseous and Liquid States, Basic Principles of Organic Chemistry, Adsorption and Colloids, Hydrocarbons
3	Mathematics	Trigonometry - II, Straight Line, Circle, Measures of Dispersion, Probability, Complex Numbers, Permutations and Combinations, Functions, Limits, Continuity
4	Biology	Biomolecules, Respiration and Energy Transfer, Human Nutrition, Excretion and osmoregulation

Sr. No.	Textbook Chapter No.	Chapter Name	Page No.
1	1	Some Basic Concepts of Chemistry	1
2	4	Structure of Atom	16
3	5	Chemical Bonding	37
4	6	Redox Reactions	55
5	8	Elements of Group 1 and Group 2	70
6	10	States of Matter: Gaseous and Liquid States	87
7	11	Adsorption and Colloids	108
8	14	Basic Principles of Organic Chemistry	126
9	15	Hydrocarbons	149
		Answer Key	172
		Modern Periodic Table	184
		Electronic Configuration of Elements	185

Practice test Papers are the only way to assess your preparedness for the Exams. Scan the adjacent QR code to know more about our "MHT-CET Chemistry Test Series with Answer Key \& Solutions" book for the MHT-CET Entrance examination.

Chapter
 1Some Basic Concepts of Chemistry

Elemental analysis to catch elephant poachers!!
Due to illegal poaching, the elephant population in Africa is dwindling. The relative amounts of ${ }^{12} \mathrm{C} /{ }^{/ 3} \mathrm{C},{ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ and $\left.{ }^{86} \mathrm{Sr}\right)^{87} \mathrm{Sr}$ in elephant tusk/ivory vary based on the geographical locations of elephants. Elemental analysis of ivory trinkets and elephant tusks using mass spectrometer can help identify the region of Africa where the elephant lived. Thus, the origin of illegal trade can be traced and prevented.

Chapter Outline

1.1 Introduction
1.2 Nature of chemistry
1.3 Properties of matter and their measurement
1.4 Laws of chemical combination
1.5 Dalton's atomic theory
1.6 Atomic and molecular masses
1.7 Mole concept and molar mass
1.8 Moles and gases

Key Notes For Good Practice

- Mass is a measure of the quantity of matter and is independent of location. Weight is the force exerted by an object and it depends on the gravity. Same object has a different weight on the Earth and the Moon, but the same mass.
- It is always good to write units at each stage of calculation, and expressing numerical quantities in same system of units for easy cancellation of units or conversion of units.
- Temperature and heat are different terms. Heat is a mode of transfer of energy while temperature is a property that determines the direction of transfer of heat.
- Note that $0^{\circ} \mathrm{C}$ corresponds to $32^{\circ} \mathrm{F}$ and $100^{\circ} \mathrm{C}$ corresponds to $212^{\circ} \mathrm{F}$. So, every one degree rise in Celcius scale corresponds $9 / 5$ dgree rise in Fahrenheit. Hence, we get equation, ${ }^{\circ} \mathrm{F}=9 / 5^{\circ} \mathrm{C}+32$.
- Units can be repsented in two ways: For example, $\mathrm{g} / \mathrm{cm}^{3}$ or $\mathrm{g} \mathrm{cm}^{-3}$. Both are widely used.
- The law of definite composition is not true for all types of compounds. It is true for only those compounds which are obtained from one type of isotope.
- Always specify the identity of the substance while using 'mole' unit to avoid any ambiguity. i.e., I mole oxygen molecules and 1 mole oxygen atoms are not the same.

Fundamental Constants in This Chapter

Avogadro's Constant $\left(\mathrm{N}_{\mathrm{A}}\right)$	6.022×10^{23} particles
$1 \mathrm{amu}(\mathrm{u})$	$1.66056 \times 10^{-24} \mathrm{~g}$
Molar Volume (At STP), $\left(\mathrm{V}_{\mathrm{m}}\right)$	22.414 L

Quick Review
$>$ Branches of chemistry:

Chemistry
Chemistry is the study of matter, its physical and chemical properties and the physical and chemical changes it undergoes under different conditions.

Physical chemistry

It deals with the study of properties of matter, the energy changes and the theories, laws and principles that explain the transformation of matter from one form to another.

Inorganic chemistry

It deals with the study of all the compounds which are not organic.

Biochemistry

It deals with chemistry of compounds and processes occurring in living organisms.

Organic chemistry

It deals with properties and reactions of compounds of carbon.

Analytical chemistry

It deals with the separation, identification and quantitative determination of the compositions of different substances.

- Classification of matter (On basis of chemical composition):

> SI Fundamental units

> Laws of chemical combination:

> Gay Lussac's law of gaseous volume

When gases combine or are produced in a chemical reaction, they do so in a simple ratio by volume, provided all gases are at same temperature and pressure.

Formulae

1. Celsius to Fahrenheit
${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
2. Celsius to Kelvin
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
3. Atomic mass unit (1 amu)
$=\frac{1}{12}$ th of a ${ }^{12} \mathrm{C}$-atom
$=1.66 \times 10^{-27} \mathrm{~kg}$
4. Average atomic mass
$=\frac{\text { Sum of }(\text { Isotopic mass } \times \% \text { Abundance })}{100}$

5. Number of moles

$\mathrm{n}=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$
6. Number of molecules
$=$ Number of moles \times Avogadro number
$=$ Number of moles $\times 6.022 \times 10^{23}$
7. Molar volume of a gas at STP
$\mathrm{V}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-}$
8. Number of moles
$\mathrm{n}=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$
$=\frac{\text { Volume of a gas at STP }}{22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}$

Classical Thinking

1.1 Introduction

1. Which of the following statements is INCORRECT?
(A) Technological development in sophisticated instruments has expanded our knowledge of chemistry.
(B) Knowledge of chemistry is required in the studies of physics, biological sciences, applied sciences, and earth and space sciences.
(C) Chemistry does not involve the study of physical properties of matter.
(D) The scope of chemistry is in every aspect of life.

1.2 Nature of chemistry

1. The branch of chemistry that deals with the chemistry of elements other than carbon is called \qquad .
(A) Physical
(B) Physical
(C) Inorganic
(D) Organic
2. The branch of chemistry, which deals with the studies of properties of matter is called \qquad chemistry.
(A) organic
(B) inorganic
(C) physical
(D) bio
3. Which of the following statements is INCORRECT for elements?
(A) They are pure substances.
(B) They cannot be broken down into simpler substances by ordinary chemical changes.
(C) Two or three elements are combined in a fixed proportion to form element.
(D) Graphite is an element.
4. Following are compounds except \qquad .
(A) water
(B) mercuric oxide
(C) Table salt
(D) arsenic
5. Identify mixture among the following.
(A) Gold coin
(B) Distilled water
(C) Germanium
(D) Paint
6. Which one of the following is NOT a mixture?
(A) concrete
(B) Gasoline
(C) A rusty nail
(D) Silicon
1.3 Properties of matter and their measurement
7. Which of the following statements is INCORRECT?
(A) Any quantitative measurement is expressed by a number followed by units.
(B) The SI system has six base units.
(C) The arbitrarily decided and universally accepted standards are called units.
(D) The standard quantity is reproducible and unchanging.
8. Which of the following is NOT CGS unit?
(A) Centimetre
(B) Pound
(C) Gram
(D) Second
9. Which of the following is NOT FPS unit?
(A) Second
(B) Pound
(C) Foot
(D) Kilogram
10. One picometre is equal to \qquad $-{ }^{-15}$
(A) $10^{-12} \mathrm{~m}$
(B) $10^{-15} \mathrm{~m}$
(C) $10^{12} \mathrm{~m}$
(D) $\quad 10^{-9} \mathrm{~m}$
11. CGS unit of density is \qquad .
(A) $\mathrm{g} \mathrm{m}^{-3}$
(B) $\mathrm{g} \mathrm{cm}^{-3}$
(C) $\mathrm{g} \mathrm{L}^{-1}$
(D) $\mathrm{g} \mathrm{mL}^{-1}$
12. Which is NOT a scale of temperature measurement?
(A) Candela (Cd)
(B) Degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$
(C) Degree Fahrenheit (${ }^{\circ} \mathrm{F}$)
(D) Kelvin (K)
13. The relationship between degree Fahrenheit and degree Celsius is expressed as \qquad -
(A) ${ }^{\circ} \mathrm{F}=\frac{5}{9}\left({ }^{\circ} \mathrm{C}\right)+32$
(B) ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
(C) ${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}+273.15$
(D) ${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}+32$

