StMMPMy OONH:

MTIT-GE

TRIUMPH

CHEMISTRY

SOLDIPLS

to MeCs

Target Publications ${ }^{\circ}$ Pvt. Ltd.

TRIUMPH
 MHT-CET CHEMISTRY SOLUTIONS to MCQs

Salient Features

(G) Detailed solutions provided for difficult MCQs as per the concepts emphasized in the syllabus

- Smart Keys (Smart Code, Caution, Thinking Hatke, Shortcut) - Multiple Study Techniques to enhance understanding of concepts and problem solving skills
© Solutions to Evaluation Test for each chapter
G- Solutions to two Model Question Papers
- Solutions to Two MHT-CET 2023 Question Papers

Printed at: Print to Print, Mumbai

[^0]
PREFACE

Target's Triumph MHT-CET Chemistry Solutions to MCQs book provides students with holistic comprehension of principles of chemistry through solutions to MCQs based on the concepts emphasized in the syllabus.

It includes Smart Keys (Smart Code, Caution, Thinking Hatke, and Shortcut), which offer supplemental explanations for the tricky questions and are intended to help students how to approach problems in novel ways in the shortest possible time with accuracy.

- Smart Code showcases simple and smart mnemonic.
- Caution apprises students about mistakes often made while solving MCQs.
- Shortcuts comprise formulae based short cuts considering their usage in solving MCQ.
- Thinking Hatke reveals quick witted approach to crack the specific question.

Roadmaps for the sequences of organic reactions are drawn in the solutions to the newly added chapter "Organic Reactions: Compilation of Organic Reaction Based MCQs" making them a helpful novelty in learning organic chemistry.

Solutions to two Model Question Papers and two MHT-CET 2023 Question Papers are also included in this book.

All the features of this book are designed keeping the following elements in mind:
Time management, easy memorization or revision, and non-conventional yet simple methods for MCQ solving.

We hope the book benefits the learner as we have envisioned.
Publisher

Edition: First

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

Disclaimer

[^1]No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Sr. No.	Textbook Chapter No.	Chapter Name	Page No.
Std. XI			
1	1	Some Basic Concepts of Chemistry	1
2	4	Structure of Atom	9
3	5	Chemical Bonding	22
4	6	Redox Reactions	30
5	8	Elements of Group 1 and Group 2	40
6	10	States of Matter: Gaseous and Liquid States	48
7	11	Adsorption and Colloids	60
8	14	Basic Principles of Organic Chemistry	66
9	15	Hydrocarbons	77
Std. XII			
10	1	Solid State	103
11	2	Solutions	111
12	3	Ionic Equilibria	123
13	4	Chemical Thermodynamics	134
14	5	Electrochemistry	149
15	6	Chemical Kinetics	163
16	7	Elements of Groups 16, 17 and 18	179
17	8	Transition and Inner Transition Elements	189
18	9	Coordination Compounds	198
19	10	Halogen Derivatives	216
20	11	Alcohols, Phenols and Ethers	242
21	12	Aldehydes, Ketones and Carboxylic Acids	270
22	13	Amines	301
23	14	Biomolecules	323
24	15	Introduction to Polymer Chemistry	339
25	16	Green Chemistry and Nanochemistry	346
		Organic Reactions: Compilation of Organic Reaction Based MCQs	351
		Solutions to Model Question Paper I	376
		Solutions to Model Question Paper II	378
		Solutions to MHT-CET 12 ${ }^{\text {th }}$ May, 2023 Question Paper	380
		Solutions to MHT-CET $20{ }^{\text {th }}$ May, 2023 Question Paper	383

1 Some Basic Concepts of Chemistry

Classical Thinking

1.1 Introduction

1. (C)

1.2 Nature of chemistry

1. (C)
2. (C)
3. (C)
4. (D)
5. (D)
6. (D)
1.3 Properties of matter and their measurement
7. (B)
8. (B)
9. (D)
10. (A)
11. (B)
12. (A)
13. (B)

1.4 Laws of chemical combination

1. (C)
2. (C)
3. (B) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{HCl}+\mathrm{BaSO}_{4}$
$\therefore \quad 20.8+9.8=7.3+x$
$x=23.3$
4. (C)
5. (A)
6. (B)
7. (C)
8. (B)

1.5 Avogadro law

1. (C)

1.6 Dalton's atomic theory

1. (A)

1.7 Atomic and molecular masses

1. (A)
2. (A) Isotopes are the atoms of the same element having same atomic number (i.e., containing same number of protons and electrons) but different mass number (i.e., different number of neutrons).
3. (A)

1.8 Mole concept and molar mass

1. (D)
2. (C)
3. (C)
4. (C)
5. (D) Molecular formula of benzene is $\mathrm{C}_{6} \mathrm{H}_{6}$.
$\therefore \quad$ Molar mass $=12 \times 6+6 \times 1$

$$
=72+6=78 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\therefore \quad 1 \mathrm{~mole}$ of benzene is equal to 78 g of $\mathrm{C}_{6} \mathrm{H}_{6}$.
6. (B) Molar mass of $\mathrm{H}_{2}=2 \mathrm{~g} \mathrm{~mol}^{-1}$

2 g will contain 6.022×10^{23} molecules of H_{2}.
$\therefore \quad 1 \mathrm{~g}$ of H_{2} will contain $\frac{6.022 \times 10^{23}}{2}$ molecules
$=3.011 \times 10^{23}$ molecules $\approx 3 \times 10^{23}$ molecules
7. (A)
8. (C)
9. (D) Atomic mass of the element

$$
\begin{aligned}
& =1.792 \times 10^{-22} \times 6.022 \times 10^{23} \\
& =108
\end{aligned}
$$

10. (C) 1 mole of ozone $\left(\mathrm{O}_{3}\right)=48 \mathrm{~g}$
$\therefore \quad 0.5$ mole of ozone $\left(\mathrm{O}_{3}\right)=\frac{0.5 \times 48}{1}=24 \mathrm{~g}$
11. (B) Number of molecules $=\mathrm{n} \times 6.022 \times 10^{23}$

Now, $\mathrm{n}=\frac{\text { mass of oxygen }}{\text { molar mass of oxygen }}=\frac{16}{32}=0.5 \mathrm{~mol}$
$\therefore \quad$ Number of molecules $=0.5 \times 6.022 \times 10^{23}$

$$
=3.011 \times 10^{23}
$$

1.9 Moles and gases

1. (A)
2. (B) At S.T.P,
$22.4 \mathrm{dm}^{3}$ of any gas $\equiv 6.022 \times 10^{23}$ molecules

$$
\begin{aligned}
& \equiv 6.022 \times 10^{23} \mathrm{SO}_{2} \text { molecules } \\
& \equiv 6.022 \times 10^{23} \mathrm{~S} \text { atoms }
\end{aligned}
$$

