Stamphy CONHENH

MHT-CET

TRIUMPH PHYSIES

SOLDIPIS

to MCPS

Target Publications ${ }^{\circ}$ Pvt. Ltd.

TRIUMPH
 MHT-CET PHYSICS SOLUTIONS to MCQs

Salient Features

(G) Detailed solutions provided for difficult MCQs as per the concepts emphasized in the syllabus

T- Smart Keys (Shortcuts, Mindbenders, Caution, Thinking Hatke) - Multiple Study Techniques to enhance understanding of concepts and problem solving skills
© Solutions to Evaluation Test for each chapter
(G) Solutions to Model Question Papers
(T) Solutions to MHT-CET 2023 Question Papers ($12^{\text {th }}$ May Shift $-1 \& 15^{\text {th }}$ May Shift - 1)

Printed at: Print to Print, Mumbai

[^0]
PREFACE

Target's Triumph MHT-CET Physics Solutions to MCQs book provides students comprehensive understanding of physics through solutions to MCQs based on the concepts emphasized in the syllabus.

It includes Smart Keys (Shortcuts, Mindbenders, Caution and Thinking Hatke), which offer supplemental explanations for the tricky questions and are intended to help students approaching problems in novel ways in the shortest possible time with accuracy.

- Shortcuts incorporate important theoretical or formula based short tricks that are beneficial in solving MCQs
- Mindbenders present thought provoking snippets of concepts
- Caution apprises students about mistakes often made while solving MCQs.
- Thinking Hatke reveals quick witted approach to crack the specific question.

Solutions to Model Question Papers and MHT-CET 2023 Question Papers ($12^{\text {th }}$ May Shift - 1 \& $15^{\text {th }}$ May Shift -1) are also included in this book.

All the features of this book are designed keeping the following elements in mind:
Time management, easy memorization or revision, and non-conventional yet simple methods for MCQ solving.

We hope the book benefits the learner as we have envisioned.
Publisher
Edition: First

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.
Please write to us on: mail@targetpublications.org

Disclaimer

[^1]
$-\downarrow\rangle$ CONTENTS

Sr. No.	Textbook Chapter No.	Chapter Name	Page No.		
Std. XI		1			
1	3	Motion in a Plane	28		
2	4	Laws of Motion	53		
3	5	Gravitation	80		
4	7	Thermal Properties of Matter	98		
5	8	Sound	113		
6	9	Optics	139		
7	10	Electrostatics	155		
8	14	Semiconductors			
Std. XII					160
9	1	Rotational Dynamics	196		
10	2	Mechanical Properties of Fluids	219		
11	3	Kinetic Theory of Gases and Radiation	234		
12	4	Thermodynamics	249		
13	5	Oscillations	279		
14	6	Superposition of Waves	308		
15	7	Wave Optics	333		
16	8	Electrostatics	364		
17	9	Current Electricity	389		
18	10	Magnetic Fields due to Electric Current	413		
19	11	Magnetic Materials	422		
20	12	Electromagnetic Induction	436		
21	13	AC Circuits	453		
22	14	Dual Nature of Radiation and Matter	470		
23	15	Structure of Atoms and Nuclei	489		
24	16	Semiconductor Devices	497		
		Solutions to Model Question Paper I	501		
		Solutions to Model Question Paper II	505		
		Solutions to MHT-CET 12 th May, 2023 Question Paper	511		

7 Thermal Properties of Matter

Shortcuts

1. To convert Celsius temperature into Fahrenheit, apply the relation $t_{f}=\frac{9}{5} t_{c}+32$ and to convert Fahrenheit temperature to Celsius apply, $\mathrm{t}_{\mathrm{c}}=\frac{5}{9}\left(\mathrm{t}_{\mathrm{f}}-32\right)$
2. When a metallic body with a hole of diameter (d) is heated then size of hole increases. Increase in diameter of the hole $=d \alpha\left(t_{2}-t_{1}\right)$
3. When two conductors of same length and same cross-section area but having thermal conductivities K_{1} and K_{2} are connected in series, then temperature of interface is given as, $\theta=\frac{\mathrm{K}_{1} \theta_{1}+\mathrm{K}_{2} \theta_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$. This can also be applied in case of a single slab made from layers of two different materials.

Mindbenders

1. Both heat and light are electromagnetic radiations. The only difference is that the heat radiations have larger wavelength as compared to visible light. All phenomena which are present in light, will also be present in heat, such as reflection, interference etc.
2. A solid and hollow sphere of same radius and material are heated to the same temperature then expansion of both will be equal. It means the expansion of cavity is same as if it has been a solid body of the same material. But if same heat is given to the two spheres, due to lesser mass, rise in temperature of hollow sphere will be more.
3. It is possible to boil water without supplying any heat. Below the room temperature, when the pressure is made low, water starts boiling.

Classical Thinking

7.1 Introduction

1. (A)
2. (B)
3. (D)
4. (C)
5. (B)
6. (B)

7.2 Temperature and Heat

1. (A)
2. (D)
3. (C)
4. (A)

7.3 Measurement of Temperature

1. (C)
2. (C)
3. (D)
4. (A)
5. (D) $t_{k}=27+273=300 \mathrm{~K}$
6. (C) $t_{k}=6400+273=6673 \mathrm{~K}$
7. (C) $\frac{\mathrm{t}_{\mathrm{c}}-0}{100}=\frac{\mathrm{t}_{\mathrm{f}}-32}{180}$
$\therefore \quad \frac{20-0}{100}=\frac{\mathrm{t}_{\mathrm{f}}-32}{180}$
$\therefore \quad \mathrm{t}_{\mathrm{f}}=36+32=68^{\circ} \mathrm{F}$

Alternate Method:

Using Shortcut 1,
$\mathrm{t}_{\mathrm{f}}=\frac{9}{5} \mathrm{t}_{\mathrm{c}}+32=\left(\frac{9}{5} \times 20\right)+32=68^{\circ} \mathrm{F}$
8. (D) Relation between any two scales can be found as follows -

$$
\left.\left.\frac{\mathrm{T}_{\text {scale }}^{\prime}-(\text { Freezing point })^{\prime}}{(\text { Parts between boiling }}=\frac{\mathrm{T}_{\text {scale }}^{\prime \prime}-(\text { Freezing point })^{\prime \prime}}{(\text { Parts between boiling }} \text { and freezing) }\right)^{\prime} \quad \text { and freezing }\right)^{\prime \prime} \text {. }
$$

$\therefore \quad \frac{\mathrm{T}_{\mathrm{x}}-40^{\circ}}{80}=\frac{\mathrm{T}_{\mathrm{y}}-\left(-30^{\circ}\right)}{160}$
$\therefore \quad \frac{50^{\circ}-40^{\circ}}{1}=\frac{\mathrm{T}_{\mathrm{y}}+30^{\circ}}{2} \Rightarrow \mathrm{~T}_{\mathrm{y}}=-10^{\circ}$

7.4 Absolute Temperature and Ideal Gas Equation

1. (A)
2. (A)
3. (A)
4. (D)
5. (C)
6. (D)
7. (B) $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
$\therefore \quad \mathrm{P}_{2}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \mathrm{P}_{1}=\frac{(273+198)}{(273+41)} \times 1$
$\therefore \quad \mathrm{P}_{2}=1.5$ atmosphere
8. (C) Since $\frac{P V}{T}=$ constant
$\therefore \quad \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
Here $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\therefore \quad \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{300}=\frac{3 \mathrm{P}_{1} \times 3 \mathrm{~V}_{1}}{\mathrm{~T}_{2}}$
$\therefore \quad \mathrm{T}_{2}=2700 \mathrm{~K}$
9. (C) $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
$\mathrm{T}_{2}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}} \mathrm{~T}_{1}=\frac{90 \times 300}{72}=375 \mathrm{~K}=102^{\circ} \mathrm{C}$
10. (D) At constant pressure,
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
$\therefore \quad \mathrm{T}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \mathrm{~T}_{1}$
$\mathrm{T}_{1}=\frac{67}{47.5} \times 273=385.07 \mathrm{~K}$
$\mathrm{T}_{2}=385.07-273=112.0{ }^{\circ} \mathrm{C}$
11. (B) At constant pressure,
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
Here $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$,

$$
\mathrm{T}_{2}=297^{\circ} \mathrm{C}=570 \mathrm{~K}
$$

$\therefore \quad \frac{1}{300}=\frac{\mathrm{V}_{2}}{570}$
$\mathrm{V}_{2}=1.9$ litre
12. (C) $\mathrm{PV}=\mathrm{nRT}$
$50 \times 100=1 R T$ and $100 \mathrm{~V}=3 \mathrm{RT}$
$\therefore \quad \frac{100 \mathrm{~V}}{50 \times 100}=\frac{3 \mathrm{RT}}{1 \mathrm{RT}}$
$\therefore \quad \mathrm{V}=150 \mathrm{~m} l$
13. (D) Using ideal gas equation: $\mathrm{P}=\frac{\mathrm{RT}}{\mathrm{V}}=\frac{\rho R T}{\mathrm{M}}$
$\therefore \quad \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\rho_{1}}{\mathrm{M}_{2}} \times \frac{\mathrm{M}_{2}}{\rho_{2}}$
$\therefore \quad \frac{4}{3}=\frac{\rho_{1}}{\rho_{2}} \times \frac{3}{2}$
$\therefore \quad \frac{\rho_{1}}{\rho_{2}}=\frac{8}{9}$

7.5 Thermal Expansion

1. (D)
2. (D)
3. (B)
4. (C)
5. (D)
6. (A)
7. (B)
8. (B)
9. (A) $\mathrm{L}_{2}=\mathrm{L}_{1}(1+\alpha \mathrm{t})$
$\therefore \quad 50=\mathrm{L}_{1}\left(1+16 \times 10^{-6} \times 65\right)$
$\therefore \quad 50=\mathrm{L}_{1}\left(1+1040 \times 10^{-6}\right)=\mathrm{L}_{1}(1.001)$
$\therefore \quad \mathrm{L}_{1}=49.95 \mathrm{~cm}$
10. (C) $\mathrm{L}_{2}-\mathrm{L}_{1}=\mathrm{L}_{1} \alpha\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$
$\therefore \quad 0.5 \times 10^{-2}=12 \times 11 \times 10^{-6} \times\left(\mathrm{t}_{2}-10\right)$
$\therefore \quad \mathrm{t}_{2}=47.8^{\circ} \mathrm{C}$
11. (D) Initial length of combination $=\mathrm{L}+2 \mathrm{~L}=3 \mathrm{~L}$

Increase in length of first rod $=\mathrm{L} \alpha \Delta \mathrm{t}$
Increase in length of second rod $=(2 \mathrm{~L})(\Delta \mathrm{t})(2 \alpha)$

$$
=4 \mathrm{~L} \alpha \Delta \mathrm{t}
$$

Total increase in the length of the rod
$=4 \mathrm{~L} \alpha \Delta \mathrm{t}+\mathrm{L} \alpha \Delta \mathrm{t}=5 \mathrm{~L} \alpha \Delta \mathrm{t}$
Coefficient of linear expansion of the rod
$=\frac{\text { Change in length }}{\text { Initial length } \times \text { change in temperature }}$
$=\frac{5 \mathrm{~L} \alpha \Delta \mathrm{t}}{3 \mathrm{~L} \Delta \mathrm{t}}=\frac{5 \alpha}{3}$
12. (A)
13. (C)
14. (C) $\beta=\frac{A_{2}-A_{1}}{A_{1}\left(t_{2}-t_{1}\right)}$
$0.000036=\frac{\mathrm{A}_{2}-110}{110(200-20)}$
$0.7128=\mathrm{A}_{2}-110$
$\mathrm{A}_{2}=110.71 \mathrm{~cm}^{2}$
15. (C)
16. (B)
17. (C)
18. (A)

$$
=\frac{0.84}{100 \times 200}=42 \times 10^{-6} /{ }^{\circ} \mathrm{C}
$$

19. (D) Increase in volume,
$\Delta \mathrm{V}=\mathrm{V} \gamma(\Delta \mathrm{T})$
$=\mathrm{a}^{3} \times 3 \alpha \times(\Delta \mathrm{T})$
$=3 a^{3} \alpha \Delta T$
20. (C)
21. (C)
22. (D)
23. (D)

7.6 Specific Heat Capacity

1. (B)
2. (A)
3. (C) $\mathrm{c}=\frac{\mathrm{Q}}{\mathrm{m} \Delta \mathrm{T}}=\frac{1200}{500 \times(90-10)}=0.03 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$

7.7 Calorimetry

1. (C)
2. (B)
3. (B)
4. (A)

7.8 Change of State

1. (C)
2. (D)
3. (D)
4. (C)
5. (B)
6. (A)
7. (B)
8. (D) Heat required to melt the ice
$=\mathrm{m}_{\text {ice }} \mathrm{L}_{\text {mett }}=1 \times 80=80 \mathrm{cal}$
Heat required to change the temperature of water to $100^{\circ} \mathrm{C}$
$=\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}} \Delta \mathrm{T}=1 \times 1 \times(100-0)=100 \mathrm{cal}$
Total heat required $\mathrm{Q}_{1}=180 \mathrm{cal}$
Now, heat to be given out for 1 g of steam to condense into liquid $\mathrm{Q}_{2}=540 \mathrm{cal}$
As $\mathrm{Q}_{2}>\mathrm{Q}_{1}$, the whole system is not condensed.
$\therefore \quad$ Temperature remains $100^{\circ} \mathrm{C}$.