1.4 Laws of chemical combination

1. According to the law of conservation of mass,
\qquad .
(A) mass can be created but cannot be destroyed
(B) mass cannot be created but can be destroyed
(C) mass can neither be created nor destroyed
(D) mass can be created and destroyed
2. The sum of the masses of reactants and products is equal in any physical or chemical reaction. This is in accordance with law of -.
(A) multiple proportion
(B) definite composition
(C) conservation of mass
(D) reciprocal proportion
3. If the law of conservation of mass was to hold true, then 20.8 g of BaCl_{2}, on reaction with 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will produce 7.3 g of HCl and \ldots of BaSO_{4}.
(A) 11.65 g
(B) 23.3 g
(C) 25.5 g
(D) 30.6 g
4. Pure water can be obtained from various sources, but it always contains hydrogen and oxygen, combined in a ratio of $1: 8$ by weight. This is an example of \qquad .
(A) law of conservation of mass
(B) Avogadro's law
(C) law of definite composition
(D) Gay Lussac's law
5. A sample of pure carbon dioxide, irrespective of its source contains 27.27% carbon and 72.73% oxygen. The data supports \qquad .
(A) law of definite composition
(B) law of conservation of mass
(C) law of reciprocal proportions
(D) law of multiple proportions
6. In SO_{2} and SO_{3}, the ratio of the masses of oxygen that combine with a fixed mass of sulphur is $2: 3$. This is an example of the law of
\qquad
(A) constant proportion
(B) multiple proportion
(C) reciprocal proportion
(D) conservation of mass
7. Two containers of the same size are filled separately with H_{2} gas and CO_{2} gas. Both the containers under the same T and P will contain the same \qquad .
(A) number of atoms
(B) weight of gas
(C) number of molecules
(D) number of electrons
8. Which of the following reactions has the ratio of volumes of reacting gases and the product as 1:2:2 (at same temperature and pressure)?
(A) $2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}$
(B) $\mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(C) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HF}_{(\mathrm{g})}$
(D) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

1.5 Avogadro law

1. Which of the following law states that equal volumes of all gases under identical conditions of temperature and pressure contain equal number of molecules?
(A) Boyle's law
(B) Charles' law
(C) Avogadro's law
(D) Gay Lussac's law
1.6 Dalton's atomic theory
2. Dalton assumed that \qquad are the tiny, indivisible particles.
(A) atoms
(B) molecules
(C) ions
(D) elements

1.7 Atomic and molecular masses

1. 1 amu is equal to \qquad -
(A) $\frac{1}{12}$ of mass of one C-12
(B) $\frac{1}{14}$ of mass of one O-16
(C) 1 g of H_{2}
(D) $1.66 \times 10^{-23} \mathrm{~kg}$
2. Isotopes are the atoms of the same element having \qquad .
(A) different atomic masses
(B) same atomic masses
(C) different number of electrons
(D) different number of protons
3. \quad is the sum of average atomic masses of the atoms of the elements which constitute the molecule.
(A) Molecular mass
(B) Atomic weight
(C) Percentage weight
(D) Percentage volume

1.8 Mole concept and molar mass

1. 1 mole atoms $=$ \qquad atoms.
(A) 6.021×10^{21}
(B) 6.024×10^{24}
(C) 6.051×10^{15}
(D) 6.022×10^{23}
2. One is the collection of $6.022 \times \overline{10^{23}}$ atoms $/ \mathrm{molec}$ ules/ions.
(A) kg
(B) g
(C) mole
(D) cm
3. One mole of oxygen gas weighs \qquad .
(A) 1 g
(B) 8 g
(C) 32 g
(D) $6.022 \times 10^{23} \mathrm{~g}$
4. The molar mass of hydrogen peroxide is 34 . What is the unit of molar mass?
(A) g
(B) mol
(C) $\mathrm{g} \mathrm{mol}^{-1}$
(D) $\mathrm{mol} \mathrm{g}^{-1}$
5. 1 mole of benzene is equal to \qquad $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{6}$.
(A) 70
(B) 72
(C) 10
(D) 78
6. How many molecules are present in one gram of hydrogen gas?
(A) 6×10^{23}
(B) 3×10^{23}
(C) 2.5×10^{23}
(D) 1.5×10^{23}
7. One mole of CO_{2} contains \qquad .
(A) 6.022×10^{23} atoms of C
(B) 6.022×10^{23} atoms of O
(C) 18.1×10^{23} molecules of CO_{2}
(D) 3 atoms of CO_{2}
8. One mole of $\mathrm{H}_{2} \mathrm{O}$ corresponds to \qquad .
(A) 1 mole of hydrogen atoms
(B) 6.022×10^{23} atoms of hydrogen and 6.022×10^{23} atoms of oxygen
(C) 18 g of $\mathrm{H}_{2} \mathrm{O}$
(D) 1 g of $\mathrm{H}_{2} \mathrm{O}$
9. 1 atom of an element weighs $1.792 \times 10^{-22} \mathrm{~g}$. The atomic mass of the element is \qquad .
(A) 1.192
(B) 17.92
(C) 64
(D) 108
10. What is the mass of 0.5 mole of ozone molecule?
(A) 8 g
(B) 16 g
(C) 24 g
(D) 48 g
11. The number of molecules in 16 g of oxygen gas is
(A) 6.022×10^{23}
(B) 3.011×10^{23}
(C) 3.011×10^{22}
(D) 1.5×10^{23}
1.9 Moles and gases
12. One mole of any gas occupies a volume of $22.4 \mathrm{dm}^{3}$ at \qquad .
(A) standard temperature $\left(0^{\circ} \mathrm{C}\right)$ and pressure (1 atm)
(B) standard temperature (298 K) and pressure (1 atm)
(C) standard temperature $\left(100{ }^{\circ} \mathrm{C}\right)$ and pressure (10 atm)
(D) standard temperature $(273 \mathrm{~K})$ and pressure (10 atm)
13. The number of S atoms in $22.4 \mathrm{dm}^{3}$ of SO_{2} gas at STP is
(A) $6.02 \overline{22 \times 10^{20}}$
(B) 6.022×10^{23}
(C) 22.4×10^{20}
(D) 22.4×10^{23}

Critical Thinking

1.2 Nature of chemistry

1. Identify the INCORRECT statement about metals.
(A) They are brittle.
(B) They can be hammered into thin sheets.
(C) They cannot be drawn into wire.
(D) They have a lustre.
2. Which of the following show(s) exceptions to general properties of nonmetals?
(A) Diamond and iodine have lustre.
(B) Graphite is good conductor of electricity.
(C) Diamond is the hardest known substance.
(D) All of these
3. Identify INCORRECT statement.
(A) Pure substances have a definite chemical composition.
(B) Composition of a mixture can be varied to any extent.
(C) Water and table salt are examples of a compound.
(D) The constituents of a compound can be easily separated by physical methods.
4. Which of the following statements is INCORRECT?
(A) Constituent substances in a mixture retain their separate identities.
(B) Suspension of an insoluble solid in a liquid is an example of heterogeneous mixture.
(C) Mixture of any two liquids is an example of homogeneous mixtures.
(D) Mixtures can be separated into pure components by simple physical methods.
5. Which of the following is INCORRECT match?
(A) Homogeneous mixture: Solution (An aqueous solution of sugar)
(B) Heterogeneous mixture: Suspension (of sand in water)
(C) Element: Gold
(D) Compound: A rusty nail
6. Which of the following is(are) CORRECT match(es)?
(A) Solid: Particles are held tightly in perfect order.
(B) Liquid: Particles are close to each other but can move around within the liquid.
(C) Gas: Particles are far apart as compared to that of solid and liquid.
(D) All of these