Critical Thinking

1.2 Nature of chemistry

1. (A)
2. (D)
3. (D) The constituents of a compound cannot be easily separated by physical method.
4. (C) Mixture of any two liquids may be homogeneous or heterogeneous mixtures.
5. (D) A rusty nail is a mixture.
6. (D)

1.3 Properties of matter and their measurement

1. (D) 2. (A)
2. (C) $1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}=10^{3} \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}=10^{3} \mathrm{~mL}$.
3. (D)
(A) The mass of a body does not vary as its position changes.
(B) The SI unit of length is metre.
(C) A volumetric flask is used to prepare a known volume of a solution.
4. (A) ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$

$$
\begin{aligned}
& =\frac{9}{5}(40)+32 \\
& =72+32 \\
& =104^{\circ} \mathrm{F}
\end{aligned}
$$

6. (B) ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
$50=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
${ }^{\circ} \mathrm{C}=\frac{(50-32) \times 5}{9}=10^{\circ} \mathrm{C}$

1.4 Laws of chemical combination

1. (C)
2. (D)
3. (B)
4. (A)
5. (B) 32 g of sulphur combine with 32 g oxygen to form 64 g of sulphur dioxide as follows:
Sulphur + Oxygen \longrightarrow Sulphur dioxide $32 \mathrm{~g} \quad 32 \mathrm{~g} \quad 64 \mathrm{~g}$
Hence, $(0.5 \times 32=16 \mathrm{~g})$ of sulphur will combine with $(0.5 \times 32=16 \mathrm{~g})$ of oxygen to give $(0.5 \times 64=32 \mathrm{~g})$ sulphur dioxide.
6. (C) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$ (1 vol.) (3 vol.) (2 vol.$)$
3 volumes of H_{2} give 2 volumes of ammonia
$\therefore \quad 2 \mathrm{~L}$ of H_{2} will give $=\frac{2 \times 2}{3} \mathrm{~L}$ of ammonia

$$
=1.33 \mathrm{~L} \text { of ammonia }
$$

1.6 Dalton's atomic theory

1. (D)

1.7 Atomic and molecular masses

1. (D)
2. (B) One atomic mass unit is defined as a mass exactly equal to one-twelfth of the mass of one $\mathrm{C}-12$ atom.
1 a.m.u. $=1.66 \times 10^{-24} \mathrm{~g}$.

1 atom of ${ }^{12} \mathrm{C}=12$ a.m.u.

$$
\begin{aligned}
& =12 \times 1.66 \times 10^{-24} \mathrm{~g} \\
& =1.9923 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

3. (B)
4. (A) Average atomic mass of Boron (B) =
$\frac{\text { (At. mass of }{ }^{10} \mathrm{~B} \times \% \text { Abundance) }+ \text { (At. mass of }{ }^{11} \mathrm{~B} \times \% \text { Abundance) }}{100}$ $=\frac{(10.13 \mathrm{u} \times 19.60)+(11.009 \mathrm{u} \times 80.40)}{100}=10.84 u$
5. (A) Average atomic mass of X
$=\frac{200 \times 90+199 \times 8+202 \times 2}{100}=199.96 \approx 200 \mathrm{u}$
6. (A) Molecular mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
$=(6 \times$ Average atomic mass of C)
$+(5 \times$ Average atomic mass of H$)$
$+(1 \times$ Average atomic mass of Cl$)$
$=(6 \times 12.0 u)+(5 \times 1.0 u)+(1 \times 35.5 u)$
$=112.5 \mathrm{u}$
7. (D) Molecular mass of $\mathrm{O}_{2}=32 \mathrm{u}$
$\therefore \quad$ Mass of 1 molecule $=32 \mathrm{u}$
$\therefore \quad$ Mass of 1 molecule of O_{2}
$=32 \times 1.66 \times 10^{-24} \mathrm{~g}=53.1 \times 10^{-24} \mathrm{~g}$
8. (C) Formula mass of KCl
$=$ Average atomic mass of K

+ Average atomic mass of Cl
$=39.1+35.5=74.6 \mathrm{u}$

1.8 Mole concept and molar mass

1. (B) Molecular weight of sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$ $=46+16=62 u$ 62 g of $\mathrm{Na}_{2} \mathrm{O}=1$ mole 620 g of $\mathrm{Na}_{2} \mathrm{O}=10$ moles.
2. (A)
3. (C) 6.022×10^{23} atoms of H weighs 1 g .
$\therefore \quad$ Mass of 1 atom of hydrogen $=\frac{1}{6.022 \times 10^{23}}$

$$
=1.6 \times 10^{-24} \mathrm{~g}
$$

4. (D) $1 \mathrm{~mole} \equiv 6.022 \times 10^{23}$ electrons

One electron weighs $9.108 \times 10^{-31} \mathrm{~kg}$
$\therefore \quad 1$ mole of electrons weighs
$6.022 \times 10^{23} \times 9.108 \times 10^{-31} \mathrm{~kg}$
$\therefore \quad$ Number of moles that will weigh 1 kg
$=\frac{1}{6.022 \times 10^{23} \times 9.108 \times 10^{-31}}$ moles
$\therefore \quad \frac{1}{9.108 \times 6.022} \times 10^{8}$ moles of electrons will weigh one kilogram.
5. (D) Molar mass of $\mathrm{NH}_{3}=14+(3 \times 1)=17 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of moles $=\frac{4.25}{17}=0.25 \mathrm{~mol}$

Number of molecules of NH_{3}
$=0.25 \times \mathrm{N}_{\mathrm{A}}=1.506 \times 10^{23}$ molecules
One molecule of NH_{3} contains 4 atoms.
$\therefore \quad 1.506 \times 10^{23}$ molecules will contain
$=1.506 \times 10^{23} \times 4$
$=6.024 \times 10^{23}$ atoms $\approx 6 \times 10^{23}$ atoms.
6. (D) Number of atoms $=\mathrm{n} \times \mathrm{N}_{\mathrm{A}} \times$ Atomicity Where atomicity is the number of atoms in one molecule
18 g of $\mathrm{H}_{2} \mathrm{O} \equiv 1 \mathrm{~mole}=3 \times \mathrm{N}_{\mathrm{A}}$ atoms
16 g of $\mathrm{O}_{2} \equiv \frac{1}{2}$ mole $=2 \times \frac{1}{2} \mathrm{~N}_{\mathrm{A}}$ atoms
4.4 g of $\mathrm{CO}_{2} \equiv \frac{1}{10}$ mole $\equiv 3 \times \frac{1}{10} \times \mathrm{N}_{\mathrm{A}}$ atoms