7.9 Heat transfer

1. (C)
2. (D)
3. (A)
4. (A)
5. (B)
6. (B)
7. (B)
8. (C)
9. (C)
10. (D)
11. (C)
12. (C)
13. (D)
14. (A)
15. (D)
16. (D)
17. (A)
18. (C)
19. (B)
20. (C)
21. (D) Rate of flow of heat \propto temperature difference .$(\because \mathrm{K}, \mathrm{A}$ and $\Delta \mathrm{x}$ being unchanged $)$
$\therefore \quad \frac{4}{\mathrm{Q}}=\frac{10}{10}$
$\therefore \quad \mathrm{Q}=4 \mathrm{~J} / \mathrm{s}$
22. (D) $\left(\frac{\Delta \mathrm{Q}}{\mathrm{t}}\right) \propto \Delta \theta$
$\frac{\left(\frac{\Delta \mathrm{Q}}{\mathrm{t}}\right)_{1}}{\left(\frac{\Delta \mathrm{Q}}{\mathrm{t}}\right)_{2}}=\frac{\Delta \theta_{1}}{\Delta \theta_{2}}$
$\frac{60}{\left(\frac{\Delta \mathrm{Q}}{\mathrm{t}}\right)_{2}}=\frac{80-20}{40-20}=20 \mathrm{cal} / \mathrm{s}$
23. (B)

$\mathrm{K}=0.0005 \mathrm{cal} / \mathrm{cm} \mathrm{s}^{\circ} \mathrm{C}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\mathrm{KA} \frac{\Delta \theta}{\Delta \mathrm{x}}$
Here, $\mathrm{A}=$ area of cross-section of refrigerator

$$
\begin{aligned}
= & 150 \times 80 \mathrm{~cm}^{2} \\
\Delta \mathrm{x}= & \text { length of }(\text { conductor) refrigerator } \\
& \text { door through which heat is lost } \\
= & 6 \mathrm{~cm} \\
\Delta \theta= & 30^{\circ} \mathrm{C}
\end{aligned}
$$

$\therefore \quad \frac{\mathrm{Q}}{\mathrm{t}}=\frac{0.0005 \times 150 \times 80 \times 30}{6}$
$\therefore \quad \frac{\mathrm{Q}}{60}=30 \Rightarrow \mathrm{Q}=$ heat loss per $\mathrm{min}=1800 \mathrm{cal}$

7.10 Newton's Law of Cooling

1. (C)
2. (D)
3. (C)
4. (C) $\mathrm{R}_{1} \propto\left(\theta_{1}-\theta_{0}\right)$ and $\mathrm{R}_{2} \propto\left(\theta_{2}-\theta_{0}\right)$
$\therefore \quad \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{k}\left(\theta_{1}-\theta_{0}\right)}{\mathrm{k}\left(\theta_{2}-\theta_{0}\right)}$
$\therefore \quad \frac{1.5}{1}=\frac{30}{\left(\theta_{2}-\theta_{0}\right)}$
$\therefore \quad\left(\theta_{2}-\theta_{0}\right)=20^{\circ} \mathrm{C}$.
5. (C) $\mathrm{R}_{1}=\frac{64-55}{10}=\frac{9}{10}$
$\mathrm{R}_{2}=\frac{55^{\circ}-42^{\circ}}{10}=\frac{13}{10}$
$\therefore \quad \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{9 / 10}{13 / 10}=\frac{9}{13}$
6.

$$
\text { (A) } \begin{aligned}
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} & =\frac{\left(\frac{100^{\circ}+70^{\circ}}{2}-15^{\circ}\right)}{\left(\frac{70^{\circ}+40^{\circ}}{2}-15^{\circ}\right)} \\
& =\frac{\left(85^{\circ}-15^{\circ}\right)}{\left(55^{\circ}-15^{\circ}\right)}=\frac{7}{4}
\end{aligned}
$$

$\mathrm{R}_{1} \mathrm{t}_{1}=\mathrm{R}_{2} \mathrm{t}_{2}$
$\therefore \quad \mathrm{t}_{2}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \mathrm{t}_{1}=\frac{7}{4} \times 4$
$=7$ minute

Critical Thinking

7.2 Temperature and Heat

1. (A)
2. (D)

7.3 Measurement of Temperature

1. (B)
2. (B) $t=$ required temperature then
$\frac{\mathrm{t}}{100}=\frac{\mathrm{t}-32}{180}$
$\frac{\mathrm{t}}{10}=\frac{\mathrm{t}-32}{18}$
$18 \mathrm{t}=10 \mathrm{t}-320$
$\therefore \quad \mathrm{t}=-40^{\circ} \mathrm{C}$
3. (D) Let reading of celsius scale be $\mathrm{x}{ }^{\circ} \mathrm{C}$
$\therefore \quad$ reading of fahrenheit scale will be $2 \mathrm{x}^{\circ} \mathrm{F}$
$\because \quad \frac{\mathrm{t}_{\mathrm{f}}-32}{180}=\frac{\mathrm{t}_{\mathrm{c}}-0}{100}$
$\therefore \quad \frac{2 \mathrm{x}-32}{180}=\frac{\mathrm{x}}{100}$
$\therefore \quad 10 \mathrm{x}-160=9 \mathrm{x}$
$\therefore \quad \mathrm{x}=160^{\circ} \mathrm{C}$ and $2 \mathrm{x}=320^{\circ} \mathrm{F}$
4. (A) $\frac{t_{f}-32}{180}=\frac{t_{k}-273.15}{100}$

Since $t_{f}=t_{k}$
$\frac{\mathrm{t}_{\mathrm{f}}-32}{18}=\frac{\mathrm{t}_{\mathrm{f}}-273.15}{10}$
$10 \mathrm{t}_{\mathrm{f}}-320=18 \mathrm{t}_{\mathrm{f}}-4916.7$
$8 t_{f}=4596.7$
$\therefore \quad \mathrm{t}_{\mathrm{f}}=574.58^{\circ} \mathrm{F}$

7.4 Absolute Temperature and Ideal Gas Equation

1. (D) 2. (B)
2. (A) $\mathrm{PV}=$ constant, $\Rightarrow \mathrm{V} \propto \frac{1}{\mathrm{P}}$
$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$
$\therefore \quad \mathrm{V}_{2}=\mathrm{V}_{1} \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=60 \times \frac{1}{4}=15 \mathrm{~cm}^{3}$
3. (C) Comparing with $\mathrm{PV}=\mathrm{nRT}$

Here, $\mathrm{n}=3$
Hence V represents volume of 3 moles of gas.
5. (C) On mixing, $\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}$
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}+\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{RT}_{2}}=\frac{\mathrm{P}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)}{\mathrm{RT}}$
$T=\frac{P\left(V_{1}+V_{2}\right)\left(T_{1} T_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$
$P_{1} V_{1}+P_{2} V_{2}=P\left(V_{1}+V_{2}\right)$ (From Boyle's law)
$T=\frac{\left(P_{1} V_{1}+P_{2} V_{2}\right) T_{1} T_{2}}{\left(P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}\right)}$
6. (C)

$30^{\circ} \mathrm{C}$
Case I

$10^{\circ} \mathrm{C}$ Case II

In first case:
When atmospheric pressure is P_{a} and barometric pressure is P_{b}, pressure difference $\mathrm{P}_{1}=\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{b}}=76-74.8=1.2 \mathrm{~cm}$
In second case, let atmospheric pressure be $P_{a}{ }^{\prime}$ and corresponding barometric pressure $\mathrm{P}_{\mathrm{b}}{ }^{\prime}$.
$\therefore \quad$ Pressure difference $\mathrm{P}_{2}=\mathrm{P}_{\mathrm{a}}{ }^{\prime}-\mathrm{P}_{\mathrm{b}}{ }^{\prime}=\mathrm{P}_{\mathrm{a}}{ }^{\prime}-75.4$
Volumes in both cases will be equivalent to the length of air column in the barometer.
$\therefore \quad \mathrm{V}_{1}=90-74.8=15.2$ units
and $V_{2}=90-75.4=14.6$ units.
As number of moles of gas in the barometer tube is constant,
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
$\frac{1.2 \times 15.2}{303}=\frac{\mathrm{P}_{2} \times 14.6}{283} \Rightarrow \mathrm{P}_{2}=1.166 \mathrm{~cm}$
$\therefore \quad \mathrm{P}_{\mathrm{a}}{ }^{\prime}=75.4+1.166=76.566 \mathrm{~cm}$
7. (C) Assuming the graph for a gas of given mass, we have,
$\mathrm{PV}=\mathrm{nRT}$
$\therefore \quad \frac{\mathrm{V}}{\mathrm{T}} \propto \frac{1}{\mathrm{P}}$
From the graph, $\frac{\mathrm{V}}{\mathrm{T}}=\tan \theta$
$\therefore \quad \frac{1}{\mathrm{P}} \propto \tan \theta$
$\therefore \quad$ as angle θ increases, $\tan \theta$ increases and pressure decreases.
$\therefore \quad \mathrm{P}_{1}>\mathrm{P}_{2}$
8. (A) Since the relation between t_{c} and t_{f} is given by
$\mathrm{t}_{\mathrm{f}}=\frac{9}{5} \mathrm{t}_{\mathrm{c}}+32$
At $\mathrm{t}_{\mathrm{c}}=0, \quad \mathrm{t}_{\mathrm{f}}=32^{\circ} \mathrm{F}$ and
At $\mathrm{t}_{\mathrm{f}}=0$,
$\mathrm{t}_{\mathrm{c}}=-\frac{32 \times 5}{9}{ }^{\circ} \mathrm{C}=-17.7^{\circ} \mathrm{C}$
$1^{\text {st }}$ graph satisfies the above condition.

7.5 Thermal Expansion

1. (B)
2. (B) In summer alcohol expands, density decreases, so 1 litre of alcohol will weigh less in summer than in winter.
3. (A) Boiling occurs when the vapour pressure of liquid becomes equal to the atmospheric pressure. At the surface of moon, atmospheric pressure is zero, hence boiling point decreases and water begins to boil at $30^{\circ} \mathrm{C}$.
4. (D) The plate is made up of anisotropic material with different coefficients of thermal expansion. Hence, upon heating, plate will not remain circular. Also, as coefficients of thermal expansion are in mutually perpendicular direction, it will become elliptical in shape.

5. (A)
6. (B)
7. (D) Since, the coefficient of linear expansion of brass is greater than that of steel. On cooling, the brass contracts more, so it get loosened.
8. (C) A bimetallic strip upon heating bends in the form of an arc with more expandable metal (A) outside as shown.

9. (B) Using Shortcut 2,
$\mathrm{d}_{2}=\mathrm{d}_{1}\left[1+\alpha\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\right]$

$$
=10\left[1+12 \times 10^{-6}(90-10)\right]
$$

$\therefore \quad \mathrm{d}_{2}=10.0096 \mathrm{~cm}$
10. (C) Given $\Delta l_{1}=\Delta l_{2} \Rightarrow l_{1} \alpha_{\mathrm{a}} \mathrm{t}=l_{2} \alpha_{\mathrm{s}} \mathrm{t}$
$\therefore \quad \frac{l_{1}}{l_{2}}=\frac{\alpha_{\mathrm{s}}}{\alpha_{\mathrm{a}}} \Rightarrow \frac{l_{1}}{l_{1}+l_{2}}=\frac{\alpha_{\mathrm{s}}}{\alpha_{\mathrm{a}}+\alpha_{\mathrm{s}}}$.
11. (B) Diameter of sphere $=$ Diameter of ring

$$
\begin{aligned}
& 10.01\left[1+12 \times 10^{-6}\left(\mathrm{t}_{2}-10\right)\right] \\
& =10\left[1+18 \times 10^{-6}\left(\mathrm{t}_{2}-10\right)\right] \\
& 1.001+1.001 \times 12 \times 10^{-6}\left(\mathrm{t}_{2}-10\right) \\
& \quad=1+18 \times 10^{-6}\left(\mathrm{t}_{2}-10\right)
\end{aligned}
$$

$1.001-1=18 \times 10^{-6}\left(\mathrm{t}_{2}-10\right)-1.001 \times 12$

$$
\times 10^{-6}\left(\mathrm{t}_{2}-10\right)
$$

$$
\begin{array}{ll}
& 10^{-3}=\left(\mathrm{t}_{2}-10\right) \times 10^{-6}[18-12.012] \\
\therefore & \mathrm{t}_{2}-10=\frac{10^{-3}}{5.988 \times 10^{-6}} \approx 167 \\
\therefore & \mathrm{t}_{2}=177^{\circ} \mathrm{C}
\end{array}
$$

12. (A) The actual length of metal scale at $\mathrm{T}_{2}=25^{\circ} \mathrm{C}$ is given by,
$\mathrm{L}=\mathrm{L}_{0}(1+\alpha \Delta \mathrm{T})$
$\therefore \quad \mathrm{L}=\mathrm{L}_{0}\left[1+\alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]$
$\therefore \quad \mathrm{L}=1\left[1+20 \times 10^{-6}(25-0)\right]$

$$
\ldots\left(\because \alpha_{\text {metal }}=20 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)
$$

$\therefore \quad \mathrm{L}=1\left[1+5 \times 10^{-4}\right]$
$\therefore \quad \mathrm{L}=1.0005 \mathrm{~m}$
Now for the steel rod, $\mathrm{L}_{2}=1.0005$ at $25^{\circ} \mathrm{C}$,
L_{1} is the length at $0{ }^{\circ} \mathrm{C}$
$\therefore \quad \mathrm{L}_{2}=\mathrm{L}_{1}\left[1+\alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]$
$\therefore \quad 1.0005=\mathrm{L}_{1}\left[1+12 \times 10^{-6}(25-0)\right]$

$$
\ldots\left(\because \alpha_{\text {steel }}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)
$$

$\therefore \quad \mathrm{L}_{1}=\frac{1.0005}{1.0003}$
$\therefore \quad \mathrm{L}_{1} \approx 1.0002 \mathrm{~m}$
13. (D) $(\mathrm{OR})^{2}=(\mathrm{PR})^{2}-(\mathrm{PO})^{2}$

$$
\begin{aligned}
& l^{2}-\left(\frac{l}{2}\right)^{2}=\left[l\left(1+\alpha_{2} \mathrm{t}\right)\right]^{2}-\left[\frac{l}{2}\left(1+\alpha_{1} \mathrm{t}\right)\right]^{2} \\
& l^{2}-\frac{l^{2}}{4}=l^{2}\left(1+\alpha_{2}^{2} \mathrm{t}^{2}+2 \alpha_{2} \mathrm{t}\right)-\frac{l^{2}}{4}\left(1+\alpha_{1}^{2} \mathrm{t}^{2}+2 \alpha_{1} \mathrm{t}\right)
\end{aligned}
$$