1.3 Properties of matter and their measurement

1. In 1960, the general conference of weights and measure, proposed revised metric system, called __ units.
(A) CGS
(B) MKS
(C) FPS
(D) SI
2. The SI unit of volume is expressed as \qquad .
(A) $\quad(\text { metre })^{3}$
(B) $(\text { centimetre })^{3}$
(C) litre
(D) millilitre
3. Which of the following relations for expressing volume of a sample is INCORRECT?
(A) $1 \mathrm{~L}=10^{3} \mathrm{~mL}$
(B) $1 \mathrm{dm}^{3}=1 \mathrm{~L}$
(C) $1 \mathrm{~L}=10^{3} \mathrm{~m}^{3}$
(D) $1 \mathrm{~L}=10^{3} \mathrm{~cm}^{3}$
4. Identify the CORRECT statement.
(A) The mass of a body varies as its position changes.
(B) The SI unit of length is centimetre.
(C) A burette is used to prepare a known volume of a solution.
(D) The mass of a body is more fundamental property than its weight.
5. Convert $40^{\circ} \mathrm{C}$ temperature to degree Fahrenheit.
(A) $104{ }^{\circ} \mathrm{F}$
(B) $86^{\circ} \mathrm{F}$
(C) $313{ }^{\circ} \mathrm{F}$
(D) $233^{\circ} \mathrm{F}$
6. Convert $50^{\circ} \mathrm{F}$ temperature to degree Celsius.
(A) $323{ }^{\circ} \mathrm{C}$
(B) $10{ }^{\circ} \mathrm{C}$
(C) $223{ }^{\circ} \mathrm{C}$
(D) $-10^{\circ} \mathrm{C}$

1.4 Laws of chemical combination

1. Two samples of lead oxide were separately reduced to metallic lead by heating in a current of hydrogen. The weight of lead from one oxide was half the weight of lead obtained from the other oxide. The data illustrates
\qquad -.
(A) law of reciprocal proportions
(B) law of constant proportions
(C) law of multiple proportions
(D) law of equivalent proportions
2. Hydrogen and oxygen combine to form $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ containing 5.93% and 11.29% of hydrogen respectively. The data illustrates
(A) law of conservation of mass
(B) law of definite composition
(C) law of reciprocal proportion
(D) law of multiple proportion
3. Two elements, A and B , combine to form a compound in which ' a ' g of A combines with ' b_{1} ' and ' b_{2} ' g of B respectively. According to law of multiple proportion, \qquad .
(A) $\mathrm{b}_{1}=\mathrm{b}_{2}$
(B) b_{1} and b_{2} bear a simple whole number ratio
(C) a is always equal to b_{1}
(D) no relation exists between b_{1} and b_{2}
4. The law of multiple proportions is illustrated by the compounds \qquad -.
(A) carbon monoxide and carbon dioxide
(B) potassium bromide and potassium chloride
(C) ordinary water and heavy water $\left(\mathrm{D}_{2} \mathrm{O}\right)$
(D) calcium hydroxide and barium hydroxide
5. The mass of sulphur dioxide produced by burning 16 g of sulphur in excess of oxygen in contact process is \qquad g.
(Average atomic mass: $\mathrm{S}=32 \mathrm{u}, \mathrm{O}=16 \mathrm{u}$).
(A) 16
(B) 32
(C) 64
(D) 128
6. How many litres of ammonia will be formed when 2 L of N_{2} and 2 L of H_{2} are allowed to react?
(A) 0.665
(B) 1.0
(C) 1.33
(D) 4.00

1.6 Dalton's atomic theory

1. Which of the following statements is FALSE according to Dalton's atomic theory?
(A) Chemical reactions involve only the reorganization of atoms.
(B) Law of conservation of mass can be explained by assuming that total number of atoms in the reactants and products remain same.
(C) During chemical reactions, atoms are neither created nor destroyed.
(D) Atoms of the same element have different properties.

1.7 Atomic and molecular masses

1. Which of the following is the value of amu?
(A) $1.57 \times 10^{-24} \mathrm{~kg}$
(B) $1.66 \times 10^{-24} \mathrm{~kg}$
(C) $1.99 \times 10^{-23} \mathrm{~kg}$
(D) $1.66 \times 10^{-27} \mathrm{~kg}$
2. What will be the mass of one atom of ${ }^{12} \mathrm{C}$?
(A) 1 a.m.u.
(B) $1.9923 \times 10^{-23} \mathrm{~g}$
(C) $1.6603 \times 10^{-22} \mathrm{~g}$
(D) 6 a.m.u.
3. For practical purpose, the average atomic mass of oxygen (which is an isotopic mixture of ${ }^{16} \mathrm{O}$, ${ }^{17} \mathrm{O}$ and ${ }^{18} \mathrm{O}$) is assumed to be equal to \qquad .
(A) 15.0 u
(B) 16.0 u
(C) 17.0 u
(D) 18.0 u
4. The natural isotopic abundance of ${ }^{10} \mathrm{~B}$ is 19.60% and ${ }^{11} \mathrm{~B}$ is 80.40%. The exact isotopic masses are 10.13 and 11.009 u respectively. The average atomic mass of boron is \qquad u.
(A) 10.84
(B) 11.00
(C) 10.00
(D) 10.55
5. An element, X has the following isotopic composition.
${ }^{200} \mathrm{X}: 90 \% ;{ }^{199} \mathrm{X}: 8.0 \% ;{ }^{202} \mathrm{X}: 2.0 \%$
The weighted average atomic mass of the naturally occurring element X is close to \qquad .
(A) 200 u
(B) 210 u
(C) 205 u
(D) 199 u
6. The molecular mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ in u is \qquad .
(A) 112.5 u
(B) 48.5 u
(C) 78 u
(D) 118.5 u
7. The mass of one molecule of O_{2} in grams is - [Given: average atomic mass of $\mathrm{O}=16 \mathrm{u}$ and $1 \mathrm{u}=1.66 \times 10^{-24} \mathrm{~g}$]
(A) $32.0 \times 10^{-24} \mathrm{~g}$
(B) $26.6 \times 10^{-24} \mathrm{~g}$
(C) $16.0 \times 10^{-24} \mathrm{~g}$
(D) $53.1 \times 10^{-24} \mathrm{~g}$
8. The formula mass of KCl in u is \qquad .
[Given : atomic mass of $\mathrm{K}=39.1 \mathrm{u}$, $\mathrm{Cl}=35.5 \mathrm{u}]$
(A) 149.2 u
(B) 78.2 u
(C) 74.6 u
(D) 113.7 u