16 g of $\mathrm{CH}_{4} \equiv 1 \mathrm{~mole}=5 \times \mathrm{N}_{\mathrm{A}}$ atoms
$\therefore \quad$ Maximum number of atoms is present in 16 g of CH_{4}.
7. (C) Number of atoms $=\mathrm{n} \times \mathrm{N}_{\mathrm{A}} \times$ Atomicity Number of S atoms $=6.022 \times 10^{23} \times 0.2 \times 8$

$$
\approx 9.63 \times 10^{23}
$$

8. (A) Number of moles in 4.4 g of CO_{2}
$=\frac{4.4}{44}=0.1$
Number of oxygen atoms in 1 mole of CO_{2}

$$
=2 \times \mathrm{N}_{\mathrm{A}}
$$

$\therefore \quad$ Number of oxygen atoms in 0.1 mole of CO_{2} $=0.1 \times 2 \times \mathrm{N}_{\mathrm{A}}=0.2 \times 6.022 \times 10^{23}=1.20 \times 10^{23}$
9. (C) Total number of atoms in a given amount of $\mathrm{H}_{2} \mathrm{O}=\mathrm{n} \times \mathrm{N}_{\mathrm{A}} \times 3$

$$
=\frac{0.05}{18} \times 6.022 \times 10^{23} \times 3=5.05 \times 10^{21}
$$

10. (B) 6.022×10^{23} dioxygen molecules are present in 1 mole i.e., 32 g of dioxygen.
$\therefore \quad 1.8 \times 10^{22}$ dioxygen molecules will be present in $\frac{1.8 \times 10^{22} \times 32}{6.022 \times 10^{23}}=0.96 \mathrm{~g}$ of dioxygen
11. (A) Molecular weight of $\mathrm{C}_{60} \mathrm{H}_{122}$

$$
=12 \times 60+122 \times 1=720+122=842 u
$$

$\therefore \quad 6.022 \times 10^{23}$ molecules $=842 \mathrm{~g}$

$$
\begin{aligned}
1 \text { molecule } & =\frac{842}{6.022 \times 10^{23}} \\
& =139.82 \times 10^{-23} \\
& \approx 1.4 \times 10^{-21} \mathrm{~g}
\end{aligned}
$$

12. (A) 1 mole of BaCO_{3} contains 3 moles of oxygen atoms
$\therefore \quad 1.5$ moles of oxygen $\equiv \frac{1}{3} \times 1.5=\frac{1}{2}$

$$
=0.5 \text { moles of } \mathrm{BaCO}_{3}
$$

13. (A) 1 L of air $=1000 \mathrm{~mL}=1000 \mathrm{cc}$.

1000 cc of air contains 210 cc of O_{2} 1 mole $=22.4 \mathrm{~L}=22400 \mathrm{cc}$.
$\therefore \quad$ Number of moles of $\mathrm{O}_{2}=\frac{210}{22400}=0.0093$ moles
14. (A) $16 \mathrm{~g} \mathrm{O}_{2}$ has number of moles $=\frac{16}{32}=\frac{1}{2}$
$14 \mathrm{~g} \mathrm{~N}_{2}$ has number of moles $=\frac{14}{28}=\frac{1}{2}$
Number of moles is same, so number of molecules is same.
15. (D) $\mathrm{d}=\frac{\mathrm{M}}{\mathrm{V}}(\mathrm{d}=$ density, $\mathrm{M}=$ mass, $\mathrm{V}=$ volume $)$ Since $d=1 \mathrm{~g} / \mathrm{mL}$, So, $\mathrm{M}=\mathrm{V}$
$18 \mathrm{~g}=18 \mathrm{~mL}$
$18 \mathrm{~mL}=\mathrm{N}_{\mathrm{A}}$ molecules $\left(\mathrm{N}_{\mathrm{A}}=\right.$ Avogadro's number $)$
$1000 \mathrm{~mL}=\frac{\mathrm{N}_{\mathrm{A}}}{18} \times 1000=55.55 \mathrm{~N}_{\mathrm{A}}$.
16. (B) 1 mole of water
$=18 \mathrm{~g}$ of water
$=6.022 \times 10^{23}$ molecules of water
$\therefore \quad 18$ moles of water
$=18 \times 6.022 \times 10^{23}$ molecules of water
$=1.08396 \times 10^{25}$ molecules of water

1.9 Moles and gases

1. (C) 1 mole of nitrogen gas $\equiv 22.4 \mathrm{~L}$ of N_{2}
(molar volume at S.T.P.)
0.5 mole of nitrogen gas $=11.2 \mathrm{~L}$ of N_{2} at S.T.P.
2. (C) Volume occupied by 1 mole of any gas at STP $=22.4 \mathrm{dm}^{3}$
$\therefore \quad$ Volume occupied by 4.4 g of CO_{2} i.e., 0.1 mole of CO_{2} at $\mathrm{STP}=2.24 \mathrm{dm}^{3}=2.24 \mathrm{~L}$
3. (A) At STP, $22.4 \mathrm{~L}\left(22400 \mathrm{~cm}^{3}\right)$ oxygen gas = 1 mole oxygen gas
Hence, $11.2 \mathrm{~cm}^{3}$ corresponds to
$\frac{11.2}{22400}=0.0005 \mathrm{~mole}$
4. (B) Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of the substance }}$

$$
=\frac{60.0 \mathrm{~g}}{30 \mathrm{~g} \mathrm{~mol}^{-1}}=2 \mathrm{~mol}
$$

Number of moles of a gas (n)
$=\frac{\text { Volume of the gas at STP }}{\text { Molar volume of the gas }}$
$\therefore \quad$ Volume of the gas at STP
$=\mathrm{n} \times$ Molar volume of the gas
$=2 \mathrm{~mol} \times 22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=44.8 \mathrm{dm}^{3}$

Concept Fusion

1. (D)
2. (A) $V \propto n$

Number of moles $(\mathrm{n})=\frac{\text { Mass of the substance }}{\text { Molar mass of the substance }}$
$\therefore \quad \mathrm{n}=\frac{\text { mass }}{\text { atomic mass(} \mathrm{M})} \quad \therefore \quad \mathrm{V} \propto \mathrm{n} \propto \frac{1}{\mathrm{M}}$
Atomic Mass of $\mathrm{O}=16$
Atomic Mass of $\mathrm{N}=14$
$\therefore \quad \frac{\mathrm{V}_{(\mathrm{O})}}{\mathrm{V}_{(\mathrm{N})}}=\frac{\mathrm{n}_{(\mathrm{O})}}{\mathrm{n}_{(\mathrm{N})}}=\frac{\mathrm{M}_{(\mathrm{N})}}{\mathrm{M}_{(\mathrm{O})}}$
$\frac{\mathrm{V}_{(\mathrm{O})}}{\mathrm{V}_{(\mathrm{N})}}=\frac{14}{16}=\frac{7}{8}$
$\therefore \quad$ The ratio is $7: 8$
3. (C) Baking soda or sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)$ is a compound. Diamond and charcoal are different forms of the element carbon. 22 carat gold is an alloy of gold with other metals (mainly copper). Hence, it is a mixture.
4. (C) In compound B, 32 parts of X react with 84 parts of Y.
$\therefore \quad$ In compound $\mathrm{B}, 16$ parts of X react with 42 parts of Y.
In compound $\mathrm{C}, 16$ parts of X react with x parts of Y.
The ratio of masses of Y , which combine with fixed mass of X in compounds B and C , is $3: 5$.