Neglecting $\alpha_{2}^{2} \mathrm{t}^{2}$ and $\alpha_{1}^{2} \mathrm{t}^{2}$
$0=l^{2}\left(2 \alpha_{2} \mathrm{t}\right)-\frac{l^{2}}{4}\left(2 \alpha_{1} \mathrm{t}\right) \Rightarrow 2 \alpha_{2}=\frac{2 \alpha_{1}}{4} \Rightarrow \alpha_{1}=4 \alpha_{2}$
14. (A) Due to thermal expansion both the alloy and cylinder will expand. In order to fit the alloy piston into the cylinder, the difference between both the linear thermal expansion of cylinder and alloy has to be equal to twice of the clearance.
$\therefore \quad$ Total clearance $\Delta \mathrm{x}=0.08 \times 2=0.16 \mathrm{~mm}$

$$
=0.16 \times 10^{-1} \mathrm{~cm}
$$

Let the temperature to which the system will be heated be T.
$\therefore \quad$ Temperature difference $=(\mathrm{T}-30){ }^{\circ} \mathrm{C}$
Thus the equation becomes,
$\mathrm{L}_{0} \alpha_{1} \Delta \mathrm{~T}=\mathrm{L}_{0} \alpha_{2} \Delta \mathrm{~T}+\Delta \mathrm{x}$
$\mathrm{L}_{0} \alpha_{1} \Delta \mathrm{~T}-\mathrm{L}_{0} \alpha_{2} \Delta \mathrm{~T}=\Delta \mathrm{x}$
$\therefore \quad \mathrm{L}_{0} \Delta \mathrm{~T}\left(\alpha_{1}-\alpha_{2}\right)=\Delta \mathrm{x}$
$\therefore \quad 15 \times(\mathrm{T}-30)\left(1.6 \times 10^{-5}-1.2 \times 10^{-5}\right)=0.16 \times 10^{-1}$
$\therefore \quad 6 \times 10^{-5} \times(\mathrm{T}-30)=0.16 \times 10^{-1}$
$\therefore \quad \mathrm{T}-30=266.67$
$\therefore \quad \mathrm{T}=266.67+30$
$\mathrm{T} \approx 297^{\circ} \mathrm{C}$
15. (B) $\beta=2 \alpha$
$\therefore \quad \beta=4 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\mathrm{A}_{2}=\mathrm{A}_{1}(1+\beta \Delta \mathrm{t})=0.32\left(1+4 \times 10^{-6} \times 80\right)$
$\mathrm{A}_{2}=0.3201 \mathrm{~m}^{2}$
16. (D) $\beta=\left(\frac{\Delta \mathrm{A}}{\mathrm{A}_{0}}\right) \frac{1}{\Delta \mathrm{t}}=\left(\frac{\Delta l}{l}+\frac{\Delta \mathrm{b}}{\mathrm{b}}\right) \frac{1}{\Delta \mathrm{t}}$

$$
=\frac{\Delta l}{l \Delta \mathrm{t}}+\frac{\Delta \mathrm{b}}{\mathrm{~b} \Delta \mathrm{t}}=\alpha_{1}+\alpha_{2}
$$

17. (A)
18. (C)
19. (C) Since the expansion of isotropic solids is in all directions, on heating the system, x, r, d all increase.
20. (C) When a copper ball is heated, its size increases. As volume \propto (radius) ${ }^{3}$ and area \propto (radius) ${ }^{2}$, so percentage increase will be largest in its volume. Density will decrease with rise in temperature.
21. (B) Due to volume expansion of both liquid and vessel, the change in volume of liquid relative to container is given by $\Delta \mathrm{V}=\mathrm{V}_{0}\left[\gamma_{\mathrm{L}}-\gamma_{\mathrm{g}}\right] \Delta \theta$
Also,
$\gamma_{\mathrm{g}}=3 \alpha_{\mathrm{g}}=3 \times 0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}=0.3 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
$\therefore \quad \Delta \mathrm{V}=1000\left[1.82 \times 10^{-4}-0.3 \times 10^{-4}\right] \times 100$
$=15.2 \mathrm{cc}$
22. (C) Initial diameter of tyre $=1000-6=994 \mathrm{~mm}$, so initial radius of tyre $R=\frac{994}{2}=497 \mathrm{~mm}$
and change in diameter $\Delta \mathrm{D}=6 \mathrm{~mm}$ so $\Delta \mathrm{R}=\frac{6}{2}=3 \mathrm{~mm}$
After increasing temperature by $\Delta \theta$ tyre will fit onto wheel
Increase in the length (circumference) of the iron tyre
$\Delta \mathrm{L}=\mathrm{L} \times \alpha \times \Delta \theta=\mathrm{L} \times \frac{\gamma}{3} \times \Delta \theta \quad\left[\right.$ As $\left.\alpha=\frac{\gamma}{3}\right]$
$2 \pi \Delta \mathrm{R}=2 \pi \mathrm{R}\left(\frac{\gamma}{3}\right) \Delta \theta$
$\Rightarrow \Delta \theta=\frac{3}{\gamma} \frac{\Delta \mathrm{R}}{\mathrm{R}}=\frac{3 \times 3}{3.6 \times 10^{-5} \times 497}=503^{\circ} \mathrm{C}$
23. (D) Change in volume of flask
$=$ Change in volume of mercury.
$\mathrm{V}(3 \alpha) \Delta \mathrm{r}=\mathrm{V}^{\prime} \gamma \Delta \mathrm{t}$
$\mathrm{V}^{\prime}=\frac{\mathrm{V}(3 \alpha)}{\gamma}$

$$
=\frac{2000 \times 3 \times 9 \times 10^{-6}}{1.8 \times 10^{-4}}
$$

$$
=300 \mathrm{c} . \mathrm{c}
$$

24. (C) Let the original temperature be $0^{\circ} \mathrm{C}$;

Volume of $\mathrm{A}=\mathrm{V}_{1}=l \times \pi(2 \mathrm{r})^{2}$;
After heating volume of A will become,
$\mathrm{V}^{\prime}{ }_{1}=\mathrm{V}_{1}(1+\gamma \Delta \mathrm{T})$
$\frac{\left(\mathrm{V}_{1}^{\prime}-\mathrm{V}_{1}\right)}{\mathrm{V}_{1}}=\gamma \Delta \mathrm{T} \Rightarrow \mathrm{V}^{\prime}{ }_{1}-\mathrm{V}_{1} \propto \mathrm{~V}_{1}$
Similarly for rod B,
$\frac{\left(\mathrm{V}_{2}^{\prime}-\mathrm{V}_{2}\right)}{\mathrm{V}_{2}}=\gamma \Delta \mathrm{T} \Rightarrow \mathrm{V}^{\prime}{ }_{2}-\mathrm{V}_{2} \propto \mathrm{~V}_{2}$
$\therefore \quad \frac{\Delta \mathrm{V}_{1}}{\Delta \mathrm{~V}_{2}}=\frac{l(2 \mathrm{r})^{2}}{2 l(\mathrm{r} / 2)^{2}}=\frac{2}{1} \times 4=\frac{8}{1}$
25. (C) $\rho_{2}=\frac{\rho_{1}}{(1+\gamma \Delta T)}$

Fractional changes
$=\frac{\rho_{1}-\rho_{2}}{\rho_{1}}=1-\frac{\rho_{2}}{\rho_{1}}=1-(1+\gamma \Delta T)^{-1}$
$=1-(1-\gamma \Delta \mathrm{T}) \quad \ldots\left[\because(1+\mathrm{x})^{\mathrm{n}} \approx 1+\mathrm{nx}\right]$
$=\gamma \Delta \mathrm{T}=5 \times 10^{-4} \times 40$
$=0.020$
26. (B) Change in the temperature,
$\Delta \mathrm{T}=30^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}=20^{\circ} \mathrm{C}$
Volume of gasoline $=$
Volume of steel tank $=100 \mathrm{~L}$
$\gamma_{\text {gasoline }}=95 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
The change in the volume of gasoline
$\Delta \mathrm{V}_{\mathrm{g}}=\gamma_{\text {gasoline }} \mathrm{V} \Delta \mathrm{T}$
$\therefore \quad \Delta \mathrm{V}_{\mathrm{g}}=95 \times 10^{-5} \times 100 \times 20$
$\therefore \quad \Delta \mathrm{V}_{\mathrm{g}}=1.9 \mathrm{~L}$
The change in the volume of steel tank
$\Delta V_{s}=\alpha_{\text {steel }} V \Delta T$
$\therefore \quad \Delta \mathrm{V}_{\mathrm{s}}=12 \times 10^{-6} \times 100 \times 20$
$\therefore \quad \Delta \mathrm{V}_{\mathrm{s}}=0.024 \mathrm{~L}$
Volume of gasoline that overflows
$=\Delta \mathrm{V}_{\mathrm{g}}-\Delta \mathrm{V}_{\mathrm{s}}=1.9-0.024=1.876 \mathrm{~L}$
27. (C) The volume expansion is given by
$\mathrm{V}=\mathrm{V}_{0}(1+\gamma \Delta \theta)$
The linear expansion is given by
$\mathrm{L}^{3}=\mathrm{L}_{0}\left(1+\alpha_{1} \Delta \theta\right) \mathrm{L}_{0}^{2}\left(1+\alpha_{2} \Delta \theta\right)^{2}$
$\therefore \quad \mathrm{L}^{3}=\mathrm{L}_{0}^{3}\left(1+\alpha_{1} \Delta \theta\right)\left(1+\alpha_{2} \Delta \theta\right)^{2}$
Also, $\mathrm{L}^{3}=\mathrm{V}$ and $\mathrm{L}_{0}^{3}=\mathrm{V}_{0}$
$\mathrm{V}=\mathrm{V} 0\left(1+\alpha_{1} \Delta \theta\right)\left(1+\alpha_{2} \Delta \theta\right)^{2}$
Comparing (i) and (ii),
$\therefore \quad(1+\gamma \Delta \theta)=\left(1+\alpha_{1} \Delta \theta\right)\left(1+\alpha_{2} \Delta \theta\right)^{2}$
...[Using binomial expansion on the term $\left(1+\alpha_{2} \Delta \theta\right)^{2}$ i.e., $(1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{nx}$ $+\ldots .+$ negligible terms]
$\therefore \quad(1+\gamma \Delta \theta)=\left(1+\alpha_{1} \Delta \theta\right)\left(1+2 \alpha_{2} \Delta \theta\right)$
$\therefore \quad(1+\gamma \Delta \theta)=\left(1+2 \alpha_{2} \Delta \theta+\alpha_{1} \Delta \theta+2 \alpha_{1} \alpha_{2} \Delta \theta^{2}\right)$

The values of α_{1} and α_{2} are less than 1,
$\therefore \quad$ neglecting the higher powers of α_{1} and α_{2}.
$\therefore \quad(1+\gamma \Delta \theta)=\left(1+\alpha_{1} \Delta \theta+2 \alpha_{2} \Delta \theta\right)$

$$
=1+\left(\alpha_{1}+2 \alpha_{2}\right)
$$

$\therefore \quad \gamma=\alpha_{1}+2 \alpha_{2}$
28. (B) Force developed $=\alpha A Y \Delta T$
\Rightarrow force is independent of length of the bar.
29. (C) Water will overflow, both when heated or cooled because water has maximum density or minimum volume at $4^{\circ} \mathrm{C}$.
30. (A) Freezing point of water decreases when pressure increases, because water expands on solidification while "except water" for other liquid freezing point increases with increase in pressure. Since the liquid in question is water. Hence, it expands on freezing.

7.6 Specific Heat Capacity

1. (C) The value of specific heat will depend upon nature of substance and will vary for different substances. Also, it depends on the state of the substance. For example, specific heat of ice, water and steam is $0.5 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$, $1 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$ and $0.47 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$ respectively.
2. (C)
3. (A)
4. (C) Using $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}=\mathrm{mc}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
$\mathrm{c}=\frac{\mathrm{Q}}{\mathrm{m}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}$
In this case, $\mathrm{T}_{1}=\mathrm{T}_{2}=100^{\circ} \mathrm{C}$

$$
c=\frac{Q}{m(0)}=\infty
$$

5. (C)
6. (A) $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$

For copper,
$\mathrm{Q}=420 \times 50 \times 10^{-3} \times 10=210$ calories
For water,

$$
\Delta \mathrm{T}=\frac{\mathrm{Q}}{\mathrm{~cm}}=\frac{210}{4200 \times 10 \times 10^{-3}}=5^{\circ} \mathrm{C}
$$

7. (A) The heat supplied is given by, $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
Rate of heat supplied $Q^{\prime}=\frac{Q}{t}$
$\therefore \quad \mathrm{Q}=\mathrm{Q}^{\prime} \mathrm{t}$
Substituting the value of Q in equation (i).
$\therefore \quad \mathrm{Q}^{\prime} \mathrm{t}=\mathrm{m} \times \mathrm{c} \times \Delta \mathrm{T}$
$\therefore \quad \Delta \mathrm{T}=\frac{\mathrm{Q}^{\prime}}{\mathrm{mc}} \times \mathrm{t}$
Temperature (ΔT) is along y axis and time (t) is along x -axis
$\therefore \quad \mathrm{y}=\frac{\mathrm{Q}^{\prime}}{\mathrm{mc}} \times \mathrm{x}$

Comparing equation (ii) with the equation of a straight line
$\mathrm{y}=\mathrm{mx}+$ constant
Thus, the slope of the equation $=\frac{\mathrm{Q}^{\prime}}{\mathrm{mc}}$
The slope of the equation $\propto \frac{1}{c}$

$$
\ldots(\because \mathrm{Q} \text { and } \mathrm{m} \text { are constant })
$$

Thus, the specific heat of the substance is inversely proportional to the slope.
Also, the slope of substance $=\tan \theta$
Therefore, the slope of A is highest and hence its specific heat capacity is lowest.

7.7 Calorimetry

1. (C)
2. (B) Let the final temperature be $\mathrm{T}^{\circ} \mathrm{C}$.