1.8 Mole concept and molar mass

1. The number of moles of sodium oxide in 620 g is \qquad .
(A) 1 mol
(B) 10 moles
(C) 18 moles
(D) 100 moles
2. $1 \mathrm{~mol} \mathrm{of}_{\mathrm{CH}}^{4}$ contains \qquad .
(A) 6.02×10^{23} atoms of C
(B) 12 g of H
(C) 1.81×10^{23} molecules of CH_{4}
(D) 3.0 g of carbon
3. The mass of 1 atom of hydrogen is \qquad .
(A) 1 g
(B) 0.5 g
(C) $1.6 \times 10^{-24} \mathrm{~g}$
(D) $3.2 \times 10^{-24} \mathrm{~g}$
4. How many moles of electrons weigh one kilogram?
(A) 6.022×10^{23}
(B) $\frac{1}{9.108} \times 10^{31}$
(C) $\frac{6.022}{9.108} \times 10^{54}$
(D) $\frac{1}{9.108 \times 6.022} \times 10^{8}$
5. The number of atoms in 4.25 g of NH_{3} is approximately \qquad .
(A) 1×10^{23}
(B) 2×10^{23}
(C) 4×10^{23}
(D) 6×10^{23}
6. Which of the following has maximum number of atoms?
(A) $18 \mathrm{~g} \mathrm{of}_{2} \mathrm{O}$
(B) $16 \mathrm{~g} \mathrm{of} \mathrm{O}_{2}$
(C) 4.4 g of CO$_{2}$
(D) 16 g of CH_{4}
7. The number of sulphur atoms present in 0.2 moles of S_{8} molecules is \qquad .
(A) 4.82×10^{23}
(B) 9.63×10^{22}
(C) 9.63×10^{23}
(D) 1.20×10^{23}
8. The number of oxygen atoms in 4.4 g of CO_{2} is approximately \qquad .
(A) 1.2×10^{23}
(B) 6×10^{22}
(C) 6×10^{23}
(D) 12×10^{23}
9. The number of atoms present in 0.05 g of water is \qquad .
(A) 1.67×10^{23}
(B) 1.67×10^{22}
(C) 5.05×10^{21}
(D) 1.67×10^{21}
10. What amount of dioxygen (in gram) contains 1.8×10^{22} molecules?
(A) 0.0960
(B) 0.960
(C) 9.60
(D) 96.0
11. The weight of a molecule of the compound $\mathrm{C}_{60} \mathrm{H}_{122}$ is \qquad -
(A) $1.4 \times \overline{10^{-21} \mathrm{~g}}$
(B) $1.09 \times 10^{-21} \mathrm{~g}$
(C) $5.025 \times 10^{23} \mathrm{~g}$
(D) $16.023 \times 10^{23} \mathrm{~g}$
12. The numbers of moles of BaCO_{3}, which contain 1.5 moles of oxygen atoms is \qquad -.
(A) 0.5
(B) 1
(C) 3
(D) 6.02×10^{23}
13. The number of moles of oxygen in 1 L of air containing 21% oxygen by volume in standard conditions is \qquad -.
(A) 0.0093 mol
(B) 0.186 mol
(C) 0.21 mol
(D) 2.10 mol
14. Which one of the following pairs of gases contains the same number of molecules?
(A) 16 g of O_{2} and 14 g of N_{2}
(B) 8 g of O_{2} and 22 g of CO_{2}
(C) 28 g of N_{2} and 22 g of CO_{2}
(D) 32 g of O_{2} and 32 g of N_{2}
15. The number of water molecules in 1 litre of water is \qquad -.
(A) 18
(B) 18×1000
(C) $\quad \mathrm{N}_{\mathrm{A}}$
(D) $\quad 55.55 \mathrm{~N}_{\mathrm{A}}$
16. The number of water molecules is maximum in
$\overline{\text { (A) } 18}$ gram of water
(B) 18 moles of water
(C) 18 molecules of water
(D) 1.8 gram of water

1.9 Moles and gases

1. 0.5 mole of nitrogen gas represents \qquad $-$
(A) $6.02 \times 10^{23} \mathrm{~N}_{2}$ molecules
(B) $22.4 \mathrm{~L}^{\text {of }} \mathrm{N}_{2}$ at S.T.P.
(C) 11.2 L of N_{2} at S.T.P.
(D) none of these
2. The volume occupied by 4.4 g of CO_{2} at STP is
(A) $\quad 0.1 \mathrm{~L}$
(B) 0.224 L
(C) 2.24 L
(D) 22.4 L
3. $11.2 \mathrm{~cm}^{3}$ of oxygen gas at STP contains moles of oxygen gas.
(A) 0.0005
(B) 0.01
(C) 0.029
(D) 0.5
4. The volume in dm^{3} occupied by 60.0 g of ethane at STP is \qquad .
(A) 22.4
(B) 44.8
(C) 56.0
(D) 11.2

Platinum alloy as an International Prototype of the Kilogram

Have you ever wondered what is the reference for 1 kilogram???? It has been defined as the mass of the International Prototype of the Kilogram (IPK). The prototype is made of platinum-iridium (Pt-Ir) cylinder that is stored in an airtight jar at International Bureau of Weights and Measures in France. Pt-Ir was chosen because its mass remains constant for an extremely long time and it is resistant to the attack of different chemicals. This reference standard is used to calibrate or standardize different measuring devices such as analytical balances.

Concept Fusion

1. Identify the CORRECT statements.
(I) The mass of one mole of a substance in grams is called its molar mass.
(II) The formula mass of a substance is the sum of atomic masses of the atoms present in the formula.
(III) One mole is the amount of a substance that contains as many entities or particles as there are atoms in exactly 12 g of the carbon- 12 isotope.
(A) I, II
(B) II, III
(C) I, III
(D) I, II, III
2. Under similar conditions, same mass of oxygen and nitrogen is taken. The ratio of their volumes will be \qquad -.
(A) $7: 8$
(B) $3: 5$
(C) $6: 5$
(D) $9: 2$
3. Which of the following is a compound?
(A) Diamond
(B) Charcoal
(C) Baking soda
(D) 22 Carat Gold
4. Two elements, X (Atomic mass 16) and Y (Atomic mass 14) combine to form compounds A, B and C . The ratio of different masses of Y that combine with fixed mass of X in A, B and C is $1: 3: 5$. If 32 parts by mass of X combine with 84 parts by mass of Y in B , then in $\mathrm{C}, 16$ parts by mass of X will combine with \qquad .
(A) 14 parts by mass of Y
(B) 42 parts by mass of Y
(C) 70 parts by mass of Y
(D) 82 parts by mass of Y
5. Haemoglobin contains 0.33% of iron by weight. The molecular weight of haemoglobin is approximately 67200 . The number of iron atoms (At. wt. of $\mathrm{Fe}=56 \mathrm{u}$) present in one molecule of haemoglobin is \qquad .
(A) 1
(B) 2
(C) 4
(D) 6
6. In a flask, the weight ratio of $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{SO}_{2}(\mathrm{~g})$ at 298 K and 1 bar is $1: 2$. The ratio of the number of molecules of $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ is \qquad
(A) $1: 4$
(B) $4: 1$
(C) $1: 2$
(D) $2: 1$
7. 1 mL of water has 25 drops. Let N_{0} be the Avogadro number. What is the number of molecules present in 1 drop of water?
(Density of water $=1 \mathrm{~g} / \mathrm{mL}$)
(A) $\frac{0.02}{9} \mathrm{~N}_{0}$
(B) $\frac{18}{25} \mathrm{~N}_{0}$
(C) $\frac{25}{18} \mathrm{~N}_{0}$
(D) $\frac{0.04}{25} \mathrm{~N}_{0}$
8. One mole of oxygen gas at STP is equal to:
(A) 6.022×10^{23} molecules of oxygen
(B) 6.022×10^{23} atoms of oxygen
(C) 16 g of oxygen
(D) 3.2 g of oxygen
9. At S.T.P., the volume of 7.5 g of gas is 5.6 L . The gas is \qquad .
(A) NO
(B) $\mathrm{N}_{2} \mathrm{O}$
(C) CO
(D) CO_{2}