B	42	3
C	x	5

$\therefore \quad x=\frac{42 \times 5}{3}=70$
5. (C) 100 g of haemoglobin contains 0.33 g of Fe.
$\therefore \quad 67200 \mathrm{~g}$ of haemoglobin contains
$=\frac{67200 \times 0.33}{100}=221.76 \mathrm{~g}$ of Fe
Number of atoms of $\mathrm{Fe}=\frac{221.76}{56}=3.96 \approx 4$
6. (C) Let the mass of CH_{4} and SO_{2} be w_{1} and w_{2}, respectively.
$\frac{\mathrm{w}_{1}}{\mathrm{w}_{2}}=\frac{1}{2}$
$\therefore \quad \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{w}_{1}}{\mathrm{M}_{1}} \times \frac{\mathrm{M}_{2}}{\mathrm{w}_{2}}=\frac{1}{16} \times \frac{64}{2}=\frac{2}{1}$
$\therefore \quad \frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=\frac{1}{2}$
Therefore, the ratio of number of molecules of SO_{2} to CH_{4} is $1: 2$.
7. (A) Mass of drop $=$ volume of drop \times Density

$$
=\frac{1}{25} \times 1=\frac{1}{25} \mathrm{~g}
$$

Number of water molecules
$=$ Moles of water $\times \mathrm{N}_{0}=\frac{1}{25 \times 18} \mathrm{~N}_{0}=\frac{0.02}{9} \mathrm{~N}_{0}$
8. (A)
9. (A) 5.6 L at S.T.P. weighs 7.5 g .
$\therefore \quad 22.4 \mathrm{~L}$ at S.T.P weighs $\frac{7.5 \times 22.4}{5.6}=30 \mathrm{~g}$
$\Rightarrow \quad$ Molar mass of gas $=30 \mathrm{~g} \mathrm{~mol}^{-1}$
Hence, the gas is NO

MHT-CET Previous Years' Questions

1. (B) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(I)}+2 \mathrm{Na}_{(\mathrm{s})} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{H}_{2(\mathrm{~g})} \uparrow$ 2 mole of $\mathrm{Na}=1$ mole of H_{2}

$$
=2 \mathrm{~g}=2 \times 10^{-3} \mathrm{~kg}
$$

2. (A)
3. (C)
4. (C) Average atomic mass $=$
$\frac{\text { atomic mass of }{ }^{10} \mathrm{~B} \times \text { percentage }+ \text { atomic mass of }{ }^{11} \mathrm{~B} \times \text { percentage }}{100}$
Let the $\%$ abundance of ${ }^{10} \mathrm{~B}$ isotope $=x$.
$\%$ abundance of ${ }^{11} \mathrm{~B}$ isotope $=100-x$.
Average atomic mass $=10.81$
From formula, Average atomic mass
$=\frac{10 \times x+11 \times(100-x)}{100}=10.81$
$10 x+1100-11 x=10.81 \times 100$
$-x=-1100+1081$
$x=19$

Percentage abundance of lighter isotope, ${ }^{10} \mathrm{~B}=19 \%$.
5. (D) ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32=32 \times \frac{9}{5}+32=89.6^{\circ} \mathrm{F}$
6. (A) $100 \mathrm{~mL}=100 \mathrm{~g}$ (Density $=1 \mathrm{~g} / \mathrm{mL})$

Number of moles $=\frac{100}{18}=5.55 \mathrm{~mol}$
Number of molecules $=5.55 \times 6.022 \times 10^{23}$

$$
=33.45 \times 10^{23}
$$

7. (B) At STP, volume $=22.4 \mathrm{dm}^{3}=0.022414 \mathrm{~m}^{3}$
8. (D)
9. (C) Since the mass is same,

Number of atoms $\propto \frac{1}{\text { M.W. }}$
Among the given, Na has the smallest atomic mass.
10. (A)
11. (C) Law of multiple proportions is applicable when two or more elements combine in more than one form.
12. (A) Moles of $\mathrm{Ar}=\frac{3.99}{39.9}=0.1 \mathrm{~mol}$ 1 mol of $\mathrm{Ar}=6.022 \times 10^{23}$ atoms
$\therefore \quad 0.1 \mathrm{~mol}$ of $\mathrm{Ar}=6.022 \times 10^{22}$ atoms
13. (A) At STP, $22.4 \mathrm{dm}^{3}=1 \mathrm{~mol}$ of NH_{3} $5.6 \mathrm{dm}^{3}$ at $\mathrm{STP}=\frac{5.6 \mathrm{dm}^{3}}{22.4 \mathrm{dm}^{3}}=0.25 \mathrm{~mol}$
14. (D) $2 \mathrm{KClO}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}$

$$
\begin{array}{ll}
2 \times 74.5 \mathrm{~g} & 3 \times 22.4 \mathrm{~L} \\
=149 \mathrm{~g} & =67.2 \mathrm{~L}
\end{array}
$$

 33.61 of $\mathrm{O}_{2}=x \mathrm{~g}$ of KCl
$\therefore \quad x=\frac{149 \times 33.6}{67.2}=74.5 \mathrm{~g}$ of KCl
15. (D)
i. $\quad \mathrm{n}_{\mathrm{Ar}}=\frac{13.3}{39.9}=0.33 \mathrm{~mol}$
ii. $\quad \mathrm{n}_{\mathrm{O}_{2}}=\frac{24}{32}=0.75 \mathrm{~mol}$
iii. $\quad \mathrm{n}_{\mathrm{CO}_{2}}=\frac{11}{44}=0.25 \mathrm{~mol}$
iv. $\quad \mathrm{n}_{\mathrm{CH}_{4}}=\frac{16}{16}=1 \mathrm{~mol}$
$\therefore \quad$ Maximum no. of moles
$=$ Maximum no. of molecules.
16. (C) Vol. of NH_{3} gas at $\mathrm{STP}=5.6 \mathrm{~cm}^{3}$

$$
=5.6 \times 10^{-3} \mathrm{dm}^{3}
$$

Now, $22.4 \mathrm{dm}^{3}$ of $\mathrm{NH}_{3}=1$ mole of NH_{3} at STP
$\therefore \quad 5.6 \times 10^{-3} \mathrm{dm}^{3}$ of $\mathrm{NH}_{3}=\frac{5.6 \times 10^{-3}}{22.4}$

