SAMPLE CONLENT

3804 MCOS

- Quick Review

Important Formulae
Smart Keys
Statistical analysis of all the shifts of 2023

Previous Solved Papers

CHEMISTRY

Chapter-wise \& Topic-wise

Salient Features

- A compilation of 25 years of MHT-CET questions (1999-2023) that aligns with the most recent MHT-CET syllabus
- '3804' unique MCQs
- Chapter-wise and Topic-wise segregation of MCQs
- MCQs arranged in year-wise flow in each topic
- Quick Review provided for the revision of concepts
- Includes Important Study Techniques for holistic learning:
- Thinking Hatke
- Caution
- Shortcuts
- Solutions provided wherever required
- Trend analysis of all the shifts of MHT-CET 2023 examination in the form of:
$>$ Graphs of difficulty levels of each shift
> Tables of Chapter-wise analysis of all shifts

Printed at: Print to Print, Mumbai

[^0]
REFACE

Target's 'MHT-CET Chemistry: Previous Solved Papers (PSP)' is a compilation of past 25 years' (1999-2023) questions asked in the MHT-CET examinations conducted by State Common Entrance Test Cell, Maharashtra State. This book is curated as per the latest MHT-CET syllabus.

The book consists of chapter-wise categorization of questions. Each chapter goes with a topic-wise flow. All the questions pertaining to a topic are arranged year-wise in a flow that concludes with the latest year. A special topic Concept fusion is drafted at the end of the MCQ section to cover multifarious questions. We have provided answers to all the questions and detailed solutions are given wherever required. The solutions will serve as valuable learning tools in understanding the concepts.

Selection of unique MCQs is prioritized while making this book to prevent the recurrence of identical questions. This will enable students to save time spent on repetitive questions.

We have infused several Smart Keys such as Cautions, Thinking Hatke and Shortcuts. These Important Study Techniques are created to help students with key objectives such as time management, easy memorization, revision and non-conventional yet simple methods for MCQ solving. To ensure adequate revision, each chapter begins with a Quick Review, followed by all the key Formulae wherever applicable.

A statistical analysis of the number of questions asked per chapter in each shift of MHT-CET 2023 examination is offered in tabular form. This analysis would help students understand the weighting allotted to each chapter. A graphical representation of analysis of all the papers (12 papers of PCM group \& 12 papers of PCB group) is also included at the start of the book to elaborate on the breakdown of the difficulty level of questions asked in the examination. Studying these representations should undoubtedly aid students in planning their study strategy for the examination. There is a possibility that the weightage to a chapter and the level of difficulty of the question paper in the future examination may vary.

This book would provide students with confidence regarding their exam preparedness. We are confident that this book will comprehensively cater to the needs of students and effectively assist them to achieve their goal.

Publisher
Edition: First
The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.
Please write to us on : mail@targetpublications.org
A book affects eternity; one can never tell where its influence stops.

[^1]
FEATURES

Quick Review includes tables/charts to summarize the key points/important chemical reactions in the chapter. This is our attempt to help students to reinforce key concepts.

MCQs are segregated topic-wise in each chapter. This is our attempt to cater to individualistic pace and preferences of studying a chapter in students and enable easy assimilation of questions based on the specific concept.

Shortcuts incorporate important theoretical or formula based short tricks, beneficial in solving MCQs.

Caution apprises students about mistakes often made while solving MCQs.

INDEX

$\begin{aligned} & \text { Sr. } \\ & \text { No. } \end{aligned}$	Textbook Chapter No.	Chapter Name	Page No.
Std. XI			
1	1	Some Basic Concepts of Chemistry	1
2	4	Structure of Atom	14
3	5	Chemical Bonding	26
4	6	Redox Reactions	44
5	8	Elements of Group 1 and Group 2	57
6	10	States of Matter: Gaseous and Liquid States	70
7	11	Adsorption and Colloids	87
8	14	Basic Principles of Organic Chemistry	100
9	15	Hydrocarbons	123
Std. XII			
10	1	Solid State	141
11	2	Solutions	171
12	3	Ionic Equilibria	203
13	4	Chemical Thermodynamics	226
14	5	Electrochemistry	257
15	6	Chemical Kinetics	291
16	7	Elements of Groups 16, 17 and 18	320
17	8	Transition and Inner Transition Elements	343
18	9	Coordination Compounds	369
19	10	Halogen Derivatives	395
20	11	Alcohols, Phenols and Ethers	432
21	12	Aldehydes, Ketones and Carboxylic Acids	465
22	13	Amines	502
23	14	Biomolecules	532
24	15	Introduction to Polymer Chemistry	557
25	16	Green Chemistry and Nanochemistry	578

Evaluating your grasp of the content through chapter-specific tests is the most effective method for gauging your readiness with each topic.
Scan the adjacent QR code to know more about our "MHT-CET Chemistry Test Series with Answer Key \& Solutions" book for the MHT-CET Entrance examination.

Practicing test Papers is the only way to assess your preparedness for the Exams. Scan the adjacent QR code to know more about our "MHT-CET 21 Question Paper Set" book for the MHT-CET Entrance examination. Separate books for PCM group and PCB group are available.

A competitive exam book should contain comprehensive subject coverage, practice questions and effective examination strategies.
Scan the adjacent QR code to know more about our "MHT-CET Triumph Chemistry"
book for the MHT-CET Entrance examination.