Total heat supplied by the three liquids in coming down to $0{ }^{\circ} \mathrm{C}$
$=m_{1} \mathrm{c}_{1} \mathrm{~T}_{1}+\mathrm{m}_{2} \mathrm{c}_{2} \mathrm{~T}_{2}+\mathrm{m}_{3} \mathrm{c}_{3} \mathrm{~T}_{3}$
Total heat used by three liquids in raising temperature from $0^{\circ} \mathrm{C}$ to $\mathrm{T}^{\circ} \mathrm{C}$
$=\mathrm{m}_{1} \mathrm{c}_{1} \mathrm{~T}+\mathrm{m}_{2} \mathrm{c}_{2} \mathrm{~T}+\mathrm{m}_{3} \mathrm{c}_{3} \mathrm{~T}$
By equating (i) and (ii),
$\left(m_{1} c_{1}+m_{2} c_{2}+m_{3} c_{3}\right) T$

$$
=m_{1} c_{1} T_{1}+m_{2} c_{2} T_{2}+m_{3} c_{3} T_{3}
$$

$\Rightarrow \mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{c}_{1} \mathrm{~T}_{1}+\mathrm{m}_{2} \mathrm{c}_{2} \mathrm{~T}_{2}+\mathrm{m}_{3} \mathrm{c}_{3} \mathrm{~T}_{3}}{\mathrm{~m}_{1} \mathrm{c}_{1}+\mathrm{m}_{2} \mathrm{c}_{2}+\mathrm{m}_{3} \mathrm{c}_{3}}$.
3. (D) Heat lost by boiling water
$=$ Heat gained by cold water
$\therefore \quad 100 \times 1 \times(100-20)=(300+W) \times(20-10)$
where, $\mathrm{W}=$ water equivalent of calorimeter
$\therefore \quad 8000=3000+10 \mathrm{~W}$
$\therefore \quad \mathrm{W}=500 \mathrm{~g}$
When the metallic block is added,
Heat lost by the water $=$ Heat gained by block
$\therefore \quad(100+300+500) \times 1 \times(20-19)$
$=1000 \times \mathrm{c} \times(19-10)$
where, $\mathrm{c}=$ specific heat of the metal
$\therefore \quad 900=1000 \times 9 \times c$
$\therefore \quad \mathrm{c}=0.1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
4. (C) Mixing A and B:

Heat gained by $\mathrm{A}=$ Heat lost by B
$\therefore \quad \mathrm{m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}} \Delta \mathrm{T}_{\mathrm{A}}=\mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}} \Delta \mathrm{T}_{\mathrm{B}}$
$\Rightarrow \mathrm{mc}_{\mathrm{A}}(16-12)=\mathrm{mc}_{\mathrm{B}}(19-16)$
$\Rightarrow 4 \mathrm{c}_{\mathrm{A}}=3 \mathrm{c}_{\mathrm{B}}$
Mixing B and C :
$\therefore \quad \mathrm{m}_{\mathrm{B}} \mathrm{c}_{\mathrm{B}} \Delta \mathrm{T}_{\mathrm{B}}=\mathrm{m}_{\mathrm{C}} \mathrm{c}_{\mathrm{C}} \Delta \mathrm{T}_{\mathrm{C}}$
$\Rightarrow \mathrm{mc}_{\mathrm{B}}(23-19)=\mathrm{mc}_{\mathrm{C}}(28-23)$
$\Rightarrow 4 \mathrm{c}_{\mathrm{B}}=5 \mathrm{c}_{\mathrm{C}}$
Multiplying equation (i) by 4 and equation (ii) by (3),
$16 \mathrm{c}_{\mathrm{A}}=12 \mathrm{c}_{\mathrm{B}}$ and $12 \mathrm{c}_{\mathrm{B}}=15 \mathrm{c}_{\mathrm{C}}$
$\therefore \quad 16 \mathrm{c}_{\mathrm{A}}=15 \mathrm{c}_{\mathrm{C}} \Rightarrow \mathrm{c}_{\mathrm{A}}=\frac{15}{16} \mathrm{c}_{\mathrm{C}}$
Mixing A and C :
$\therefore \quad \mathrm{m}_{\mathrm{A}} \mathrm{c}_{\mathrm{A}} \Delta \mathrm{T}_{\mathrm{A}}{ }^{\prime}=\mathrm{m}_{\mathrm{C}} \mathrm{c}_{\mathrm{C}} \Delta \mathrm{T}_{\mathrm{C}}{ }^{\prime}$
$\mathrm{mc}_{\mathrm{A}}(\mathrm{x}-12)=\mathrm{m} \mathrm{c}_{\mathrm{C}}(28-\mathrm{x})$
where, x is final temperature of mixture
$\therefore \quad \frac{15}{16} \mathrm{c}_{\mathrm{C}}(\mathrm{x}-12)=\mathrm{c}_{\mathrm{C}}(28-\mathrm{x})$
$\therefore \quad \mathrm{x}=20.26^{\circ} \mathrm{C}$
5. (C)

$60 \mathrm{~g}+\frac{\mathrm{m}}{2}$ (water) $+\frac{\mathrm{m}}{2}$ (ice)

Heat gained by ice of mass m to change its temperature from $-10^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ + mass $\frac{\mathrm{m}}{2}$ to convert into water

Heat lost by water to
$=$ change its temperature from $15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{m} \times \frac{1}{2} \times 10+\frac{\mathrm{m}}{2} \times 80=60 \times 1 \times 15 \\
& \mathrm{~m}=\frac{60 \times 15}{45}=20 \mathrm{~g}
\end{aligned}
$$

7.8 Change of State

1. (A)
2. (C)
3. (B)
4. (B)
5. (A) For same mass and material, latent heat is independent of configuration.
6. (A) The latent heat of vaporization is always greater than latent heat of fusion because in liquid to vapour phase change there is a large increase in volume. Hence more heat is required as compared to solid to liquid phase change.
7. (D) Suppose $\mathrm{m} g$ ice is melted, then heat required for its melting $=\mathrm{mL}=\mathrm{m} \times 80 \mathrm{cal}$
Heat available with steam for being condensed and then brought to $0^{\circ} \mathrm{C}$
$=1 \times 540+1 \times 1 \times(100-0)=640 \mathrm{cal}$
\Rightarrow Heat lost $=$ Heat taken
$\Rightarrow 640=\mathrm{m} \times 80 \Rightarrow \mathrm{~m}=8 \mathrm{~g}$

Thinking Hatke - Q. 7

You can remember that amount of steam $\left(\mathrm{m}^{\prime}\right)$ at $100^{\circ} \mathrm{C}$ required to melt mg ice at $0^{\circ} \mathrm{C}$ is $\mathrm{m}^{\prime}=\frac{\mathrm{m}}{8}$. Here, $\mathrm{m}=8 \times \mathrm{m}^{\prime}=8 \times 1=8 \mathrm{~g}$
8. (B) Initially ice will absorb heat to raise its temperature to $0^{\circ} \mathrm{C}$ then its melting takes place.
If $m_{i}=$ Initial mass of ice, $m_{i}^{\prime}=$ Mass of ice that melts and $\mathrm{m}_{\mathrm{W}}=$ Initial mass of water
Heat gained by ice $=$ Heat lost by water
$\Rightarrow \mathrm{m}_{\mathrm{i}} \times \mathrm{c} \times(20)+\mathrm{m}_{\mathrm{i}}^{\prime} \times \mathrm{L}=\mathrm{m}_{\mathrm{W}} \mathrm{c}_{\mathrm{W}}(20)$
$\Rightarrow 2 \times 0.5(20)+\mathrm{m}_{\mathrm{i}}^{\prime} \times 80=5 \times 1 \times 20$
$\Rightarrow \mathrm{m}_{\mathrm{i}}^{\prime}=1 \mathrm{~kg}$
So final mass of water $=$ Initial mass of water

$$
\begin{aligned}
& \quad+\text { Mass of ice that melts } \\
& =5+1=6 \mathrm{~kg} .
\end{aligned}
$$

9. (A) Ice $\left(-10^{\circ} \mathrm{C}\right)$ converts into steam as follows ($c_{i}=$ Specific heat of ice, $c_{W}=$ Specific heat of water, $L_{f}=$ Latent heat of fusion and $\mathrm{L}_{\mathrm{V}}=$ Latent heat of vaporization)

Total heat required

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4} \\
& =\mathrm{mc}_{\mathrm{i}} \Delta \theta_{1}+\mathrm{mL}_{\mathrm{f}}+\mathrm{mc}_{\mathrm{W}} \Delta \theta_{2}+\mathrm{mL}_{\mathrm{V}} \\
& =1 \times 0.5(10)+1 \times 80+1 \times 1 \times(100-0)+1 \times 540 \\
& =725 \mathrm{cal}
\end{aligned}
$$

Work done $\mathrm{W}=\mathrm{JQ}=4.2 \times 725=3045 \mathrm{~J}$
10. (A) Heat required to melt ice $=m_{i} L_{i}$

$$
\begin{aligned}
& =60 \times 80 \\
& =4800 \mathrm{cal}
\end{aligned}
$$

Heat required to change the temperature of water at $100^{\circ} \mathrm{C}$ (steam)
$=\mathrm{m}_{\mathrm{s}} \mathrm{c}_{\mathrm{w}} \Delta \theta$
$=60 \times 1 \times(100-0)=6000 \mathrm{cal}$
$\therefore \quad$ Total heat $\mathrm{Q}_{1}=6000+4800=10800 \mathrm{cal}$
Now, heat required to condense 60 g of steam
$\mathrm{Q}_{2}=60 \times 540=32400 \mathrm{cal}$
As $\mathrm{Q}_{2}>\mathrm{Q}_{1}$, whole 60 g of steam does not get condensed.
Hence, temperature of mixture remains $100^{\circ} \mathrm{C}$.
But Q_{1} amount of heat will condense Mg of steam,
$\therefore \quad \mathrm{M}=\frac{\mathrm{Q}_{1}}{\mathrm{~L}_{\mathrm{s}}}=\frac{10800}{540}=20 \mathrm{~g}$
Hence, out of $60 \mathrm{~g}, 20 \mathrm{~g}$ of steam is converted into water.
$\therefore \quad$ mixture contains 40 g of steam and $120-40=80 \mathrm{~g}$ of water.
11. (B) $\mathrm{m}_{\mathrm{w}}=150 \mathrm{~g}=0.15 \mathrm{~kg}$

The heat required to evaporate ' m ' grams of water, $\Delta \mathrm{Q}_{\text {required }}=\mathrm{mL} \mathrm{v}_{\mathrm{v}}$
$(0.15-\mathrm{m})$ is the amount of mass that converts into ice
$\therefore \quad \Delta \mathrm{Q}_{\text {released }}=(0.15-\mathrm{m}) \mathrm{L}_{\mathrm{f}}$
$\begin{aligned} & \text { Amount of heat } \\ & \text { required }\end{aligned}=\begin{aligned} & \text { Amount of heat } \\ & \text { released }\end{aligned}$
From (i) and (ii),
$\mathrm{mL}_{\mathrm{v}}=(0.15-\mathrm{m}) \mathrm{L}_{\mathrm{f}}$
$\therefore \quad \mathrm{m}\left(\mathrm{L}_{\mathrm{f}}+\mathrm{L}_{\mathrm{v}}\right)=0.15 \mathrm{~L}_{\mathrm{f}}$
$\therefore \quad \mathrm{m}=\frac{0.15 \mathrm{~L}_{\mathrm{f}}}{\mathrm{L}_{\mathrm{f}}+\mathrm{L}_{\mathrm{v}}}$

$$
=\frac{0.15 \times 3.36 \times 10^{5}}{2.10 \times 10^{6}+3.36 \times 10^{5}}
$$

$\therefore \quad \mathrm{m}=0.0206 \mathrm{~kg} \approx 20 \mathrm{~g}$

7.9 Heat transfer

1. (D)
2. (A)
3. (C)
4. (D)
5. (B)
6. (A)
7. (D)
8. (A)
9. (C) $\frac{\Delta \mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA} \Delta \theta}{\Delta \mathrm{x}}$

Thermal gradient
$\frac{\Delta \theta}{\Delta \mathrm{x}}=\frac{(\Delta \mathrm{Q} / \mathrm{At})}{\mathrm{K}}=\frac{20}{0.8}=25^{\circ} \mathrm{C} / \mathrm{cm}$
10. (C) $\frac{\mathrm{Q}}{\mathrm{At}}=\mathrm{K} \frac{\Delta \theta}{\Delta \mathrm{x}}$
$\because \quad \mathrm{K} \frac{\Delta \theta}{\Delta \mathrm{x}}=$ constant $\Rightarrow \frac{\Delta \theta}{\Delta \mathrm{x}} \propto \frac{1}{\mathrm{~K}}$
Hence If $\mathrm{X}_{\mathrm{c}}=\mathrm{X}_{\mathrm{m}}=\mathrm{X}_{\mathrm{g}}$, then
$\left(\frac{\Delta \theta}{\Delta \mathrm{x}}\right)_{\mathrm{c}}<\left(\frac{\Delta \theta}{\Delta \mathrm{x}}\right)_{\mathrm{m}}<\left(\frac{\Delta \theta}{\Delta \mathrm{x}}\right)_{\mathrm{g}}$
$\left(\mathrm{T}_{\mathrm{g}}\right)_{\mathrm{c}}<\left(\mathrm{T}_{\mathrm{g}}\right)_{\mathrm{m}}<\left(\mathrm{T}_{\mathrm{g}}\right)_{\mathrm{g}}$
because higher K implies lower value of the temperature gradient.
11. (D) $\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA} \Delta \theta}{\Delta \mathrm{x}}$
$\frac{\mathrm{Q}}{\mathrm{t}} \propto \frac{\mathrm{A}}{\Delta \mathrm{x}} \propto \frac{\mathrm{d}^{2}}{\Delta \mathrm{x}} \quad(\mathrm{d}=$ Diameter of rod $)$
$\frac{(\mathrm{Q} / \mathrm{t})_{1}}{(\mathrm{Q} / \mathrm{t})_{2}}=\left(\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}\right)^{2} \times \frac{\Delta \mathrm{x}_{2}}{\Delta \mathrm{x}_{1}}=\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{2}\right)=\frac{1}{8}$
12. (B)
13. (B) Heat passes quickly from the body into the metal which leads to a cold feeling
14. (B) $\frac{\mathrm{Q}}{\mathrm{t}} \propto \frac{\mathrm{r}^{2}}{\mathrm{x}}$; from the given options, option (B) has higher value of $\frac{\mathrm{r}^{2}}{\mathrm{x}}$.
15. (A) $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA} \Delta \theta}{l}$, For both rods K, A and $\Delta \theta$ are same $\Rightarrow \frac{\mathrm{dQ}}{\mathrm{dt}} \propto \frac{1}{l}$
So $\frac{(\mathrm{dQ} / \mathrm{dt})_{\text {senicircular }}}{\left(\mathrm{dQ} / \mathrm{dt}_{\text {striegt }}\right.}=\frac{l_{\text {straight }}}{l_{\text {semicicrulur }}}=\frac{2 \mathrm{r}}{\pi \mathrm{r}}=\frac{2}{\pi}$.
16. (D) $\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA} \Delta \theta}{l}$

All the four rods are kept at same temperature difference.
$\therefore \quad \frac{\mathrm{Q}}{\mathrm{t}} \propto \frac{\mathrm{A}}{l}$
$\therefore \quad \frac{\mathrm{Q}}{\mathrm{t}} \propto \frac{\mathrm{r}^{2}}{l}$
Hence, the rod to conduct maximum heat, should have largest r and smallest l
i.e., largest $\frac{\mathrm{r}^{2}}{l}$ ratio