MHT-CET Previous Years' Questions

1. What is the quantity of hydrogen gas liberated when 46 g sodium reacts with excess ethanol?
[2017]
(A) $2.4 \times 10^{-3} \mathrm{~kg}$
(B) $2.0 \times 10^{-3} \mathrm{~kg}$
(C) $4.0 \times 10^{-3} \mathrm{~kg}$
(D) $2.4 \times 10^{-2} \mathrm{~kg}$
2. Which symbol replaces the unit of atomic mass, amu?
[2018]
(A) u
(B) A
(C) M
(D) n
3. What is the SI unit of density?
[2018]
(A) $\mathrm{g} \mathrm{cm}^{-3}$
(B) $\mathrm{g} \mathrm{m}^{-3}$
(C) $\mathrm{kg} \mathrm{m}^{-3}$
(D) $\mathrm{kg} \mathrm{cm}^{-3}$
4. Boron has two isotopes with atomic masses 10 and 11. If its average atomic mass is 10.81 , the abundance of lighter isotope is \qquad .
[2019]
(A) 20%
(B) 81%
(C) 19%
(D) 80%
5. The temperature of $32{ }^{\circ} \mathrm{C}$ is equivalent to
[2019]
(A) $69{ }^{\circ} \mathrm{F}$
(B) $70^{\circ} \mathrm{F}$
(C) $85.6^{\circ} \mathrm{F}$
(D) $89.6^{\circ} \mathrm{F}$
6. The number of molecules present in 100 mL of water is (Given, Density of water- $1 \mathrm{~g} / \mathrm{cc}$)
[2019]
(A) 33.45×10^{23}
(B) 3.345×10^{23}
(C) $1.083 \times 10^{24} \mathrm{~g}$
(D) 1.083×10^{23}
7. The volume of 1 mole of any pure gas at standard temperature and pressure is always equal to
[2019]
(A) $22.414 \mathrm{~m}^{3}$
(B) $0.022414 \mathrm{~m}^{3}$
(C) $2.2414 \mathrm{~m}^{3}$
(D) $0.22414 \mathrm{~m}^{3}$
8. The units nanometer and picometer are related
[2020]
as
(A) $1 \mathrm{~nm}=10^{-12} \mathrm{pm}$
(B) $1 \mathrm{~nm}=10^{-9} \mathrm{pm}$
(C) $1 \mathrm{~nm}=10^{-3} \mathrm{pm}$
(D) $1 \mathrm{~nm}=10^{3} \mathrm{pm}$
9. Which among the following elements has highest number of atoms in 1 g each?
(At. No.: Au 197, $\mathrm{Na}=23, \mathrm{Cu}=63.5, \mathrm{Fe}=56$)
[2020]
(A) $\mathrm{Fe}_{(\mathrm{s})}$
(B) $\quad \mathrm{Au}_{(\mathrm{s})}$
(C) $\mathrm{Na}_{(\mathrm{s})}$
(D) $\mathrm{Cu}_{(\mathrm{s})}$
10. Pure samples of copper carbonate synthesized in laboratory and found naturally if both contains 51.35% copper, 38.91% carbon and 9.74% oxygen by weight. This is an accordance with
[2020]
(A) Law of definite proportion
(B) Law of conservation of mass
(C) Law of multiple proportion
(D) Law of combining volumes
11. Which of the following set of compounds does NOT demonstrate the law of multiple proportions?
[2020]
(A) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}$
(B) $\mathrm{SO}_{2}, \mathrm{SO}_{3}$
(C) $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{CH}_{4}$
(D) $\mathrm{NO}, \mathrm{NO}_{2}$
12. How many atoms of argon are present in 3.99 g of it? $($ Atomic mass $=39.9)$
[2020]
(A) 6.022×10^{22}
(B) 3.011×10^{21}
(C) 3.011×10^{21}
(D) 3.011×10^{22}
13. The number of moles of ammonia present in $5.6 \mathrm{dm}^{3}$ of its volume at STP is
[2020]
(A) 0.25
(B) 1.0
(C) 0.50
(D) 0.75
14. In the reaction, $2 \mathrm{KClO}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}$; $\Delta \mathrm{H}^{\circ}=-78 \mathrm{~kJ}$. If 33.6 L of oxygen gas is liberated at STP, what is the mass of $\mathrm{KCl}_{(\mathrm{s})}$ produced?
(Atomic mass: $\mathrm{K}=39, \mathrm{Cl}=35.5 \mathrm{~g} \mathrm{~mol}^{-1}$)
[2020]
(A) 7.45 g
(B) 48.0 g
(C) 24.0 g
(D) 74.5 g
15. Which gas among the following contains maximum number of molecules at STP?
(Molar masses in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{CO}_{2}=44, \mathrm{Ar}=39.9$, $\mathrm{CH}_{4}=16, \mathrm{O}_{2}=32$)
[2020]
(A) 13.3 g of Ar
(B) 11 g of CO_{2}
(C) 24.0 g of O_{2}
(D) 16.0 g of CH_{4}
16. What is the number of moles and total number of atoms respectively present in $5.6 \mathrm{~cm}^{3}$ of ammonia gas at STP?
[2020]
(A) 1.505 mol and 6.022×10^{20} atoms
(B) 2.05 mol and 1.50×10^{20} atoms
(C) $2.50 \times 10^{-4} \mathrm{~mol}$ and 6.022×10^{20} atoms
(D) $2.50 \times 10^{-3} \mathrm{~mol}$ and 1.5×10^{20} atoms
17. The volume of oxygen required for complete combustion of 0.25 mole of methane at STP is
[2020]
(A) $22.4 \mathrm{dm}^{3}$
(B) $5.6 \mathrm{dm}^{3}$
(C) $11.2 \mathrm{dm}^{3}$
(D) $7.46 \mathrm{dm}^{3}$
18. Calculate mass of 3.01×10^{24} atoms of an element having atomic mass 21.13.
[2020]
(A) $118.5 \mathrm{~g} \mathrm{~mol}^{-1}$
(B) $105.65 \mathrm{~g} \mathrm{~mol}^{-1}$
(C) $84.54 \mathrm{~g} \mathrm{~mol}^{-1}$
(D) $42.27 \mathrm{~g} \mathrm{~mol}^{-1}$
19. "A given compound always contains exactly the same proportion of elements by weight" is a statement of \qquad -.
(A) Law of combining volumes of gases
(B) Law of conservation of mass
(C) Law of multiple proportion
(D) Law of definite proportion
20. What is the total number of molecules present in $224 \mathrm{~cm}^{3}$ of a gas at STP?
[2021]
(A) 6.022×10^{20}
(B) 6.022×10^{23}
(C) 6.022×10^{22}
(D) 6.022×10^{21}
21. Number of molecules present in 5.4 g of urea is $\left(\right.$ Molar mass $\left.=60 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
[2021]
(A) 6.0×10^{22}
(B) 5.4×10^{22}
(C) 9.0×10^{22}
(D) 3.5×10^{23}
22. What is the mass of $44.8 \mathrm{dm}^{3}$ of methane gas under STP conditions?
[2021]
(A) 24 g
(B) 32 g
(C) 48 g
(D) 16 g
23. Which of the following pair of compounds does not explain law of multiple proportions? [2021]
(A) SO_{2} and SO_{3}
(B) O_{2} and O_{3}
(C) CO and CO_{2}
(D) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$
24. Find the value of $-197{ }^{\circ} \mathrm{C}$ temperature in Kelvin.
[2021]
(A) 47 K
(B) 76 K
(C) 470 K
(D) 760 K
25. What is the SI unit of density?
(A) $\mathrm{kg} \mathrm{dm}^{3}$
(B) $\mathrm{kg} \mathrm{m}^{-3}$
(C) $\mathrm{kg} \mathrm{m}^{3}$
(D) $\mathrm{kg} \mathrm{dm}^{-3}$
26. How many grams of $\mathrm{H}_{2} \mathrm{O}$ are present in 0.25 mol of it?
[2021]
(A) 0.25 g
(B) 5.4 g
(C) 4.5 g
(D) 6.1 g
27. How many atoms of argon are present in 52 mole of it? (At. Mass of $\mathrm{Ar}=39$)
[2021]
(A) 1.1×10^{23}
(B) 1.5×10^{25}
(C) 3.1×10^{25}
(D) 1.2×10^{23}
28. What is the volume occupied by 24 g methane gas at STP?
[2021]
(A) $33.6 \mathrm{dm}^{3}$
(B) $22.4 \mathrm{dm}^{3}$
(C) $67.2 \mathrm{dm}^{3}$
(D) $44.8 \mathrm{dm}^{3}$
29. What amount of oxygen is used at STP to obtain 9 g water from sufficient amount of hydrogen gas?
[2021]
(A) $5.6 \mathrm{dm}^{3}$
(B) $22.4 \mathrm{dm}^{3}$
(C) $16.8 \mathrm{dm}^{3}$
(D) $11.2 \mathrm{dm}^{3}$
30. What is the volume (in dm^{3}) occupied by 75 g ethane at STP?
[2021]
(A) 60.0
(B) 56.0
(C) 22.4
(D) 44.8
31. How many moles of urea are present in 5.4 g ?
$($ Molar mass $=60)$
[2021]
(A) 2.9
(B) 0.09
(C) 1.2
(D) 2.4
32. What is the density of water in $\mathrm{kg} \mathrm{dm}^{-3}$ if its density in $\mathrm{g} \mathrm{cm}^{-3}$ is 0.863 ?
[2022]
(A) 7.86
(B) 0.863
(C) 8.63
(D) 4.60