$$
=2.5 \times 10^{-4} \mathrm{~mol} \text { of } \mathrm{NH}_{3}
$$

No. of atoms $=2.5 \times 10^{-4} \times 6.022 \times 10^{23} \times 4$

$$
=6.022 \times 10^{20} \text { atoms }
$$

17. (C) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

1 mole of methane required $=2 \times 22.4 \mathrm{dm}^{3}$ of O_{2}
$\therefore \quad 0.25$ mole of methane required
$=2 \times 22.4 \times 0.25=11.2 \mathrm{dm}^{3}$ of O_{2}
18. (B) 1 mol of an element $=6.022 \times 10^{23}$ atoms
$\therefore \quad 3.01 \times 10^{24}$ atoms $=\frac{3.01 \times 10^{24}}{6.022 \times 10^{23}}$

$$
=4.998 \mathrm{~mol} \approx 5 \mathrm{~mol}
$$

No. of moles $=\frac{\text { Mass }}{\text { atomic mass }}$
$\therefore \quad$ Mass $=5 \times 21.13=105.65 \mathrm{~g} \mathrm{~mol}^{-1}$
19. (D)
20. (D) $224 \mathrm{~cm}^{3}=0.224 \mathrm{dm}^{3}$
$22.4 \mathrm{dm}^{3}=1 \mathrm{~mol}=6.022 \times 10^{23}$ molecules
$\therefore \quad 0.224 \mathrm{dm}^{3}$ of a gas $=0.01 \mathrm{~mol}$

$$
=6.022 \times 10^{21} \text { molecules }
$$

21. (B) 1 mol urea $=60 \mathrm{~g}$ urea

$$
=6.022 \times 10^{23} \text { molecules }
$$

5.4 g urea $=\frac{5.4 \mathrm{~g} \times 6.022 \times 10^{23}}{60 \mathrm{~g} \mathrm{~mol}^{-1}}$

$$
=5.4 \times 10^{22} \text { molecules }
$$

22. (B) $22.4 \mathrm{dm}^{3} \mathrm{CH}_{4}$ at $\mathrm{STP}=1 \mathrm{~mol}=16 \mathrm{~g}$ of CH 4
$\therefore \quad 44.8 \mathrm{dm}^{3}$ of CH_{4} at $\mathrm{STP}=16 \mathrm{~g} \times 2$

$$
=32 \mathrm{~g} \text { of } \mathrm{CH}_{4}
$$

23. (B) Law of multiple proportions is applicable when two or more elements combine in more than one form.
24. (B) $\mathrm{K}={ }^{\circ} \mathrm{C}+273=-197^{\circ} \mathrm{C}+273=76 \mathrm{~K}$
25. (B)
26. (C) 1 mol of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$
$\therefore \quad 0.25 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} \times 0.25=4.5 \mathrm{~g}$
27. (C) 1 mole of $\mathrm{Ar}=39 \mathrm{~g}$ of Ar

$$
=6.022 \times 10^{23} \text { atoms of } \mathrm{Ar}
$$

$\therefore \quad 52$ moles of $\mathrm{Ar}=6.022 \times 10^{23} \times 52$

$$
=3.1 \times 10^{25} \text { atoms of } \mathrm{Ar}
$$

28. (A) Molar mass of $\mathrm{CH}_{4}=16 \mathrm{~g} \mathrm{~mol}^{-1}$

16 g of $\mathrm{CH}_{4}=22.4 \mathrm{dm}^{3}$ at STP
$\therefore \quad 24 \mathrm{~g}$ of $\mathrm{CH}_{4}=\frac{22.4 \times 24}{16}=33.6 \mathrm{dm}^{3}$
29. (A) $\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$
$11.2 \mathrm{dm}^{3}$ of O_{2} gives 18 g of water at STP.
$\therefore \quad 9 \mathrm{~g}$ water $=\frac{11.2 \times 9}{18}=5.6 \mathrm{dm}^{3}$ of O_{2}
30. (B) $\mathrm{C}_{2} \mathrm{H}_{6}:$ Molar mass $=30 \mathrm{~g} \mathrm{~mol}^{-1}$ Ethane
30 g of ethane $=22.4 \mathrm{dm}^{3}$ at STP
$\therefore \quad 75 \mathrm{~g}$ of ethane $=\frac{22.4 \times 75}{30}=56.0 \mathrm{dm}^{3}$
31. (B) No. of moles of urea $=\frac{\text { Mass of urea }}{\text { Molar mass of urea }}$

$$
\begin{aligned}
& =\frac{5.4}{60} \\
& =0.09 \mathrm{moles}
\end{aligned}
$$

32. (B) $\frac{0.863 \mathrm{~g}}{\mathrm{~cm}^{3}} \times \frac{1000 \mathrm{~cm}^{3} \mathrm{dm}^{-3}}{1000 \mathrm{~g} \mathrm{~kg}^{-1}}=0.863 \mathrm{~kg} \mathrm{dm}^{-3}$
33. (C) 1 mol urea $=60 \mathrm{~g}$ urea

$$
\begin{aligned}
& =6.022 \times 10^{23} \text { molecules } \\
& =4 \times 6.022 \times 10^{23} \mathrm{H} \text { atoms }
\end{aligned}
$$

$\therefore \quad 6 \mathrm{~g}$ urea $=4 \times 6.022 \times 10^{22}$

$$
=2.41 \times 10^{23} \mathrm{H} \text { atoms }
$$

34. (B) Molecular mass of O_{2} is 32 u .

Mass of 1 molecule of O_{2}
$=32 \times 1.6606 \times 10^{-24} \mathrm{~g}=53.13 \times 10^{-24} \mathrm{~g}$
35. (D) 22.4 L of O_{2} at $\mathrm{STP}=1$ mole of O_{2}

36. (C)

(A)	1 mL of water $=1 \mathrm{~g}$ water (Density of water $=1 \mathrm{~g} / \mathrm{mL}$)				
\therefore	10 mL of water $=10 \mathrm{~g}$	$	$	1 mol of $\mathrm{CH}_{4}=16 \mathrm{~g}$	
:---	:---				
(B)	$\frac{1}{2} \mathrm{~mol}$ of $\mathrm{CH}_{4}=8 \mathrm{~g}$				
\therefore	1 mole of C atom $=12 \mathrm{~g}$				
(C)	6.022×10^{23} atoms of oxygen $=16 \mathrm{~g}$				
(D)	3.011×10^{23} atoms of oxygen $=8 \mathrm{~g}$				