Ratio $\frac{\mathrm{r}^{2}}{l}$ is maximum in option (D).
17. (B) The amount of heat flow in time t through a cylindrical metallic rod of length x and uniform area of cross-section A with its ends maintained at temperatures θ_{1} and θ_{2} is given by $\mathrm{Q}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right) \mathrm{t}}{\mathrm{x}}$
where K is the thermal conductivity of the material of the rod.
Area of cross-section of new rod
$\mathrm{A}^{\prime}=\pi\left(\frac{\mathrm{R}}{2}\right)^{2}=\frac{\pi \mathrm{R}^{2}}{4}$
$\Rightarrow \mathrm{A}^{\prime}=\frac{\mathrm{A}}{4}$
As the volume of the rod remains unchanged
$\mathrm{Ax}=\mathrm{A}^{\prime} \mathrm{x}^{\prime}$
where x^{\prime} is the length of the new rod
$\mathrm{x}^{\prime}=\mathrm{x} \frac{\mathrm{A}}{\mathrm{A}^{\prime}}=4 \mathrm{x}$
Now, the amount of heat flows in same time t in the new rod with its ends maintained at the same temperatures θ_{1} and θ_{2} is given by
$\mathrm{Q}^{\prime}=\frac{K(\mathrm{~A} / 4)\left(\theta_{1}-\theta_{2}\right) \mathrm{t}}{4 \mathrm{x}}=\frac{1}{16} \frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right) \mathrm{t}}{\mathrm{x}}=\frac{1}{16} \mathrm{Q}$
18. (B) The rods are identical and are of same material, ie. $l_{1}=l_{2}=l$
And $\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K} \ldots \mathrm{K}=$ thermal conductivity
also, $\mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A}$
Case I :
When rods are connected end to end (series),
$\therefore \quad \frac{\mathrm{Q}}{\mathrm{t}_{\mathrm{s}}}=\frac{\Delta \theta}{\mathrm{R}_{\mathrm{s}}}$
$\therefore \quad \mathrm{t}_{\mathrm{s}}=\frac{\mathrm{QR}_{\mathrm{s}}}{\Delta \theta}$
Where, $\mathrm{R}_{\mathrm{s}}=$ Thermal resistivity
i.e. $\mathrm{t}_{\mathrm{s}}=\frac{\mathrm{Q}}{\Delta \theta}\left[\frac{l_{1}}{\mathrm{~K}_{1} \mathrm{~A}_{1}}+\frac{l_{2}}{\mathrm{~K}_{2} \mathrm{~A}_{2}}\right]$
$\therefore \quad 8=\frac{\mathrm{Q}}{\Delta \theta}\left[\frac{2 l}{\mathrm{KA}}\right]$
Case II :
When rods are connected in parallel,
$\mathrm{t}_{\mathrm{p}}=\frac{\mathrm{QR}_{\mathrm{p}}}{\Delta \theta}=\frac{\mathrm{Q}}{\Delta \theta} \frac{1}{\left[\frac{2 \mathrm{KA}}{l}\right]}$
Dividing equation (i) by equation (ii),
$\therefore \quad \frac{8}{\mathrm{t}_{\mathrm{p}}}=\frac{\mathrm{QR}_{\mathrm{s}}}{\Delta \theta} \times \frac{\Delta \theta}{\mathrm{QR}_{\mathrm{p}}}$

$$
=2\left[\frac{l}{\mathrm{KA}}\right] \times 2\left[\frac{\mathrm{KA}}{l}\right]=4
$$

$\therefore \quad \mathrm{t}_{\mathrm{p}}=2 \mathrm{~s}$
19. (B) Let the heat transferred be Q .

When rods are joined end to end. Heat transferred by each rod
$=\mathrm{Q}=\frac{\mathrm{KA} \Delta \theta}{2 l} \times 12$
When rods are joined lengthwise,
$\mathrm{Q}=\frac{\mathrm{K} 2 \mathrm{~A} \Delta \theta}{l} \mathrm{t}$
From equation (i) and (ii), $\mathrm{t}=3 \mathrm{~s}$
20. (A) Using formula, $\frac{Q}{t}=\frac{\Delta T}{(\Delta x / K A)}$

For first configuration, blocks are arranged in series combination.
$\therefore \quad \frac{\Delta \mathrm{x}}{\mathrm{KA}}=\frac{l}{\mathrm{KA}}+\frac{l}{2 \mathrm{KA}}$
Thus $\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\left[\frac{l}{\mathrm{KA}}+\frac{l}{2 \mathrm{KA}}\right]}$
For second configuration, arrangement of blocks resemble parallel combination.
$\therefore \quad\left(\frac{\Delta \mathrm{x}}{\mathrm{KA}}\right)^{-1}=\frac{\mathrm{KA}}{l}+\frac{2 \mathrm{KA}}{l}$
Thus $\frac{\mathrm{Q}}{\mathrm{t}^{\prime}}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(\frac{\mathrm{KA}}{l}+\frac{2 \mathrm{KA}}{l}\right)$
Dividing equation (i) by equation (ii),
$\therefore \quad \frac{\mathrm{t}^{\prime}}{\mathrm{t}}=\frac{2}{9}$
$\therefore \quad \mathrm{t}^{\prime}=\frac{2}{9} \times \mathrm{t}=\frac{2}{9} \times 9=2 \mathrm{~s}$
21. (D)

The window can be considered to be a series combination of three layers, such that,
$\mathrm{K}_{1}=\mathrm{K}_{3}=0.8 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}, \mathrm{~K}_{2}=0.08 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
$\mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A}_{3}=2.6 \mathrm{~m}^{2}$,
$l_{1}=l_{3}=1 \mathrm{~cm}$ and $l_{2}=5 \mathrm{~cm}$
$\therefore \quad$ Equivalent thermal resistance,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{eq}} & =\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \\
& =\frac{l_{1}}{\mathrm{~K}_{1} \mathrm{~A}_{1}}+\frac{l_{2}}{\mathrm{~K}_{2} \mathrm{~A}_{2}}+\frac{l_{3}}{\mathrm{~K}_{3} \mathrm{~A}_{3}} \\
& =\frac{1 \times 10^{-2}}{0.8 \times 2.6}+\frac{5 \times 10^{-2}}{0.08 \times 2.6}+\frac{1 \times 10^{-2}}{0.8 \times 2.6} \\
& =\frac{2 \times 10^{-2}+5 \times 10^{-1}}{0.8 \times 2.6} \\
& =\frac{0.52}{0.8 \times 2.6}=\frac{1}{4}
\end{aligned}
$$

$\therefore \quad \frac{\mathrm{Q}}{\mathrm{t}}=\frac{\Delta \theta}{\mathrm{R}}=\frac{[18-(-2)]}{\left(\frac{1}{4}\right)}=20 \times 4=80 \mathrm{~W}$.
22. (A) The rods are connected in parallel.
$\therefore \quad$ In parallel, $\frac{1}{\mathrm{R}_{\mathrm{P}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}$
But, $\mathrm{R}=\frac{l}{\mathrm{KA}}$ and l is same for both rods i.e.,
$l_{1}=l_{2}=\mathrm{d}$
$\therefore \quad \frac{\mathrm{K}_{\mathrm{P}}(2 \mathrm{~A})}{\mathrm{d}}=\frac{\mathrm{K}_{\mathrm{L}} \mathrm{A}}{\mathrm{d}}+\frac{\mathrm{K}_{2} \mathrm{~A}}{\mathrm{~d}}$
$\therefore \quad \mathrm{K}_{\mathrm{P}}=\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2}$
23. (C)

$\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \quad \ldots\left[\because \mathrm{Q}=\mathrm{KA}\left(\frac{\Delta \theta}{\Delta \mathrm{x}}\right) \mathrm{t}\right]$
$\frac{0.92 \times 4(100-\mathrm{T})}{46}=\frac{0.26 \times 4 \times(\mathrm{T}-0)}{13}+\frac{0.12 \times 4 \times \mathrm{T}}{12}$
$\Rightarrow 200-2 \mathrm{~T}=2 \mathrm{~T}+\mathrm{T}$
$\Rightarrow \mathrm{T}=40^{\circ} \mathrm{C}$
$\Rightarrow \mathrm{Q}=\frac{0.92 \times 4 \times 60}{46}=4.8 \mathrm{cal} / \mathrm{s}$
24. (A) Let L be the length of each rod.

Temperature of $\mathrm{A}=120^{\circ} \mathrm{C}$,
Temperature of $\mathrm{E}=20^{\circ} \mathrm{C}$
$\left(120^{\circ} \mathrm{C}\right) \mathrm{y}$

E $\left(20^{\circ} \mathrm{C}\right)$

Quantity of heat, $\mathrm{Q}=\frac{\mathrm{kA}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{t}}{\mathrm{x}}$
Let $\theta_{1}, \theta_{2}, \theta_{3}$ be respective temperatures of B, C, D. If $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}, \mathrm{Q}_{5}, \mathrm{Q}_{6}$ are the amounts of heat flowing per second respectively from A to B ; B to C ; B to D ; C to $\mathrm{D} ; \mathrm{D}$ to E and C to E then
$\mathrm{Q}_{1}=\frac{0.45 \mathrm{~A}\left(120-\theta_{1}\right) \mathrm{t}}{\mathrm{x}}, \mathrm{Q}_{2}=\frac{0.92 \mathrm{~A}\left(\theta_{1}-\theta_{2}\right) \mathrm{t}}{\mathrm{x}}$
$\mathrm{Q}_{3}=\frac{0.46 \mathrm{~A}\left(\theta_{1}-\theta_{3}\right) \mathrm{t}}{\mathrm{x}}, \quad \mathrm{Q}_{4}=\frac{0.92 \mathrm{~A}\left(\theta_{2}-\theta_{3}\right) \mathrm{t}}{\mathrm{x}}$
$\mathrm{Q}_{5}=\frac{0.46 \mathrm{~A}\left(\theta_{3}-20\right) \mathrm{t}}{\mathrm{x}}, \quad \mathrm{Q}_{6}=\frac{0.92 \mathrm{~A}\left(\theta_{2}-20\right) \mathrm{t}}{\mathrm{x}}$
As $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}$
$\frac{0.46 \mathrm{~A}\left(120-\theta_{1}\right)}{\mathrm{x}}=\frac{0.92 \mathrm{~A}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{x}}+\frac{0.46 \mathrm{~A}\left(\theta_{1}-\theta_{3}\right)}{\mathrm{x}}$
$120-\theta_{1}=2\left(\theta_{1}-\theta_{2}\right)+\theta_{1}-\theta_{3}$
$\therefore \quad 4 \theta_{1}-2 \theta_{2}-\theta_{3}=120^{\circ} \mathrm{C}$
$\mathrm{Q}_{2}=\mathrm{Q}_{4}+\mathrm{Q}_{6}$ gives
$\theta_{1}-3 \theta_{2}+\theta_{3}=-20^{\circ} \mathrm{C}$
Again, $\mathrm{Q}_{5}=\mathrm{Q}_{3}+\mathrm{Q}_{4}$ gives
$\theta_{1}+2 \theta_{2}-4 \theta_{3}=-20^{\circ} \mathrm{C}$
Solving (i), (ii) and (iii),
$\theta_{1}=60^{\circ} \mathrm{C}, \theta_{2}=40^{\circ} \mathrm{C}, \theta_{3}=40^{\circ} \mathrm{C}$

7.10 Newton's Law of Cooling

1. (A) For same mass, volume and material, rate of cooling will depend upon area of the body. Smaller the area, lesser will be rate of cooling.
2. (A) For both spheres, surface area, material and temperature difference are same hence rate of cooling $\frac{\mathrm{d} \theta}{\mathrm{dt}} \propto \frac{1}{\mathrm{~m}}$ and $\mathrm{m}_{\text {solid }}>\mathrm{m}_{\text {hollow }}$.
Hence hollow sphere will cool fast.
3. (B)
4. (A) According to Newton's law of cooling, the body whose rate of cooling is more, its specific heat will be less.
5. (C) The temperature of the metal will decrease exponentially with time to θ_{0}.
6. (B) For θ-t plot,
rate of cooling $=\frac{\mathrm{d} \theta}{\mathrm{dt}}=$ slope of the curve.
At $\mathrm{P}, \frac{\mathrm{d} \theta}{\mathrm{dt}}=\tan \phi_{2}=\mathrm{k}\left(\theta_{2}-\theta_{0}\right)$,
where $\mathrm{k}=$ constant.
At $Q \frac{d \theta}{d t}=\tan \phi_{1}=k\left(\theta_{1}-\theta_{0}\right) \Rightarrow \frac{\tan \phi_{2}}{\tan \phi_{1}}=\frac{\theta_{2}-\theta_{0}}{\theta_{1}-\theta_{0}}$
7. (D)
8. (C) According to Newton's law of cooling,

Rate of cooling \propto Mean temperature difference
$\Rightarrow \frac{\text { Fall in temperature }}{\text { Time }} \propto\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right)$
$\because\left(\frac{\theta_{1}+\theta_{2}}{2}\right)_{1}>\left(\frac{\theta_{1}+\theta_{2}}{2}\right)_{2}>\left(\frac{\theta_{1}+\theta_{2}}{2}\right)_{3}$
$\Rightarrow \quad \mathrm{T}_{1}<\mathrm{T}_{2}<\mathrm{T}_{3}$
10. (A) $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{k}\left(\theta-\theta_{0}\right)$
$\mathrm{k}=\frac{0.2}{20}=0.01 / \mathrm{min}$
11. (C) According to Newton's law of cooling Rate of cooling \propto mean temperature difference. Initially, mean temperature difference
$=\left(\frac{70+60}{2}-\theta_{0}\right)=\left(65-\theta_{0}\right)$
Finally, mean temperature difference
$=\left(\frac{60+50}{2}-\theta_{0}\right)=\left(55-\theta_{0}\right)$
In second case mean temperature difference decreases, so rate of fall of temperature decreases, so it takes more time to cool through the same range.
12. (D) $\mathrm{R}_{1}=0.5^{\circ} \mathrm{C} / \mathrm{s}, \mathrm{R}_{2}=\mathrm{x}$, $\mathrm{R}=\mathrm{k}$ (temp. difference)
$\therefore \quad \mathrm{R}_{1}=\mathrm{k}\left(50^{\circ}\right), \mathrm{R}_{2}=\mathrm{k}\left(30^{\circ}\right)$
$\therefore \quad 0.5=\mathrm{k} \times 50^{\circ}$
$\therefore \quad \mathrm{x}=\mathrm{k}\left(30^{\circ}\right)$
$\therefore \quad \frac{\mathrm{x}}{0.5}=\frac{\mathrm{k}\left(30^{\circ}\right)}{\mathrm{k}\left(50^{\circ}\right)}$
$\therefore \quad \mathrm{x}=0.3^{\circ} \mathrm{C} / \mathrm{s}$
13. (D) According to Newton's law of cooling
$\frac{\theta_{1}-\theta_{2}}{\mathrm{t}}=\mathrm{k}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{\mathrm{s}}\right]$
$\frac{80-70}{5}=\mathrm{k}\left[\frac{80+70}{2}-40\right]$
$2=35 \mathrm{k}$
$\frac{80-60}{\mathrm{t}}=\mathrm{k}\left[\frac{80+60}{2}-40\right]$
$\frac{20}{\mathrm{t}}=30 \mathrm{k}$
Dividing equation (i) by (ii),
$\frac{\mathrm{t}}{10}=\frac{35}{30}$
$\mathrm{t}=\frac{35}{30} \times 10=12$ minute
14. (C) Using $\frac{\mathrm{dQ}}{\mathrm{dt}} \propto \Delta \mathrm{T}$,
$\frac{60-40}{7}=\mathrm{k}(60-10) \quad \therefore \mathrm{k}=\frac{2}{35}$
$\frac{40-28}{\mathrm{t}}=\mathrm{k}(40-10)=\frac{2}{35}(30)$
$\mathrm{t}=\frac{12 \times 35}{60}=7$ minutes
15. (A) According to Newton's law of cooling, $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{K}\left(\theta-\theta_{0}\right)$
Case I:
$\therefore \quad \frac{90-80}{\mathrm{t}}=\mathrm{K}\left[\left(\frac{90+80}{2}\right)-20\right]$
$\therefore \quad \frac{10}{\mathrm{t}}=\mathrm{K}(85-20)$
Case II:
$\therefore \quad \frac{80-60}{\mathrm{t}^{\prime}}=\mathrm{K}\left[\left(\frac{80+60}{2}\right)-20\right]$
$\therefore \quad \frac{20}{\mathrm{t}^{\prime}}=\mathrm{K}(70-20)$
From equations (i) and (ii),
$\frac{10 / \mathrm{t}}{20 / \mathrm{t}^{\prime}}=\frac{(85-20)}{(70-20)}$
$\therefore \quad \frac{\mathrm{t}^{\prime}}{2 \mathrm{t}}=\frac{65}{50}$