33. Find the number of hydrogen atoms present in 6.0 of $\mathrm{H}_{2} \mathrm{~N}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{NH}_{2}$.
[2022]
(A) 3.01×10^{23}
(B) 4.06×10^{23}
(C) 2.4×10^{23}
(D) 2.16×10^{23}
34. Mass of one molecule of oxygen in amu and in gram respectively is
[2022]
(A) $16 \mathrm{u}, 6.0 \times 10^{-24} \mathrm{~g}$
(B) $32 \mathrm{u}, 53.13 \times 10^{-24} \mathrm{~g}$
(C) $53.13 \times 10^{-24} \mathrm{u}, 32 \mathrm{~g}$
(D) $42 \mathrm{u}, 5.313 \times 10^{-24} \mathrm{~g}$
35. How many moles of oxygen gas at STP are equivalent to 5.6 litre?
[2022]
(A) $\frac{1}{8}$ mole
(B) $\frac{1}{2}$ mole
(C) 1 mole
(D) $\frac{1}{4}$ mole
36. Which of the following species has highest mass?
[2022]
(A) 10 mL of water at room temperature
(B) $\frac{1}{2}$ mole of CH_{4}
(C) 1 mole of carbon atom
(D) 3.011×10^{23} atoms of oxygen
37. Find the quantity of dihydrogen required to prepare 2 L ammonia gas from 1 L dinitrogen.
[2022]
(A) 2 L
(B) 1 L
(C) 3 L
(D) $\frac{3}{2} \mathrm{~L}$
38. How many molecules of water are present in a drop of volume 0.05 mL ?
[2022]
(A) 6.00×10^{21}
(B) 1.67×10^{21}
(C) 2.0×10^{21}
(D) 5.02×10^{21}
39. Identify the gas from following so that 1 litre of it weighs 1.16 g at STP.
(A) $\mathrm{C}_{2} \mathrm{H}_{2}$
(B) CH_{4}
(C) O_{2}
(D) CO
40. Which of the following species has the lowest mass?
[2022]
(A) $\frac{1}{4}$ mole of CH_{4} gas
(B) 3.011×10^{23} atoms of oxygen
(C) 1 g atom of carbon
(D) 6.022×10^{23} molecules of water
41. What volume of water vapours will be produced when 10 volume of dihydrogen gas reacts with 5 volume of dioxygen gas?
[2022]
(A) 100
(B) 5
(C) 10
(D) 50
42. Nitrogen reacts with hydrogen to produce ammonia. What is the ratio of reacting volume of nitrogen, hydrogen and ammonia gas respectively according to Gay-Lussac law?
[2022]
(A) $1: 2: 3$
(B) $3: 1: 2$
(C) $1: 3: 2$
(D) $2: 1: 3$
43. What is the value of temperature in degree Fahrenheit if the temperature in degree Celsius is 60 ?
[2022]
(A) $65^{\circ} \mathrm{F}$
(B) $140^{\circ} \mathrm{F}$
(C) $108^{\circ} \mathrm{F}$
(D) $33{ }^{\circ} \mathrm{F}$
44. How many moles of helium gas occupies 22.4 L at $0^{\circ} \mathrm{C}$ and at 1 atmospheric pressure?
[2022]
(A) 0.11
(B) 1.11
(C) 1.0
(D) 0.9
45. Calculate the mass of 200 atoms of sodium. (Atomic mass of sodium $=23 \mathrm{~g} \mathrm{~mol}^{-1}$) [2022]
(A) $7.64 \times 10^{-21} \mathrm{~g}$
(B) $4.37 \times 10^{-23} \mathrm{~g}$
(C) $5.12 \times 10^{-22} \mathrm{~g}$
(D) $3.82 \times 10^{-21} \mathrm{~g}$
46. What volume of ammonia is formed when 10 dm^{3} dinitrogen reacts with $30 \mathrm{dm}^{3}$ dihydrogen at same temperature and pressure?
[2023]
(A) $30 \mathrm{dm}^{3}$
(B) $20 \mathrm{dm}^{3}$
(C) $15 \mathrm{dm}^{3}$
(D) $10 \mathrm{dm}^{3}$
47. What is number of atoms present in $2.24 \mathrm{dm}^{3}$
[2023]
$\mathrm{NH}_{3(\mathrm{~g})}$ at STP?
(A) 6.022×10^{22}
(B) 2.4088×10^{23}
(C) 1.8066×10^{22}
(D) 6.022×10^{23}
48. What is the mass of $\mathrm{KClO}_{3(\mathrm{~s})}$ required to liberate 22. $4 \mathrm{dm}^{3}$ oxygen at STP during thermal decomposition?
(Molar Mass of $\mathrm{KClO}_{3(\mathrm{~s})}=122.5 \mathrm{~g} / \mathrm{mol}$) [2023]
(A) 122.5 g
(B) 81.67 g
(C) 10.25 g
(D) 8.16 g
49. What is the number of molecules of dinitrogen present in $22.4 \mathrm{~cm}^{3}$ at STP?
[2023]
(A) 2.24×10^{20}
(B) 6.022×10^{20}
(C) 4.4×10^{20}
(D) 3.011×10^{20}
50. What is the mass in gram of 1 atom of an element if it's atomic mass is 10 u ?
[2023]
(A) $2.06056 \times 10^{-22} \mathrm{~g}$
(B) $1.66056 \times 10^{-23} \mathrm{~g}$
(C) $1.06056 \times 10^{-24} \mathrm{~g}$
(D) $3.66056 \times 10^{-25} \mathrm{~g}$
51. Which of the following pair of compounds demonstrates the law of multiple proportions?
[2023]
(A) $\mathrm{CH}_{4}, \mathrm{CCl}_{4}$
(B) $\mathrm{BF}_{3}, \mathrm{NH}_{3}$
(C) $\mathrm{CO}, \mathrm{CO}_{2}$
(D) $\mathrm{NO}_{2}, \mathrm{CO}_{2}$
52. What volume of $\mathrm{CO}_{2(\mathrm{~g})}$ at STP is obtained by complete combustion of 6 g carbon?
[2023]
(A) $22.4 \mathrm{dm}^{3}$
(B) $11.2 \mathrm{dm}^{3}$
(C) $5.6 \mathrm{dm}^{3}$
(D) $2.24 \mathrm{dm}^{3}$
53. What is the total number of moles of atoms present in 3.2 g methane?
[2023]
(A) 4 mol
(B) 3 mol
(C) 2 mol
(D) 1 mol
54. What is the volume in dm^{3} occupied by 60 g ethane at STP?
[2023]
(A) 11.2
(B) 22.4
(C) 44.8
(D) 56
55. Identify numerical value from following that has same value in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$?
[2023]
(A) -8
(B) -11.2
(C) $\quad-40.0$
(D) 0
56. Identify the physical quantity that is measured in Candela.
[2023]
(A) Energy
(B) Work
(C) Force
(D) Luminous intensity
57. How many moles of nitrogen atoms are present in 8 g of ammonium nitrate?
$($ Molar mass of ammonium nitrate $=80)$
[2023]
(A) 0.1 mol
(B) 0.2 mol
(C) 0.4 mol
(D) 0.8 mol
58. Which from following substances consists of total 1 mole atoms in it? (Molar mass of $\mathrm{NH}_{3}=17, \mathrm{H}_{2} \mathrm{O}=18, \mathrm{~N}_{2}=28, \mathrm{CO}_{2}=44$)
[2023]
(A) $4.25 \mathrm{~g} \mathrm{NH}_{3}$
(B) $1.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(C) $2.8 \mathrm{~g} \mathrm{~N}_{2}$
(D) $4.4 \mathrm{~g} \mathrm{CO}_{2}$
59. Which of the following temperature values in Fahrenheit (${ }^{\circ} \mathrm{F}$) is equal to $50{ }^{\circ} \mathrm{C}$?
[2023]
(A) $90^{\circ} \mathrm{F}$
(B) $100^{\circ} \mathrm{F}$
(C) $110{ }^{\circ} \mathrm{F}$
(D) $122{ }^{\circ} \mathrm{F}$
60. According to reaction,
$\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{\text {(aq) }} \longrightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \uparrow$
Calculate the mass of Mg required to liberate $4.48 \mathrm{dm}^{3} \mathrm{H}_{2}$ at STP.
(Molar mass of $\mathrm{Mg}=24 \mathrm{~g} \mathrm{~mol}^{-1}$)
[2023]
(A) 12 g
(B) 4.8 g
(C) 6 g
(D) 2.4 g
61. What is the number of moles of carbon and hydrogen atoms respectively in 46 gram methoxymethane?
[2023]
(A) 2 and 6
(B) 3 and 6
(C) 4 and 4
(D) 4 and 3
62. Which among the following elements contains the highest number of atoms in 1 g ?
(At. Mass $\mathrm{Na}=23, \mathrm{Fe}=56, \mathrm{Cu}=63.5, \mathrm{Au}=197$)
[2023]
(A) Cu
(B) Na
(C) Au
(D) Fe
63. Thermal decomposition of 10 g solid CaCO_{3} is carried out in closed vessel, calculate the masses of $\mathrm{CaO}_{(\mathrm{s})}$ and $\mathrm{CO}_{2(\mathrm{~g})}$ formed respectively. [2023]
(A) 6 g and 4 g
(B) 4.5 g and 5.5 g
(C) 4 g and 6 g
(D) 5.6 g and 4.4 g
64. Which of the following is NOT a SI unit?[2023]
(A) kg
(B) K
(C) dm^{3}
(D) s
65. What is the number of molecules present in 0.1 kg of NaOH ?
(Molar mass of $\mathrm{NaOH}=40 \mathrm{~g} \mathrm{~mol}^{-1}$) [2023]
(A) 6.022×10^{24}
(B) 1.5055×10^{24}
(C) 6.022×10^{25}
(D) 1.5055×10^{23}