37. (C) Nitrogen $_{(\mathrm{g})}+$ Hydrogen $_{(\mathrm{g})} \longrightarrow$ Ammonia $_{(\mathrm{g})}$ $[1 \mathrm{~L}] \quad[3 \mathrm{~L}]$
[2 L]
38. (B) Volume of a drop $=0.05 \mathrm{~mL}$

Since density of water is $1 \mathrm{~g} / \mathrm{mL}$, the mass of a drop of water is 0.05 g .
Now, 1 mol of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$

$$
=6.022 \times 10^{23} \text { molecules }
$$

$\therefore \quad 0.05 \mathrm{~g}$ of water $=\frac{0.05 \mathrm{~g} \times 6.022 \times 10^{23}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}$

$$
=1.67 \times 10^{21} \text { molecules }
$$

39. (A) At STP $22.4 \mathrm{~L}=1 \mathrm{~mol}$
$\therefore \quad 1 \mathrm{~L}=\frac{1 \mathrm{~L}}{22.4 \mathrm{~L} \mathrm{~mol}^{-1}}=0.0446 \mathrm{~mol}$
Now,
Mole $=\frac{\text { Mass }}{\text { Molar Mass }}$
$\therefore \quad$ Molar Mass $=\frac{\text { Mass }}{\text { Mole }}=\frac{1.16 \mathrm{~g}}{0.0446 \mathrm{~mol}}=26 \mathrm{~g} \mathrm{~mol}^{-1}$
Among the given, $\mathrm{C}_{2} \mathrm{H}_{2}$ has molar mass of $26 \mathrm{~g} \mathrm{~mol}^{-1}$.
40. (A)
(A) 1 mol of $\mathrm{CH}_{4}=16 \mathrm{~g}$
$\therefore \quad \frac{1}{4} \mathrm{~mol}$ of $\mathrm{CH}_{4}=4 \mathrm{~g}$
(B) 6.022×10^{23} atoms of oxygen $=16 \mathrm{~g}$ $\therefore \quad 3.011 \times 10^{23}$ atoms of oxygen $=8 \mathrm{~g}$
(C) 1 g atom $\mathrm{C}=1$ mole of C atom $=12 \mathrm{~g}$
(D) 6.022×10^{23} molecules of water $=18 \mathrm{~g}$

10 Volume of H_{2} when reacts with 5 volume of O_{2}, it forms 10 volume of $\mathrm{H}_{2} \mathrm{O}$.
41. (C) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

1 Vol 3 Vol 2 Vol
$\therefore \quad$ Volume ratio $=(1: 3: 2)$
43. (B) Given: $t^{\circ} \mathrm{C}=60$
${ }^{\circ} \mathrm{F}=\frac{9}{5} \times \mathrm{t}^{\circ} \mathrm{C}+32=\frac{9}{5} \times 60+32=140^{\circ} \mathrm{F}$
44. (C) At STP, 1 mole of any gas occupies 22.4 L of volume.
45. (A) No. of Na atoms $=200$ atoms
$\mathrm{n}=\frac{\text { No.of Na atoms }}{\mathrm{N}_{\mathrm{A}}}=\frac{200}{\mathrm{~N}_{\mathrm{A}}}$
and $\mathrm{n}=\frac{\mathrm{W}}{\mathrm{M}}$
$\therefore \quad \frac{\mathrm{W}}{\mathrm{M}}=\frac{200}{\mathrm{~N}_{\mathrm{A}}}$
$\therefore \quad \mathrm{W}=\frac{200}{\mathrm{~N}_{\mathrm{A}}} \times \mathrm{M}=\frac{200}{6.022 \times 10^{23}} \times 23$

$$
=7.64 \times 10^{-21} \mathrm{~g}
$$

46. $\quad(B)$ Nitrogen $_{(\mathrm{g})}+$ Hydrogen $_{(\mathrm{g})} \longrightarrow$ Ammonia $_{(\mathrm{g})}$

$$
\begin{array}{cc}
{[1 \mathrm{~L}]} \\
{\left[10 \mathrm{dm}^{3}\right]} & {[3 \mathrm{~L}]} \\
{\left[30 \mathrm{dm}^{3}\right]}
\end{array}
$$

[2 L]
$\left[20 \mathrm{dm}^{3}\right]$
47. (B) For NH_{3}
$22.4 \mathrm{dm}^{3}=1 \mathrm{~mol}$

$$
\begin{aligned}
& =6.022 \times 10^{22} \text { molecules } \\
& =6.022 \times 10^{22} \times 4 \text { atoms }
\end{aligned}
$$

$\therefore \quad 2.24 \mathrm{dm}^{3}=0.1 \mathrm{~mol}$

$$
\begin{aligned}
& =0.6022 \times 10^{22} \text { molecules } \\
& =0.6022 \times 10^{22} \times 4 \text { atoms } \\
& =2.4088 \times 10^{23} \text { atoms }
\end{aligned}
$$

48. (B) $\underset{[2 \text { moles }]}{2 \mathrm{KClO}_{3}} \longrightarrow 2 \mathrm{KCl}+\underset{[3 \mathrm{moles}]}{3 \mathrm{O}_{2} \uparrow}$

2 moles of $\mathrm{KClO}_{3}=2 \times 122.5=245 \mathrm{~g}$
3 moles of O_{2} at STP occupy $=\left(3 \times 22.4 \mathrm{dm}^{3}\right)$
Thus, 245 g of potassium chlorate will liberate $67.2 \mathrm{dm}^{3}$ of oxygen gas.
Let ' x ' gram of KClO_{3} liberate $22.4 \mathrm{dm}^{3}$ of oxygen gas at S.T.P.
$\therefore \quad x=\frac{245 \times 22.4}{3 \times 22.4}=81.67 \mathrm{~g}$
49. (B) $1 \mathrm{~mol} \mathrm{~N}_{2}=6.022 \times 10^{23}$ molecules