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{t}^{\prime}}{\mathrm{t}}=\frac{65 \times 2}{50} \\
\therefore & \frac{\mathrm{t}^{\prime}}{\mathrm{t}}=\frac{130}{50} \\
\therefore & \mathrm{t}^{\prime}=\frac{13}{5} \mathrm{t}
\end{array}
$$

16. (B) According to Newton's law of cooling,
$\frac{\theta_{1}-\theta_{2}}{\mathrm{t}}=\mathrm{k}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$
Case 1:
$\frac{60-50}{10}=\mathrm{k}\left[\frac{60+50}{2}-\theta_{0}\right]$
$1=\mathrm{k}(55-\theta)$
Case 2:
$\frac{50-42}{10}=\mathrm{k}\left[\frac{50+42}{2}-\theta_{0}\right]$
$0.8=k\left(46-\theta_{0}\right)$
Dividing equation (i) by equation (ii),

$$
\begin{gather*}
\frac{1}{0.8}=\frac{55-\theta}{46-\theta} \tag{ii}\\
46-\theta_{0}=44-0.8 \theta_{0} \\
\theta_{0}=10^{\circ} \mathrm{C}
\end{gather*}
$$

17. (A) According to Newton's law of cooling,
$\frac{\theta_{1}-\theta_{2}}{\Delta t}=\mathrm{k}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$
First $\Rightarrow \frac{70-60}{5}=\mathrm{k}\left[65-\theta_{0}\right]$
$\Rightarrow 2=\mathrm{k}\left[65-\theta_{0}\right]$
Next $\Rightarrow \frac{60-54}{5}=\mathrm{k}\left[57-\theta_{0}\right]$
Dividing (i) and (ii)
$\frac{5}{3}=\frac{65-\theta_{0}}{57-\theta_{0}}$
$\Rightarrow 285-5 \theta_{0}=195-3 \theta_{0}$
$\Rightarrow 2 \theta_{0}=90$
$\theta_{0}=45^{\circ} \mathrm{C}$

Concept Fusion

1. (C)
2. (D) For cooking utensils, low specific heat is preferred for its material as it should need less heat to raise its temperature and it should have high conductivity, because, it should transfer heat quickly.
3. (B)
4. (B) Substances are classified into two categories
i. water like substances which expand on solidification.
ii. CO_{2} like (Wax, Ghee etc.) which contract on solidification.

Their behaviour regarding solidification is opposite.

Melting point of ice decreases with rise of temperature but that of wax etc increases with increase in temperature. Similarly ice starts forming from top downwards whereas wax starts its formation from bottom.
5. (B) Heat lost in t seconds $=\mathrm{mL}$

Heat lost per second $=\frac{\mathrm{mL}}{\mathrm{t}}$.
This must be the heat supplied for keeping the substance in molten state per second.
$\therefore \quad \frac{\mathrm{mL}}{\mathrm{t}}=\mathrm{P} \Rightarrow \mathrm{L}=\frac{\mathrm{Pt}}{\mathrm{m}}$
6. (C) Heat delivered by burner in first 10 mins , $\mathrm{H}_{1}=\mathrm{Pt}_{1}$
where, P is power delivered by burner.
Let mass of water in the beaker be m then,
$\mathrm{Pt}_{1}=\mathrm{mc} \Delta \mathrm{T}$
Since settings of burner are unchanged, same power will be used for evaporation process.
If t_{2} is time taken to evaporate the water,
$\mathrm{Pt}_{2}=\mathrm{mL}$
$\mathrm{t}_{2}=\frac{\mathrm{mL}}{\mathrm{P}}=\frac{\mathrm{mLt}_{1}}{\mathrm{mc} \Delta \mathrm{T}}=\frac{\mathrm{Lt}_{1}}{\mathrm{c} \Delta \mathrm{T}}$
$=\frac{2.3 \times 10^{6} \times 10}{4.2 \times 10^{3} \times(100-20)}=68.45 \mathrm{~min} . \approx 68 \mathrm{~min}$
$=1 \mathrm{hr} 8 \mathrm{~min}$.
7. (D) $\frac{\mathrm{dQ}}{\mathrm{dt}}=50 \%$ of input P
$\therefore \quad \mathrm{P}_{\text {out }}=\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{15 \times 10^{3}}{2} \mathrm{~W}$
Also, $\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{mc} \frac{\mathrm{d} \theta}{\mathrm{dt}}$
$\therefore \quad \frac{15 \times 10^{3}}{2}=10 \times 0.91 \times 10^{3} \times \frac{\mathrm{d} \theta}{2 \times 60}$
$\therefore \quad \mathrm{d} \theta=\frac{15 \times 10^{3} \times 2 \times 60}{2 \times 10 \times 0.91 \times 10^{3}}=98.9^{\circ} \mathrm{C}$
8. (A) $\left(K A \frac{d T}{d x}\right) t=m L$,
$\mathrm{K} \propto \frac{1}{\mathrm{t}}$ So, $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}$
9. (B) $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA}}{l} \mathrm{~d} \theta=\frac{0.01 \times 1}{0.05} \times 30=6 \mathrm{~J} / \mathrm{s}$

Heat transferred in one day (86400 s)
$\theta=6 \times 86400=518400 \mathrm{~J}$
Now $\mathrm{Q}=\mathrm{mL} \Rightarrow \mathrm{m}=\frac{\mathrm{Q}}{\mathrm{L}}=\frac{518400}{334 \times 10^{3}}$

$$
=1.552 \mathrm{~kg}=1552 \mathrm{~g}
$$

10. (D) $\mathrm{Q}=\mathrm{KA}\left(\frac{\Delta \theta}{\Delta \mathrm{x}}\right) \mathrm{dt}$

Now, $\mathrm{Q}=\mathrm{mL}$
$\therefore \quad \mathrm{mL}=\mathrm{KA}\left(\frac{\Delta \theta}{\Delta \mathrm{x}}\right) \mathrm{dt}$
$\therefore \quad \mathrm{mL}=\frac{\mathrm{KA}[0-(-26)] \mathrm{dt}}{\mathrm{x}}$
$\therefore \quad(\rho A d x) L=K A \frac{[0-(-26)]}{x} d t$
$\therefore \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{26 \mathrm{~K}}{\mathrm{x} \rho \mathrm{L}}$
11. (C) $\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA} \Delta \theta}{\Delta \mathrm{x}}$
$\frac{\mathrm{mL}}{\mathrm{t}}=\frac{\mathrm{K}\left(\pi \mathrm{r}^{2}\right) \Delta \theta}{\Delta \mathrm{x}}$
For $1^{\text {st }}$ rod
$\left(\frac{\mathrm{m}}{\mathrm{t}}\right)_{1}=\frac{\mathrm{K}_{1} \mathrm{r}_{1}^{2}}{\mathrm{x}_{1}}$
For $2^{\text {nd }}$ rod
$\left(\frac{\mathrm{m}}{\mathrm{t}}\right)_{2}=\frac{\mathrm{K}_{2} \mathrm{r}_{2}^{2}}{\mathrm{x}_{2}}$
But $K_{2}=\frac{K_{1}}{4}, r_{2}=2 r_{1}, x_{2}=\frac{x_{1}}{2}$
$\therefore \quad$ Dividing (ii) by (i)
$\therefore \quad \frac{\left(\frac{m}{t}\right)_{2}}{\left(\frac{m}{t}\right)_{1}}=\frac{\frac{K_{1}}{4}\left(2 r_{1}\right)^{2}}{\frac{x_{1}}{2}} \times \frac{\mathrm{x}_{1}}{\mathrm{~K}_{1} r_{1}^{2}}=\frac{\left(\frac{\mathrm{K}_{1}}{4}\right) 4 \mathrm{r}_{1}^{2}}{\mathrm{x}_{1}} \times \frac{\mathrm{x}_{1}}{\mathrm{~K}_{1} \mathrm{r}_{1}^{2}}$
$\left(\frac{\mathrm{m}}{\mathrm{t}}\right)_{2}=\left(\frac{\mathrm{m}}{\mathrm{t}}\right)_{1} \times 2$
$\left(\frac{\mathrm{m}}{\mathrm{t}}\right)_{2}=0.1 \times 2=0.2 \mathrm{~g} / \mathrm{s}$
12. (A) From Newton's law of cooling,
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{K}\left(\theta-\theta_{0}\right)$
When the liquid is maintained at $\theta=57^{\circ} \mathrm{C}$ by heater of power 30 W ,

$$
\begin{equation*}
30=K(57-27) \tag{i}
\end{equation*}
$$

$\therefore \quad \mathrm{K}=1$
Also, $\mathrm{Q}=\mathrm{mc} \theta$
$\therefore \quad \frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{mc} \mathrm{d} \theta}{\mathrm{dt}}=\mathrm{K}\left(\theta-\theta_{0}\right)$
As temperature difference is too small, θ can be considered as $47^{\circ} \mathrm{C}$.
$\therefore \quad \frac{250 \times 10^{-3} \times \mathrm{c} \times(47-46.9)}{10}=\mathrm{K}(47-27)$
$\therefore \quad 0.0025 \times \mathrm{c}=20 \mathrm{~K}$
$\therefore \quad 0.0025 \times \mathrm{c}=20$
....[From (i)]
$\therefore \quad \mathrm{c}=\frac{20}{0.0025}=8000 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
13. (A) Frictional force, $\mathrm{f}=\mu \mathrm{mg}=0.1 \times 20 \times 10=20 \mathrm{~N}$ The work done in dragging the block is converted into heat energy.
$\therefore \quad \mathrm{f} \times \mathrm{ut}=\mathrm{mc} \Delta \mathrm{T}$
$\therefore \quad 20 \times 0.5 \times 2.1=20 \times 0.1 \times 4.2 \times 10^{3} \times \Delta \mathrm{T}$
$\therefore \quad \Delta \mathrm{T}=0.0025^{\circ} \mathrm{C}$
14. (B) Using the ideal gas equation,

$$
\mathrm{PV}=\mathrm{nRT}
$$

$\therefore \quad \frac{1}{\mathrm{~T}}=\frac{\mathrm{nR}}{\mathrm{PV}}$
Since pressure (P) is constant
$P \Delta V=n R \Delta T$
$\therefore \quad \frac{\Delta \mathrm{V}}{\Delta \mathrm{T}}=\frac{\mathrm{nR}}{\mathrm{P}}$
The coefficient of volume expansion,
$\alpha_{v}=\frac{\Delta V}{V \Delta T}$
$\therefore \quad \alpha_{v}=\frac{\mathrm{nR}}{\mathrm{PV}}=\frac{1}{\mathrm{~T}} \Rightarrow \alpha_{\mathrm{v}} \propto \frac{1}{\mathrm{~T}}$
Thus, graph (B) represents correct graph.
15. (C) Fromideal gas equation $\mathrm{PV}=\mathrm{nRT} \Rightarrow \mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}$

Given $\mathrm{PT}^{2}=\mathrm{K} \Rightarrow \frac{\mathrm{nRT}}{\mathrm{V}} \cdot \mathrm{T}^{2}=\mathrm{K}=\mathrm{nRT}^{3}=\mathrm{KV}$
Differentiating both sides,
3n $\mathrm{RT}^{2} \mathrm{dT}=\mathrm{K} d V$
Dividing equation (ii) by equation (i),
$\frac{3}{\mathrm{~T}} \mathrm{dT}=\frac{\mathrm{dV}}{\mathrm{V}}$
Coefficient of volume expansion $=\frac{\mathrm{dV}}{\mathrm{VdT}}=\frac{3}{\mathrm{~T}}$
16. (C) When external pressure is applied on the cube, the compression produced in volume is
$\frac{\Delta \mathrm{V}}{\mathrm{V}}=\frac{\mathrm{P}}{\mathrm{K}}$
When heated, the cube will expand through, $\Delta \mathrm{V}=\mathrm{V}(\gamma \Delta \mathrm{T})$
$\therefore \quad \frac{\Delta \mathrm{V}}{\mathrm{V}}=3 \alpha \Delta \mathrm{~T}$
...(ii) $(\because \gamma=3 \alpha)$
Hence, equating equations (i) and (ii),
$3 \alpha \Delta \mathrm{~T}=\frac{\mathrm{P}}{\mathrm{K}}$
$\therefore \quad \Delta \mathrm{T}=\frac{\mathrm{P}}{3 \alpha \mathrm{~K}}$
17. (C) As the coefficient of cubical expansion of metal is less as compared to the coefficient of cubical expansion of liquid, we may neglect the expansion of metal ball. So when the ball is immersed in alcohol at $0^{\circ} \mathrm{C}$, it displaces some volume V of alcohol at $0{ }^{\circ} \mathrm{C}$ and has weight W_{1}.
$\mathrm{W}_{1}=\mathrm{W}_{0}-\mathrm{V} \rho_{0} \mathrm{~g}$
where $\mathrm{W}_{0}=$ weight of ball in air
Similarly, $\mathrm{W}_{2}=\mathrm{W}_{0}-\mathrm{V} \rho_{50} \mathrm{~g}$
where, $\rho_{0}=$ density of alcohol at $0^{\circ} \mathrm{C}$
and $\rho_{50}=$ density of alcohol at $50^{\circ} \mathrm{C}$
As $\rho_{50}<\rho_{0}, \Rightarrow W_{2}>W_{1}$ or $W_{1}<W_{2}$
18. (A) When the piece of ice falls from the height h, it possesses potential energy, mgh.
This P.E. is converted to heat energy.
$\therefore \quad \mathrm{Q}=\mathrm{mgh}$
But only $\frac{1}{4}^{\text {th }}$ of it is absorbed by ice which is used to change the state.
$\therefore \quad \frac{\mathrm{mgh}}{4}=\mathrm{mL}$
$\therefore \quad \frac{10 \times \mathrm{h}}{4}=3.4 \times 10^{5}$
$\therefore \quad \mathrm{h}=13.6 \times 10^{4} \mathrm{~m}=136 \mathrm{~km}$
19. (A) When a bullet is fired it has
K.E. $=\frac{1}{2} \mathrm{mv}^{2}$