Evaluation Test

1. Mass of 112 mL of oxygen gas at STP would be
(A) $\quad 0.32 \mathrm{~g}$
(B) 0.64 g
(C) 0.16 g
(D) 0.96 g
2. The largest number of molecules is present in
$\overline{\text { (A) } \quad 54} \mathrm{~g}$ of nitrogen tetroxide
(B) 28 g of carbon dioxide
(C) 36 g of water
(D) 46 g of ethyl alcohol
3. The mass of a molecule of water is \qquad .
[Consider $\mathrm{N}_{\mathrm{A}}=6 \times 10^{23}$]
(A) $3 \times 10^{-26} \mathrm{~kg}$
(B) $3 \times 10^{-25} \mathrm{~kg}$
(C) $1.5 \times 10^{-26} \mathrm{~kg}$
(D) $2.5 \times 10^{-26} \mathrm{~kg}$
4. The modern atomic weight scale is based on \qquad _.
(A) ${ }^{12} \mathrm{C}$
(B) ${ }^{16} \mathrm{O}$
(C) ${ }^{1} \mathrm{H}$
(D) ${ }^{13} \mathrm{C}$
5. The number of moles of neon (At. Wt $=20 \mathrm{u}$) in 52 g of neon is \qquad -
(A) 1
(B) 2.6
(C) 52
(D) 20.8
6. SI unit of amount of a substance is \qquad .
(A) metre
(B) mole
(C) ampere
(D) candela
7. One requires 0.01 mole of NaOH . The mass of NaOH to be taken is \qquad .
(A) 0.04 g
(B) 0.4 g
(C) 4.0 g
(D) 40 g
8. A sample of phosphorus trichloride $\left(\mathrm{PCl}_{3}\right)$ contains 1.4 moles of the substance. How many atoms are there in the sample?
(A) 4
(B) 5.6
(C) 8.431×10^{23}
(D) 3.372×10^{24}
9. The INCORRECT statement for 14 g of CO is
\qquad -
(A) it occupies 2.24 L at NTP
(B) it corresponds to $\frac{1}{2}$ mole of CO
(C) it corresponds to half mole of N_{2}
(D) it corresponds to 3.01×10^{23} molecules of CO
10. The number of atoms of oxygen in $6.02 \times 10^{24} \mathrm{CO}$ molecules is \qquad .
(A) 1×10^{24}
(B) 3.01×10^{24}
(C) 6.02×10^{23}
(D) 6.02×10^{24}
11. One nanometre $=$ \qquad
(A) 10^{9} m.
(C) 10^{-9}
(B) 10^{-15}
12. The number of moles of helium in ' y ' g of helium gas is equal to \qquad .
(A) $\mathrm{y} \times 4$
(B) $\mathrm{y} / 2$
(C) $\mathrm{y} / 4$
(D) $\mathrm{y} \times 2$
13. Which of the following is NOT a fundamental SI unit?
(A) Metre
(B) Candela
(C) Ampere
(D) Gram
14. The number of molecules in $22.4 \mathrm{dm}^{3}$ of nitrogen gas at STP is \qquad .
(A) 6.022×10^{20}
(B) 6.022×10^{23}
(C) 22.4×10^{20}
(D) 22.4×10^{23}
15. In an experiment, 2.16 g of copper was dissolved in nitric acid followed by ignition of the nitrate, which gave 2.70 g of copper oxide. In another experiment, 1.46 g of copper on heating in a current of air gave 1.83 g of copper oxide.
The percentage of copper in copper oxide is
\qquad and the above data illustrate the law of
$\overline{\text { (A) } 20} \%$, definite proportion
(B) 80%, multiple proportion
(C) 20%, multiple proportion
(D) 80%, definite proportion
16. Identify the INCORRECT statement.
(A) The atoms of different elements are present in a compound in a fixed and definite ratio.
(B) Particles of an element consist of only one type of atoms.
(C) Constituent particles of pure substances have fixed composition.
(D) All the properties of a compound are same as that of its constituent elements.
17. The formula mass of CaSO_{4} is \qquad .
[Atomic mass of $\mathrm{Ca}=40 \mathrm{u}, \mathrm{S}=32 \mathrm{u}$ and $\mathrm{O}=16 \mathrm{u}$]
(A) 120 u
(B) 136 u
(C) 145 u
(D) 156 u
18. Which of the following is CORRECT?
(A) $1 \mathrm{~L}=1 \mathrm{dm}^{3}$
(B) $1 \mathrm{~L}=10 \mathrm{dm}^{3}$
(C) $10 \mathrm{~L}=1 \mathrm{dm}^{3}$
(D) $1 \mathrm{~L}=1 \mathrm{~m}^{3}$
19. If law of conservation of mass was to hold true, then 20.8 g of BaCl_{2} on reaction with 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will produce 7.3 g of HCl and BaSO_{4} equal to \qquad —.
(A) 11.65 g
(B) 23.3 g
(C) 25.5 g
(D) 30.6 g
20. Which of the following pairs of substances illustrates the law of multiple proportions?
(A) CO and CO_{2}
(B) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$
(C) NaCl and NaBr
(D) $\quad \mathrm{MgO}$ and $\mathrm{Mg}(\mathrm{OH})_{2}$
21. Two containers of the same size are filled separately with H_{2} gas and CO_{2} gas. Both the containers under the same temperature and pressure will contain the same \qquad _.
(A) number of atoms
(B) mass of gas
(C) number of molecules
(D) number of electrons
22. Substances which CANNOT be broken down into simpler substances by chemical process are called \qquad -.
(A) elements
(B) molecules
(C) compounds
(D) all of these
23. Which of the following exists as a diatomic gas?
(A) Neon
(B) Argon
(C) Helium
(D) Nitrogen
24. The element whose atom has mass of $10.86 \times 10^{-26} \mathrm{~kg}$ is \qquad -
(A) boron
(B) calcium
(C) silver
(D) zinc
25. Boron has two stable isotopes, ${ }^{10} \mathrm{~B}(19 \%)$ and ${ }^{11} \mathrm{~B}$ (81\%). The atomic mass that should appear for boron in the periodic table is \qquad -.