At STP, $1 \mathrm{~mol} \mathrm{~N}_{2}=22.4 \mathrm{dm}^{3}=22.4 \times 10^{3} \mathrm{~cm}^{3}$
$\therefore \quad 22.4 \times 10^{3} \mathrm{~cm}^{3}=6.022 \times 10^{23}$ molecules
$\therefore \quad 22.4 \mathrm{~cm}^{3}=6.022 \times 10^{20}$ molecules
50. (B) Atomic mass is the mass of an atom of the element.
Mass of 1 atom of the element $=10 u$
Now, $1 \mathrm{u}=1.66056 \times 10^{-24} \mathrm{~g}$
Therefore, $10 \mathrm{u}=1.66056 \times 10^{-23} \mathrm{~g}$
51. (C)
52. (B) $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}$
$1 \mathrm{~mol} \mathrm{C} \equiv 1 \mathrm{~mol} \mathrm{CO}_{2(\mathrm{~g})}$
$6 \mathrm{~g} \mathrm{C}=0.5 \mathrm{~mol} \mathrm{C}$
$\therefore \quad 0.5 \mathrm{~mol} \mathrm{C} \equiv 0.5 \mathrm{~mol} \mathrm{CO}_{2(\mathrm{~g})}$
At STP, $1 \mathrm{~mol} \mathrm{CO}_{2(\mathrm{~g})} \equiv 22.4 \mathrm{dm}^{3}$
$\therefore \quad 0.5 \mathrm{~mol} \mathrm{CO}_{2(\mathrm{~g})}=11.2 \mathrm{dm}^{3}$
53. (D) Molar mass of methane $\left(\mathrm{CH}_{4}\right)=16 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore \quad$ No. of moles of $\mathrm{CH}_{4}=\frac{3.2}{16}=0.2 \mathrm{~mol}$
No. of atoms in a molecule of $\mathrm{CH}_{4}=5$
$\therefore \quad$ Moles of atoms in $0.2 \mathrm{~mol} \mathrm{CH}_{4}=0.2 \times 5=1 \mathrm{~mol}$
54. (C) Molecular mass ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=30 \mathrm{~g} \mathrm{~mol}^{-1}$ 1 mol of ethane $=30 \mathrm{~g}=22.4 \mathrm{dm}^{3}$ at STP
$\therefore \quad 60 \mathrm{~g}$ ethane $=22.4 \mathrm{dm}^{3} \times 2=44.8 \mathrm{dm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$
55. (C) ${ }^{\circ} \mathrm{F}=\left({ }^{0} \mathrm{C} \times \frac{9}{5}\right)+32=-40.0 \times \frac{9}{5}+32$

$$
\begin{aligned}
& =-72+32 \\
& =-40.0^{\circ} \mathrm{F}
\end{aligned}
$$

56. (D)
57. (B) Chemical formula of ammonium nitrate is $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
$1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \equiv 2 \mathrm{~mol} \mathrm{~N}$-atoms
$\therefore \quad 80 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=2 \mathrm{~mol} \mathrm{~N}$-atoms
$\therefore \quad 8 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=0.2 \mathrm{~mol} \mathrm{~N}$-atoms
58. (A) $4.25 \mathrm{~g} \mathrm{NH}_{3}=\frac{4.25}{17} \mathrm{~mol} \mathrm{NH}_{3}=0.25 \mathrm{~mol} \mathrm{NH}_{3}$ $1 \mathrm{~mol} \mathrm{NH}_{3}=1 \mathrm{~mol} \mathrm{~N}$-atoms +3 mol H -atoms
$\therefore \quad 0.25 \mathrm{~mol} \mathrm{NH}_{3}=0.25 \times 4$

$$
=1 \mathrm{~mol} \text { atoms }
$$

59. (D) ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$

$$
=\frac{9}{5}(50)+32=90+32=122^{\circ} \mathrm{F}
$$

60. (B) Number of moles of a gas (n)
$=\frac{\text { Volume of gas at STP }}{22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}$
$\therefore \quad \mathrm{n}=\frac{4.48 \mathrm{dm}^{3}}{22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}=0.2 \mathrm{~mol}$
$\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2(\mathrm{~g})} \uparrow$
$1 \mathrm{~mol} \mathrm{Mg} \equiv 1 \mathrm{~mol} \mathrm{H}_{2}$ gas
$\therefore \quad \mathrm{Mg}$ required to liberate $0.2 \mathrm{~mol} \mathrm{H}_{2}$ gas
$=0.2 \mathrm{~mol}=0.2 \times 24=4.8 \mathrm{~g}$
61. (A) Structure of methoxymethane:
$\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
Its molecular formula is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
Molar mass $=46 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore \quad$ No. of moles of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}=\frac{46 \mathrm{~g}}{46 \mathrm{~g} \mathrm{~mol}^{-1}}$

$$
=1 \mathrm{~mol}
$$

One molecule of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ contains 2 C -atoms and 6 H -atoms.
$\therefore \quad 1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ contains 2 mol C -atoms and 6 mol H -atoms.
62. (B) Number of atoms
$=$ Number of moles \times Avogadro's constant
$=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$

$$
\times 6.022 \times 10^{23} \text { atoms } / \mathrm{mol}
$$

Since, the mass is same for all elements, the number of atoms will be inversely proportional to atomic mass. Among the given, Na has the smallest atomic mass.
63. (D) $\mathrm{CaCO}_{3(\mathrm{~s})} \longrightarrow \mathrm{CaO}_{(\mathrm{s})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}$

$[1 \mathrm{~mol}]$	$[1 \mathrm{~mol}]$	$[1 \mathrm{~mol}]$
$[100 \mathrm{~g}]$	$[56 \mathrm{~g}]$	$[44 \mathrm{~g}]$
$[10 \mathrm{~g}]$	$[5.6 \mathrm{~g}]$	$[4.4 \mathrm{~g}]$

64. (C)
65. (B) Number of moles (n)
$=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{100 \mathrm{~g}}{40 \mathrm{~g} \mathrm{~mol}^{-1}}=2.5 \mathrm{~mol}$
Number of molecules
$=$ Number of moles \times Avogadro's constant
$=2.5 \mathrm{~mol} \times 6.022 \times 10^{23}$ molecules $/ \mathrm{mol}$
$=1.5055 \times 10^{24}$

Evaluation Test

1. (C)
2. (C) Molecular mass of $\mathrm{N}_{2} \mathrm{O}_{4}=28+64=92 \mathrm{~g}$
$\therefore \quad$ number of moles $=\frac{54}{92}=0.59$ moles
Molecular mass of $\mathrm{CO}_{2}=12+32=44 \mathrm{~g}$
$\therefore \quad$ number of moles $=\frac{28}{44}=0.64$ moles
Molecular mass of $\mathrm{H}_{2} \mathrm{O}=2+16=18 \mathrm{~g}$
$\therefore \quad$ number of moles $=\frac{36}{18}=2$ moles
Molecular mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=24+6+16$

$$
=46
$$

$\therefore \quad$ number of moles $=\frac{46}{46}=1$ mole
Among the given, water has more moles.
$\therefore \quad$ Largest number of molecules is present in 36 g of water.
3. (A) Mass of 6×10^{23} molecules of water $=18 \mathrm{~g}$

$$
\begin{aligned}
\text { Mass of } 1 \text { molecule of water } & =\frac{18}{6 \times 10^{23}} \\
& =3 \times 10^{-23} \mathrm{~g} \\
& =3 \times 10^{-26} \mathrm{~kg} .
\end{aligned}
$$

4. (A)
5. (B) Mass of 1 mole of $\mathrm{Ne}=20 \mathrm{~g}$

$$
\begin{aligned}
\text { Number of moles } & =\frac{\text { Mass of a substance }}{\text { Molar mass of the substance }} \\
& =\frac{52 \mathrm{~g}}{20 \mathrm{~g} \mathrm{~mol}^{-1}}=2.6 \mathrm{~mol}
\end{aligned}
$$