This K.E. is converted into heat energy. Out of which $\frac{1}{4}$ th of heat is absorbed hence remaining energy is used to melt the bullet.
$\therefore \quad \frac{3}{4}\left(\frac{1}{2} \mathrm{mv}^{2}\right)=\mathrm{mc} \Delta \theta+\mathrm{mL}$
$\therefore \quad \frac{3}{8} \mathrm{v}^{2}=\mathrm{c} \Delta \theta+\mathrm{L}$
$\therefore \quad \frac{3}{8} \mathrm{v}^{2}=0.03 \times 4200 \times(600-300)+6 \times 4200$
$\therefore \quad v^{2}=8(0.01 \times 4200 \times 300)+8(2 \times 4200)$

$$
\begin{aligned}
& =8 \times 4200(3+2) \\
& =168000 \\
\mathrm{v} & =\sqrt{168000} \approx 410 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

20. (A) For two identical ice blocks,

$$
\mathrm{m}_{1}=\mathrm{m}_{2} \Rightarrow \mu=\frac{\mathrm{m}}{2}
$$

Relative velocity $\left(\mathrm{V}_{\text {rel }}\right)=\mathrm{u}_{1}-\left(-\mathrm{u}_{2}\right)=\mathrm{u}_{1}+\mathrm{u}_{2}=2 \mathrm{u}$
$\therefore \quad$ K.E. $=\frac{1}{2} \mu \mathrm{v}_{\mathrm{rel}}^{2}=\frac{1}{2} \times \frac{\mathrm{m}}{2} \times(2 \mathrm{u})^{2}=\mathrm{mu}^{2}$
Also this K.E. is used to completely melt both the blocks.
$\therefore \quad \mathrm{mu}^{2}=\mathrm{Q}=(\mathrm{mL}+\mathrm{mc} \Delta \theta) \times 2$
$\therefore \quad \mathrm{u}^{2}=2(\mathrm{~L}+\mathrm{c} \Delta \theta)$

$$
\begin{aligned}
& =\left(2 \times 3.36 \times 10^{5}\right)+\{(2 \times 2100 \times[0-(-8)]\} \\
& =2 \times(336000+16800) \\
& =705600
\end{aligned}
$$

$\therefore \quad u=840 \mathrm{~m} / \mathrm{s}$
21. (D) Period of pendulum,

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}
$$

$\therefore \quad \mathrm{T} \propto \sqrt{\mathrm{L}}$
But, $\mathrm{L}=\mathrm{L}_{0}(1+\alpha \Delta \mathrm{t})$
$\therefore \quad \mathrm{T} \propto \sqrt{\mathrm{L}_{0}(1+\alpha \Delta \mathrm{t})}$

As L_{0} is constant,
$\Rightarrow \mathrm{T} \propto(1+\alpha \Delta \mathrm{t})^{1 / 2}$
Calculating fractional change in time period of pendulum,
$\frac{\Delta T}{T}=\frac{1}{2}(\alpha \Delta t)$
For the given pendulum,
$\mathrm{T}=24 \times 60 \times 60=86400 \mathrm{~s}$
When $\mathrm{t}_{1}=40^{\circ} \mathrm{C}, \Delta \mathrm{T}=12 \mathrm{~s}$,
$\frac{\Delta \mathrm{T}}{\mathrm{T}}=\frac{1}{2} \alpha\left(40-\mathrm{t}_{0}\right)$
Where, t_{0} is temperature at which the clock will show correct time.
$\therefore \quad \frac{12}{86400}=\frac{1}{2} \alpha\left(40-\mathrm{t}_{0}\right)$
Similarly, when $\mathrm{t}_{2}=20^{\circ} \mathrm{C}, \Delta \mathrm{T}=4 \mathrm{~s}$
$\therefore \quad \frac{4}{86400}=\frac{1}{2} \alpha\left(\mathrm{t}_{0}-20\right)$

Dividing equation (i) by (ii),
$\frac{12}{4}=\frac{\left(40-t_{0}\right)}{\left(t_{0}-20\right)}$
$\therefore \quad 3 \mathrm{t}_{0}-60=40-\mathrm{t}_{0}$
$\therefore \quad \mathrm{t}_{0}=25^{\circ} \mathrm{C}$
Substituting it in equation (i),

$$
\frac{12}{86400}=\frac{1}{2} \alpha(40-25)
$$

$\therefore \quad \alpha=\frac{12 \times 2}{15 \times 86400}$
$=18.5 \times 10^{-6}$
$=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

Thinking Hatke - Q. 21

After finding out the value temperature of t_{0}, the only option which satisfies the condition is option (D).

MHT-CET Previous Years' Questions

1. (A)
2. (C) $\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{1}=\mathrm{k}\left(\theta_{1}-\theta_{0}\right)$
$\left(\frac{62-50}{10}\right)=\mathrm{k}(62-26)$
$\therefore \quad \mathrm{k}=\frac{12}{10 \times 36}=\frac{1}{30} / \mathrm{min}$
$\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{2}=\mathrm{k}\left(\theta_{2}-\theta_{0}\right)$
$\frac{50-42}{\mathrm{dt}}=\frac{1}{30}(50-26)$
$\therefore \quad \mathrm{dt}=\frac{8 \times 30}{24}=10 \mathrm{~min}$
3. (C) $\mathrm{F}=\alpha \mathrm{AY} \Delta \mathrm{T}$

$$
\begin{aligned}
& =1.2 \times 10^{-5} \times 2.5 \times 10^{-6} \times 2 \times 10^{11} \times 40 \\
& =240 \mathrm{~N}
\end{aligned}
$$

4. (B) According to Newton's law of cooling
$\frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{K}\left(\theta-\theta_{0}\right)$
Where, K is constant of proportionality.
Integrating
$\int_{\theta}^{\theta_{0}} \frac{d \theta}{\theta-\theta_{0}}=\int_{0}^{t} K d t$
$-\int_{\theta_{0}}^{\theta} \frac{\mathrm{d} \theta}{\theta-\theta_{0}}=\int_{0}^{\mathrm{t}} \mathrm{Kdt}$
$\int_{\theta_{0}}^{\theta} \frac{d \theta}{\theta-\theta_{0}}=-\int_{0}^{t} K d t$
$\log _{\mathrm{e}}\left(\theta-\theta_{0}\right)=-\mathrm{Kt}+\mathrm{c}$
$2.303 \log _{10}\left(\theta-\theta_{0}\right)=-K t+c$
As 2.303 is constant above equation can be equated to, $\log \left(\theta-\theta_{0}\right)=-K t+c$.
5. (C)
6. (A) Elongation $l=\alpha \Delta \theta \mathrm{L}=\alpha \mathrm{L}$ $\ldots .(\because \Delta \theta=\mathrm{t})$

Force $=\mathrm{Y} \alpha \mathrm{tA}$
Work done $=\frac{1}{2} \times$ Force \times elongation
$\therefore \quad \mathrm{W}=\frac{1}{2} \times \mathrm{Y} \alpha \mathrm{t} \mathrm{A} \times \alpha \mathrm{t} \mathrm{L}=\frac{1}{2} \mathrm{Y} \alpha^{2} \mathrm{t}^{2} \mathrm{AL}$
7. (A) Force $\mathrm{F}=\mathrm{AY} \alpha \Delta \mathrm{T}$
$\therefore \quad \mathrm{mg}=\mathrm{AY} \propto \Delta \mathrm{T}$
$\mathrm{m}=\frac{\mathrm{AY} \alpha \Delta \mathrm{T}}{\mathrm{g}}=\frac{3 \times 10^{-6} \times 10^{11} \times 10^{-5} \times 100}{10}=30 \mathrm{~kg}$
8. (B) Thermal resistance $=\frac{\text { Temp. difference }}{\text { Conduction rate }}$
$\frac{\left|\mathrm{T}_{1}-\mathrm{T}_{2}\right|}{\mathrm{P}_{\text {cond }}}=\frac{28}{1400}=0.02{ }^{\circ} \mathrm{C} / \mathrm{s} \mathrm{cal}$
9. (C) Let the required temperature be P_{T}

Using relation between temperature and thermodynamic property,
$\mathrm{T}=\frac{100\left(\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{1}\right)}{\mathrm{P}_{2}-\mathrm{P}_{1}}$
In this case, $\mathrm{P}_{2}=239{ }^{\circ} \mathrm{W}, \mathrm{P}_{1}=39{ }^{\circ} \mathrm{W}$ and $\mathrm{T}=39^{\circ} \mathrm{C}$
$\therefore \quad 39=\frac{100\left(\mathrm{P}_{\mathrm{T}}-39\right)}{239-39}=\frac{100\left(\mathrm{P}_{\mathrm{T}}-39\right)}{200}$
$\therefore \quad \mathrm{P}_{\mathrm{T}}=(2 \times 39)+39=117^{\circ} \mathrm{W}$
10. (B) Temperature in kelvin $=-197+273=76 \mathrm{~K}$
11. (A) $\frac{\mathrm{Q}}{\mathrm{At}}=\frac{\mathrm{k} \Delta \mathrm{T}}{\mathrm{x}}$
$\therefore \quad 10=\mathrm{k} \times \frac{9}{1.8 \times 10^{-2}}$
$\therefore \quad \mathrm{k}=\frac{18 \times 10^{-2}}{9}=2 \times 10^{-2} \mathrm{kcal} / \mathrm{ms}^{\circ} \mathrm{C}$
12. (D) $\gamma=\frac{\Delta \mathrm{V}}{\mathrm{V}(\Delta \mathrm{T})}=\frac{0.3}{100 \times 50}=6 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
$\alpha=\frac{\gamma}{3}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
13. (D) $\mathrm{V}=500 \mathrm{~cm}^{3}, \alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\gamma=3 \alpha=36 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}=\mathrm{V} \alpha \Delta \mathrm{T}=500 \times 36 \times 10^{-6} \times 100=1.8 \mathrm{~cm}^{3}$
14. (C)
15. (D) Let T be the temperature of the junction then we have
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{K}_{1} \mathrm{~A}\left(\mathrm{~T}_{1}-\mathrm{T}\right)}{\mathrm{d}_{1}}=\frac{\mathrm{K}_{2} \mathrm{~A}\left(\mathrm{~T}-\mathrm{T}_{2}\right)}{\mathrm{d}_{2}}$
$\therefore \quad\left(\mathrm{K}_{1} \mathrm{~T}_{1}-\mathrm{K}_{1} \mathrm{~T}\right) \mathrm{d}_{2}=\left(\mathrm{K}_{2} \mathrm{~T}-\mathrm{K}_{2} \mathrm{~T}_{2}\right) \mathrm{d}_{1}$
Solving the equation for T
$\mathrm{T}=\frac{\mathrm{K}_{1} \mathrm{~T}_{1} \mathrm{~d}_{2}+\mathrm{K}_{2} \mathrm{~T}_{2} \mathrm{~d}_{1}}{\mathrm{~K}_{1} \mathrm{~d}_{2}+\mathrm{K}_{2} \mathrm{~d}_{1}}$
16. (B) Let l_{1} be the initial length of the rod and r_{1} be the radius of the rod. Then
$\mathrm{H}_{1}=\frac{\mathrm{kA}_{1}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{l_{1}}$
After doubling the dimensions,
$\mathrm{H}_{2}=\frac{\mathrm{kA}_{2}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{l_{2}}$
$\therefore \quad \frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}} \times \frac{l_{1}}{l_{2}}$
If $\mathrm{r}_{2}=2 \mathrm{r}_{1}$, then $\mathrm{A}_{2}=4 \mathrm{~A}_{1}$
Also, $l_{2}=2 l_{1}$
$\therefore \quad \frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}=4 \times \frac{1}{2}=2$
$\therefore \quad \mathrm{H}_{2}=2 \mathrm{H}_{1}$
17. (A) Only 25% of the energy is absorbed by ice and it melts completely.
$\therefore \quad 0.25 \mathrm{mgh}=\mathrm{mL}$
$\therefore \quad \mathrm{h}=\frac{\mathrm{L}}{0.25 \times \mathrm{g}}=\frac{3.5 \times 10^{5}}{0.25 \times 10}=1.4 \times 10^{5} \mathrm{~m}=140 \mathrm{~km}$
18. (C)
19. (D) Coefficient of cubical expansion of liquid $=\gamma$

Coefficient of linear expansion of copper $=\frac{\gamma}{3}$
$\therefore \quad$ coefficient of cubical expansion of copper
$=3 \times \frac{\gamma}{3}=\gamma$
Since the coefficient of cubical expansion of liquid and the container is same, they will expand by almost same amount. As a result, liquid level will remain almost the same.
20. (D) If R is the thermal resistance of each rod, then in series, their equivalent resistance will be $R_{S}=2 R$ and in parallel it will be $R_{P}=\frac{R}{2}$

Hence the ratio $\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{s}}}=\frac{1}{4}$
Since thermal resistance becomes one fourth, the rate of transfer of heat will become four times.
This means time required will be $\frac{\mathrm{t}}{4} \mathrm{~s}$.
21. (B) Length of brass rod at temp. $\mathrm{t}=l_{1}+l_{1} \alpha_{1} \Delta \mathrm{t}$