(A) 10.8 amu
(B) 10.2 amu
(C) 11.2 amu
(D) 10.0 amu
26. Avogadro number is the number of particles present in \qquad .
(A) 1 molecule
(B) 1 atom
(C) 1 kg
(D) 1 mole
27. One mole of $\mathrm{H}_{2} \mathrm{O}$ corresponds to \qquad .
(A) 22.4 litres at 1 atm and $0^{\circ} \mathrm{C}$
(B) 12.04×10^{23} atoms of hydrogen and 6.02×10^{23} atoms of oxygen
(C) $18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(D) all of these
28. If N_{A} is the Avogadro's number then number of valence electrons in 4.2 g of nitride ions N^{3-} is
(A) $\quad 2.4 \mathrm{~N}_{\mathrm{A}}$
(B) $4.2 \mathrm{~N}_{\mathrm{A}}$
(C) $\quad 1.6 \mathrm{~N}_{\mathrm{A}}$
(D) $3.2 \mathrm{~N}_{\mathrm{A}}$
29. Which one of the following pairs of gases contains the same number of molecules?
(A) 16 g of O_{2} and 14 g of N_{2}
(B) 8 g of O_{2} and 22 g of CO_{2}
(C) 28 g of N_{2} and 22 g of CO_{2}
(D) 32 g of O_{2} and 32 g of N_{2}
30. Number of moles of water in 488 g of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is \qquad . (At. wt. of $\mathrm{Ba}=137 \mathrm{u}$)
(A) 2 moles
(B) 4 moles
(C) 3 moles
(D) 5 moles
31. The CGS units of density is:
(A) $\mathrm{g} \mathrm{cm}^{-3}$
(B) $\mathrm{kg} \mathrm{m}^{-3}$
(C) $\mathrm{g} \mathrm{dm}^{-3}$
(D) $\mathrm{kg} \mathrm{cm}^{-3}$
32. $11.2 \mathrm{~cm}^{3}$ of hydrogen gas at STP contains
(A) 0.0005 mol
(B) 0.01 mol
(C) 0.029 mol
(D) 0.5 mol
33. If N_{A} is the Avogadro's number then number of electrons in 2 moles of helium (He) is \qquad .
(A) $4 \mathrm{~N}_{\mathrm{A}}$
(B) $3 \mathrm{~N}_{\mathrm{A}}$
(C) $2 \mathrm{~N}_{\mathrm{A}}$
(D) N_{A}
34. The mass of carbon present in 0.5 mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is \qquad .
(A) 1.8 g
(B) 18 g
(C) 3.6 g
(D) 36 g
35. In SO_{2} and SO_{3}, the ratio of the masses of oxygen which combine with a fixed mass of sulphur is $2: 3$. This is an example of the law of \qquad .
(A) constant proportion
(B) multiple proportion
(C) reciprocal proportion
(D) conservation of mass

Answer Key of the chapter: Some Basic Concepts of Chemistry \& Evaluation Test is given at the end of the book.

Solutions to the relevant questions of this chapter \& Evaluation Test can be accessed by scanning the adjacent QR code in Quill - The Padhai App.

Chapter 1: Some Basic Concepts of Chemistry

Classical Thinking

1.1:	1. (C)									
1.2:	1. (C)	2. (C)	3. (C)	4. (D)	5. (D)	6. (D)				
1.3:	1. (B)	2. (B)	3. (D)	4. (A)	5. (B)	6. (A)	7. (B)			
1.4:	1. (C)	2. (C)	3. (B)	4. (C)	5. (A)	6. (B)	7. (C)	8. (B)		
1.5:	1. (C)									
1.6:	1. (A)									
1.7:	1. (A)	2. (A)	3. (A)							
1.8:	$\begin{aligned} & \text { 1. (D) } \\ & \text { 11. (B) } \end{aligned}$	2. (C)	3. (C)	4. (C)	5. (D)	6. (B)	7. (A)	8. (C)	9. (D)	10. (C)
1.9:	1. (A)	2. (B)								

Critical Thinking
1.2: \quad 1. (A) \quad 2. (D) \quad 3. (D) \quad 4. (C) \quad 5. (D) \quad 6. (D)
1.3: \quad 1. (D) \quad 2. (A) \quad 3. (C) \quad 4. (D) \quad 5. (A) \quad 6. (B)
1.4: \quad 1. (C) \quad 2. (D) \quad 3. (B) \quad 4. (A) \quad 5. (B) \quad 6. (C)
1.6: 1. (D)
1.7: \quad 1. (D) \quad 2. (B) \quad 3. (B) \quad 4. (A) \quad 5. (A) \quad 6. (A) \quad 7. (D) \quad 8. (C)
1.8: \quad 1. (B) 2. (A) \quad 3. (C) \quad 4. (D) \quad 5. (D) \quad 6. (D) \quad 7. (C) \quad 8. (A) \quad 9. (C) \quad 10. (B) 11. (A) 12. (A) 13. (A) 14. (A) 15 (D) 16. (B)
1.9: 1. (C) 2. (C) 3. (A) 4. (B)

TECHNOLOGY BOOST!

Give your MHT-CET exam preparation the

Practice more than 23,000 MCQs for just

Use Coupon Code QUILLPADHAI2023

Also available for $\mathrm{X}^{\mathrm{th}}, \mathrm{XI}^{\mathrm{th}}, \mathrm{XII}^{\text {th }}$, NEET \& JEE

- Practice chapter-wise \& full syllabus MCQs in test format

Quill Get instant verification of your answer
Detailed analysis of every test on completion
Option to save questions for future reference

Scan QR Code to download the app

Visit our website to know more about our range of books for $\mathrm{X}^{\text {th }}, \mathrm{XI}^{\text {th }}, \mathrm{XII}{ }^{\text {th }}$, NEET \& JEE

Visit Our Website

P昰 Publications ${ }^{\circledR}$ Pvt. Ltd.
 Transforming lives through learning.
 \section*{Address:}

B2, $9^{\text {th }}$ Floor, Ashar, Road No. 16/Z,
Wagle Industrial Estate, Thane (W)-400604
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org
Email: mail@targetpublications.org

[^0]: This reference book is transformative work based on Std. XI Chemistry Textbook; Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.
 No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