6. (B)
7. (B) Molar mass of $\mathrm{NaOH}=\mathrm{g} \mathrm{mol}^{-1}$
$\therefore \quad 1 \mathrm{~mol} \mathrm{NaOH}=40 \mathrm{~g}$
$0.01 \mathrm{~mol} \mathrm{NaOH}=0.4 \mathrm{~g}$
8. (D) 1 molecule of $\mathrm{PCl}_{3} \equiv 4$ atoms
$\therefore \quad 1$ mole i.e., Avogadro number $\left(\mathrm{N}_{\mathrm{A}}\right)$ of PCl_{3} molecules will contain $4 \times \mathrm{N}_{\mathrm{A}}$ atoms.
$\therefore \quad 1.4$ moles of $\mathrm{PCl}_{3}=4 \times 1.4 \times \mathrm{N}_{\mathrm{A}}$ atoms

$$
=3.372 \times 10^{24} \text { atoms }
$$

9. (A) 14 g of $\mathrm{CO}=\frac{14}{28}=0.5$ mole.

1 mole of CO occupies 22.4 L at NTP
$\therefore \quad 0.5$ mole will occupy 11.2 L
10. (D) 1 molecule of CO contains 1 oxygen atom.
$\therefore \quad 6.02 \times 10^{24} \mathrm{CO}$ molecules contain
6.02×10^{24} oxygen atoms.
11. (C)
12. (C)
13. (D) The SI unit of mass is 'kilogram' and not 'gram'.
14. (B) At S.T.P,
$22.4 \mathrm{dm}^{3}$ of any gas $\equiv 6.022 \times 10^{23}$ molecules
15. (D) In first experiment:
2.70 g of copper oxide contain 2.16 g of copper.
$\%$ of copper $=2.16 / 2.70 \times 100=80 \%$
In second experiment:
1.83 g of copper oxide contain 1.46 g of copper. $\%$ of copper $=1.46 / 1.83 \times 100=79.8 \%$
Therefore, percentage of copper in copper oxide is approximately 80%.
Since the percentage of copper in both the sample of copper oxide is nearly same, the above data illustrates the law of definite proportion.
16. (D)
17. (B)
18. (A)
19. (B) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{HCl}+\mathrm{BaSO}_{4}$
$\therefore \quad 20.8+9.8=7.3+x$
$\therefore \quad x=23.3 \mathrm{~g}$
20. (A)
21. (C)
22. (A)
23. (D)
24. (D) Atomic mass of the given element

$$
\begin{aligned}
& =6.022 \times 10^{23} \times 10.86 \times 10^{-26} \mathrm{~kg} \\
& =65.4 \times 10^{-3} \mathrm{~kg} \\
& =65.4 \mathrm{~g}
\end{aligned}
$$

\therefore The element whose atom has mass of $10.86 \times 10^{-26} \mathrm{~kg}$ is zinc.
25. (A) Contribution of ${ }^{10} \mathrm{~B}=10.0 \times 0.19$

$$
\begin{equation*}
=1.9 \mathrm{amu} \tag{i}
\end{equation*}
$$

Contribution of ${ }^{11} \mathrm{~B}=11.0 \times 0.81$

$$
\begin{equation*}
=8.91 \mathrm{amu} \tag{ii}
\end{equation*}
$$

Adding (i) and (ii) $=1.9+8.91=10.81 \mathrm{amu}$
Thus, the average atomic mass of boron is 10.81 amu .
26. (D)
27. (D)
28. (A) N^{3-} ion has 8 valence electrons.
$14 \mathrm{~g} \mathrm{~N}^{3-}$ ions have $8 \mathrm{~N}_{\mathrm{A}}$ valence electrons
$\therefore \quad 4.2 \mathrm{~g}$ of N^{3-} ions have valence electrons
$=\frac{8 \mathrm{~N}_{\mathrm{A}} \times 4.2}{14}=2.4 \mathrm{~N}_{\mathrm{A}}$
29. (A) 16 g of O_{2} has number of moles $=\frac{16}{32}=\frac{1}{2}$

14 g of N_{2} has number of moles $=\frac{14}{28}=\frac{1}{2}$
Number of moles is same, so number of molecules are same.
30. (B) Molecular mass of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$=137+35.5 \times 2+2 \times 18=244 \mathrm{~g}$
244 g of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=2$ moles of water
$\therefore \quad 488 \mathrm{~g}$ of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\frac{488 \times 2}{244}$

$$
=4 \text { moles of water }
$$

31. (A)
32. (A) $1 \mathrm{~cm}^{3}=0.001 \mathrm{~L}$
$\therefore \quad 11.2 \mathrm{~cm}^{3}=0.001 \times 11.2=0.0112 \mathrm{~L}$
22.4 L of gas at $\mathrm{STP}=1 \mathrm{~mol}$
$\therefore \quad$ Number of moles in $11.2 \mathrm{~cm}^{3}$ of H_{2} is
$=\frac{0.0112}{22.4}=0.0005 \mathrm{~mol}$
33. (A) Helium atom has 2 electrons.
$\therefore \quad 1 \mathrm{molHe} \equiv 2 \mathrm{~N}_{\mathrm{A}}$ electrons
$\therefore \quad 2 \mathrm{~mol} \mathrm{He} \equiv 4 \mathrm{~N}_{\mathrm{A}}$ electrons
34. (D) 1 mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=12 \times 6 \mathrm{~g}$ of carbon
$\therefore \quad 0.5$ mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=\frac{0.5 \times 12 \times 6}{1} \mathrm{~g}$

$$
=36 \mathrm{~g} \text { of carbon }
$$

35. (B)

Give your MHT-CET exam preparation the TECHNOLOGY BOOST!

Practice more than 23,000 MCQs for just ₹ 649/-

Use Coupon Code QUILLPADHAl2023

Also available for $\mathbf{X t}^{\text {th }}, \mathrm{XI}^{\text {th }}, \mathrm{XIIt}^{\text {th }}$, NEET \& JEE

- Practice chapter-wise \& full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Visit our website to know more about our

Scan QR Code to download the app range of books for $\mathrm{X}^{\text {th }}, \mathrm{XIt}^{\text {th }}, \mathrm{XII}{ }^{\text {th }}$, NEET $\&$ JEE

B2, $9^{\text {th }}$ Floor, Ashar, Road No. 16/Z,
Wagle Industrial Estate, Thane (W)- 400604
Tel: 8879939712 / 13 / 14 / 15

[^0]: (C) Target Publications Pvt. Ltd.

 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

[^1]: This reference book is transformative work based on Std. XI and XII Chemistry Textbook; Reprint: 2022 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.