Length of steel rod at temp. $\mathrm{t}=l_{2}+l_{2} \alpha_{2} \Delta \mathrm{t}$
Length of steel rod - length of brass rod
$=\left(l_{2}-l_{1}\right)+\left(l_{2} \alpha_{2}-l_{1} \alpha_{1}\right) \Delta \mathrm{t}$
For difference in the length to be constant coefficient of Δt must be zero.
$\therefore \quad l_{2} \alpha_{2}-l_{1} \alpha_{1}=0$
$\therefore \quad l_{1} \alpha_{1}=l_{2} \alpha_{2}$
22. (D) $R_{e q}=R_{1}+R_{2}$
$\because \quad \mathrm{R}_{1}=\frac{\mathrm{x}}{\mathrm{KA}}, \mathrm{R}_{2}=\frac{4 \mathrm{x}}{2 \mathrm{KA}}$
$\therefore \quad \mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{x}}{\mathrm{KA}}+\frac{2 \mathrm{x}}{\mathrm{KA}}=\frac{3 \mathrm{x}}{\mathrm{KA}}$
Rate of heat transfer of composite slab is given by,
$\frac{d \mathrm{Q}}{\mathrm{dt}}=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{R}_{\mathrm{eq}}}=\frac{\mathrm{KA}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{3 \mathrm{x}}$
$\therefore \quad \mathrm{f}=\frac{1}{3}$
23. (B) In volumetric expansion for a cube
$\Delta \mathrm{V}=\mathrm{V} 3 \alpha \Delta \mathrm{~T}$
$\Delta \mathrm{V}=1 \times 3 \times 18 \times 10^{-6} \times 100$
$\Delta \mathrm{V}=54 \times 10^{-4} \mathrm{~m}^{3}$
24. (C) Let the original temperature be $0^{\circ} \mathrm{C}$;

Volume of $\mathrm{A}=\mathrm{V}_{1}=l \times \pi(2 \mathrm{r})^{2}$;
After heating volume of A will become,
$\mathrm{V}^{\prime}{ }_{1}=\mathrm{V}_{1}(1+\gamma \Delta \mathrm{T})$
$\frac{\left(\mathrm{V}_{1}^{\prime}-\mathrm{V}_{1}\right)}{\mathrm{V}_{1}}=\gamma \Delta \mathrm{T}$
As r and ΔT are constant here,
$\mathrm{V}^{\prime}{ }_{1}-\mathrm{V}_{1} \propto \mathrm{~V}_{1}$
Similarly for $\operatorname{rod} B$,
$\frac{\left(\mathrm{V}_{2}^{\prime}-\mathrm{V}_{2}\right)}{\mathrm{V}_{2}}=\gamma \Delta \mathrm{T} \Rightarrow \mathrm{V}^{\prime}{ }_{2}-\mathrm{V}_{2} \propto \mathrm{~V}_{2}$
$\therefore \quad \frac{\Delta \mathrm{V}_{1}}{\Delta \mathrm{~V}_{2}}=\frac{l \pi(2 \mathrm{r})^{2}}{2 l \pi \mathrm{r}^{2}}=\frac{2}{1}$
25. (C) Coefficient of cubical expansion is related to coefficient of superficial expansion as
$\frac{\gamma}{3}=\frac{\beta}{2}$
$\therefore \quad \beta=\frac{2}{3} \gamma$
Given: $\beta=\frac{1}{\mathrm{x}} \gamma$
$\therefore \quad \mathrm{x}=\frac{3}{2}$

Evaluation Test

1. (A) In steady state the quantity of heat absorbed and quantity of heat radiated is same.
2. (A) According to Newton's law of cooling, $\frac{\theta_{1}-\theta_{2}}{\mathrm{t}}=\mathrm{K}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$
where, $\theta_{0}=$ tempeature of surrounding
$\therefore \quad \frac{60-50}{8}=\mathrm{K}\left[\frac{60+50}{2}-30\right]$
$\frac{10}{8}=\mathrm{K} \times 25$
After another 20 min , let the temperature be θ.

$$
\begin{aligned}
& \therefore \quad \frac{50-\theta}{20}=K\left[\frac{50+\theta}{2}-30\right] \quad \ldots .(\mathrm{ii)} \\
& \frac{50-\theta}{20}=\frac{10}{8 \times 25}\left[\frac{50+\theta}{2}-30\right] \quad \text { using (i) } \\
& \frac{50-\theta}{20}=\frac{1}{20}\left[\frac{50+\theta-60}{2}\right] \\
& 2(50-\theta)=50+\theta-60 \\
& 100-2 \theta=-10+\theta \\
& 3 \theta=110 \\
& \theta=\frac{110}{3}
\end{aligned}=36.67^{\circ} \mathrm{C} . \quad 1
$$

3. (B) Let ' m ' grams be the mass of the steam.

Heat lost by the steam $=m \times L$

$$
+\mathrm{m} \times 1 \times(100-0)
$$

$=\mathrm{m} \times 540+100 \mathrm{~m}$
$=640 \mathrm{~m}$
Heat gained by ice $=\mathrm{m}_{\mathrm{i}} \times \mathrm{c} \times \Delta \mathrm{T}+\mathrm{m}_{\mathrm{i}} \mathrm{L}$
$=1600 \times 0.5 \times[0-(-8)]+1600 \times 80$ $=134400 \mathrm{cal}$.
According to principle of calorimetry,
$640 \mathrm{~m}=134400 \Rightarrow \mathrm{~m}=210 \mathrm{~g}$.
4. (A) Coefficient of linear expansion for brass $\left(1.8 \times 10^{-5}{ }^{\circ} \mathrm{C}\right)>$ coefficient of linear expansion for steel $\left(1.1 \times 10^{-5}{ }^{\circ} \mathrm{C}\right)$. On cooling the disc shrinks to a greater extent than the hole and hence it will get loose.
5. (D) Let the temperature of junction be θ
$\left(\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right)_{\text {copper }}=\left(\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right)_{\text {stel }}$
$\mathrm{K}_{1} \mathrm{~A} \frac{(100-\theta)}{20}=\frac{\mathrm{K}_{2} \mathrm{~A}(\theta-2.5)}{5}$
$9 \mathrm{~K}_{2} \frac{(100-\theta)}{4}=\mathrm{K}_{2}(\theta-2.5) \quad\left(\because \mathrm{K}_{1}=9 \mathrm{~K}_{2}\right)$
$900-9 \theta=4 \theta-10$
$\therefore \quad 13 \theta=910$
$\therefore \quad \theta=70^{\circ} \mathrm{C}$.
6. (C) Density of water is maximum at $4^{\circ} \mathrm{C}$. In both heating and cooling of water from this temperature, level of water rises due to decrease in density, i.e., water will overflow in both A and B.
7. (C) If l is the original length of wire, then change in length of first wire, $\Delta l_{\mathrm{A}}=\left(l_{\mathrm{A}}-l\right)$
Change in length of second wire, $\Delta l_{B}=\left(l_{B}-l\right)$
Now Young's Modulus,
$\mathrm{Y}=\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{A}} \times \frac{l}{\Delta l_{\mathrm{A}}}=\frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{A}} \times \frac{l}{\Delta l_{\mathrm{B}}}$
$\Rightarrow \frac{\mathrm{T}_{\mathrm{A}}}{\Delta l_{\mathrm{A}}}=\frac{\mathrm{T}_{\mathrm{B}}}{\Delta l_{\mathrm{B}}} \Rightarrow \frac{\mathrm{T}_{\mathrm{A}}}{l_{\mathrm{B}}-l}=\frac{\mathrm{T}_{\mathrm{B}}}{l_{\mathrm{B}}-l}$
$\therefore \quad \mathrm{T}_{\mathrm{A}} l_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}} l=\mathrm{T}_{\mathrm{B}} l_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}} l$
$\therefore \quad l=\frac{\mathrm{T}_{\mathrm{B}} l_{\mathrm{A}}-\mathrm{T}_{\mathrm{A}} l_{\mathrm{B}}}{\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}}$
8. (A) Increase in volume of flask
$=40 \times 10^{-6} \times 4000 \times 80$
$=12.8 \mathrm{cc}$
Increase in volume of mercury
$=180 \times 10^{-6} \times 4000 \times 80=57.6 \mathrm{cc}$
$\therefore \quad$ Volume of mercury overflow
$=57.6-12.8=44.8 \mathrm{cc}$
9. (B) Using standard gas equation,

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& V_{2}=\frac{P_{1} V_{1} T_{2}}{P_{2} T_{1}} \\
& \quad=\frac{1 \times 600 \times(273-13)}{0.8 \times(273+37)} \approx 629 \mathrm{~m}^{3}
\end{aligned}
$$

10. (A) Colour is an indication of temperature of the body. If two pieces of same substance appear of different colours, then their temperatures must be different. In this case, $\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\mathrm{B}}$
11. (A) Number of moles of gas in two flasks are $\mathrm{n}_{1}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{RT}}$ and $\mathrm{n}_{2}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{RT}}$
$\because \quad \mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$
$\therefore \quad P=\frac{\left(n_{1}+n_{2}\right) R T}{V_{1}+V_{2}}=\frac{P_{1} V_{1}+P_{2} V_{2}}{V_{1}+V_{2}}$
12. (D)
13. (C) Fahrenheit scale and Absolute scale are related as
$\frac{\mathrm{T}_{\mathrm{F}}-32}{180}=\frac{\mathrm{T}_{\mathrm{K}}-273 \cdot 15}{100}$
For another set of temperature $\mathrm{T}_{\mathrm{F}}{ }^{\prime}$ and $\mathrm{T}_{\mathrm{K}}{ }^{\prime}$,
$\frac{\mathrm{T}_{\mathrm{F}}{ }^{\prime}-32}{180}=\frac{\mathrm{T}_{\mathrm{K}}{ }^{\prime}-273 \cdot 15}{100}$
Subtracting (i) from (ii)
$\frac{\mathrm{T}_{\mathrm{F}}{ }^{\prime}-\mathrm{T}_{\mathrm{F}}}{180}=\frac{\mathrm{T}_{\mathrm{K}}{ }^{\prime}-\mathrm{T}_{\mathrm{K}}}{100}$
$\mathrm{T}_{\mathrm{F}}{ }^{\prime}-\mathrm{T}_{\mathrm{F}}=\frac{180}{100}\left(\mathrm{~T}_{\mathrm{K}}{ }^{\prime}-\mathrm{T}_{\mathrm{K}}\right)$
If $\mathrm{T}_{\mathrm{K}}^{\prime}-\mathrm{T}_{\mathrm{K}}=1 \mathrm{~K}$ then, $\mathrm{T}_{\mathrm{F}}^{\prime}-\mathrm{T}_{\mathrm{F}}=\frac{180}{100} \times 1=\frac{9}{5}$
For a temperature of triple point i.e., 273.16 K, the temperature on the new scale is
$=273 \cdot 16 \times \frac{9}{5} \approx 491.69$
14. (C) At absolute zero temperature, pressure P of gas would reduce to zero. The volume V of the gas would also become zero. If we were to imagine going below this temperature, volume of gas would be negative, which is impossible. That suggests that the lowest attainable temperature is absoulate zero.

At absolute zero, the translatory motion of molecules ceases but other forms of molecular energy (like inter molecular potential energy) do not become zero. Therefore absolute zero temperature is not the temperature of zeroenergy.
15. (C)
16. (B) Using $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA} \Delta \theta}{\Delta \mathrm{x}}$,

$$
\begin{aligned}
\Delta \theta & =\frac{\mathrm{dQ}}{\mathrm{dt}} \times \frac{\Delta \mathrm{x}}{\mathrm{KA}} \\
& =\frac{6000 \times 1}{200 \times 0.75}
\end{aligned}
$$

$\therefore \quad \Delta \theta=40^{\circ} \mathrm{C}$
17. (C)
18. (C) $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\frac{3}{2} \Rightarrow \frac{\mathrm{C}_{\mathrm{v}}+\mathrm{R}}{\mathrm{C}_{\mathrm{v}}}=\frac{3}{2}$

This gives $C_{v}=2 R$, and hence $C_{p}=3 R$
19. (B)
20. (A) Heat lost by hot ball $=$ Heat gained by water $\mathrm{m}_{1} \times \mathrm{c}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{0}\right)=\mathrm{m}_{2} \times \mathrm{c}_{2}\left(\mathrm{t}_{0}-\mathrm{t}_{1}\right)$
$200 \times 0.08 \times(\mathrm{t}-22.8)=500 \times 1 \times(22.8-10)$
$\therefore \quad t=422.8^{\circ} \mathrm{C}$
21. (B) $\frac{50-49.9}{5}=\mathrm{k}\left[\frac{50+49.9}{2}-30\right] \ldots$ (i)
$\frac{40-39.9}{\mathrm{t}}=\mathrm{k}\left[\frac{40+39.9}{2}-30\right] \ldots$.(ii)
from equations (i) and (ii) $t \approx 10 \mathrm{~s}$
22. (C)
23. (B) At constant volume of a gas
$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
$\therefore \quad \frac{20}{273.15}=\frac{14}{\mathrm{~T}_{2}}$
$\therefore \quad \mathrm{T}_{2}=191.21 \mathrm{~K}$
24. (C)
25. (B) $\left(\frac{\mathrm{Q}}{\mathrm{t}}\right)=\frac{K \pi r^{2}\left(\theta_{1}-\theta_{2}\right)}{\Delta \mathrm{x}} \propto \frac{\mathrm{r}^{2}}{\Delta \mathrm{x}}$
$\therefore \quad \frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2}\left(\frac{\Delta \mathrm{x}_{2}}{\Delta \mathrm{x}_{1}}\right)=\left(\frac{1}{2}\right)^{2} \times\left(\frac{2}{1}\right)=\frac{1}{2}$
$\mathrm{Q}_{2}=2 \mathrm{Q}_{1}$

Give your MHT-CET exam preparation the HECHNOHOGY BOOST!

Practice more than 23,000 MCQs for just ₹649/-

Use Coupon Code

 QUILLPADHAI2023
Also available for $\mathrm{X}^{\mathrm{th}}, \mathrm{XI}^{\mathrm{th}}, \mathrm{XII}^{\mathrm{th}}$, NEET \& JEE

- Practice chapter-wise \& full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Visit our website to know more about our range of books for $\mathrm{X}^{\mathrm{th}}, \mathrm{XIt}^{\mathrm{t}}, \mathrm{XII}{ }^{\text {th }}, \mathrm{NEET} \& \mathrm{JEE}$

Scan QR Code to download the app

Visit Our Website

[^0]: (C) Target Publications Pvt. Ltd.

 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

[^1]: This reference book is transformative work based on Std. XI and XII Physics Textbooks; Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.
 No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