MHT-CET PAPER PATTERN

- There will be three papers of Multiple Choice Questions (MCQs) in 'Mathematics', 'Physics and Chemistry' and 'Biology' of 100 marks each.
- Duration of each paper will be 90 minutes.
- Questions will be based on the syllabus prescribed by Maharashtra State Board of Secondary and Higher Secondary Education with approximately 20% weightage given to Std. XI and 80% weightage will be given to Std. XII curriculum.
- Difficulty level of questions will be at par with JEE (Main) for Mathematics, Physics, Chemistry and at par with NEET for Biology.
- There will be no negative marking.
- Questions will be mainly application based.
- Details of the papers are as given below:

Paper	Subject	Approximate No. of Multiple Choice Questions (MCQs) based on		Mark(s) Per Question	Total Marks
		Std. XI	Std. XII		100
Paper I	Mathematics	10	40	2	100
Paper II	Physics	10	40	1	100
	Chemistry	10	40	1	100

- Questions will be set on
i. the entire syllabus of Std. XII of Physics, Chemistry, Mathematics and Biology subjects prescribed by Maharashtra Bureau of Textbook Production and curriculum Research, Pune, and
ii. chapters / units from Std. XI curriculum as mentioned below:

Sr. No.	Subject	Chapters / Units of Std. XI
1	Physics	Motion in a plane, Laws of motion, Gravitation, Thermal properties of matter, Sound, Optics, Electrostatics, Semiconductors
2	Chemistry	Some Basic Concepts of Chemistry, Structure of Atom, Chemical Bonding, Redox Reactions, Elements of Group 1 and Group 2, States of Matter: Gaseous and Liquid States, Basic Principles of Organic Chemistry, Adsorption and Colloids, Hydrocarbons
3	Mathematics	Trigonometry - II, Straight Line, Circle, Measures of Dispersion, Probability, Complex Numbers, Permutations and Combinations, Functions, Limits, Continuity
4	Biology	Biomolecules, Respiration and Energy Transfer, Human Nutrition, Excretion and osmoregulation

Chapter－wise Analysis of MHT－CET 2023 Ex
MHT－CET 2023 Exam Papers（PCM Group）

등 \simeq	A	\simeq	$=$	\simeq	\simeq		\bigcirc	$=$	¢	¢	\％	$\stackrel{\circ}{0}$	－	\cdots	A	\％	\pm	－	∞	\％	$\stackrel{\sim}{\circ}$	A	̇	$=$	\％
	\sim	－	－	－	－	－	－	－	m	m	m	m	m	m	\sim	\sim	\sim	m	\cdots	m	\sim	\sim	\sim	－	\％
	\sim	－	－	－	－	－	－	－	m	m	m	m	m	m	\sim	\sim	\sim	m	m	m	\sim	\sim	\sim	－	\％
道路一	\sim	－	\bigcirc	－	－	－	\sim	－	m	m	n	m	＋	m	\sim	\sim	\sim	m	\sim	m	\sim	\sim	\sim	－	in
	\sim	－	－	－	－	－	－	－	m	m	n	m	m	m	\sim	\sim	\sim	m	m	m	\sim	\sim	\sim	－	in
	\sim	－	－	－	－	\bigcirc	\sim	－	m	m	m	m	m	m	\sim	\sim	\sim	\pm	\sim	N	m	\sim	\sim	－	\％
흘	\sim	－	－	－	－	－	－	\sim	m	m	m	m	m	m	\sim	\sim	\sim	m	m	m	\sim	\sim	\sim	－	is
	\sim	－	－	－	－	－	\sim	－	m	m	m	m	m	m	\sim	\sim	\sim	m	\sim	m	m	\sim	\sim	－	in
	\sim	－	－	－	－	－	－	－	m	\cdots	m	m	m	m	\sim	\sim	\sim	n	\checkmark	m	\sim	\sim	\sim	\bigcirc	\％
을	\sim	－	－	－	－	－	－		m	m	m	m	m	m	\sim	\sim	\sim	m	m	m	\sim	\sim	\sim	－	in
을	\sim	－	－	－	－	－	－	－	m	m	m	m	m	m	\sim	\sim	\sim	m	\sim	m	m	\sim	\sim	－	\％
	\sim	－	－	－		－	\sim	\bigcirc	m	m	n	m	m	m	\sim	\sim	\sim	m	\cdots	m	\sim	\sim	\sim	－	\％
8 总夏—	\sim	－				\bigcirc	\sim	－	m	m	n	m	m	m	\sim	m	\sim	m	m	m	－	\sim	\sim	－	\％
	5 B 						Basic Principles of Organic Chemistry		$\begin{aligned} & \frac{0}{2} \\ & \frac{\pi}{n} \\ & : \frac{\pi}{0} \\ & \vdots \\ & 0 \end{aligned}$																듷
	Ξ	Ξ	\cong	Ξ	Ξ	Ξ	\ddagger	Ξ	気	득	듣	$\stackrel{5}{y}$	츷	（	（	득	ํ	픅	들	ํ	ํ	픅	들	득	
言安－	\checkmark	n	\bigcirc	∞	\bigcirc	＝	\pm	\because	－	\sim	m	＋	n	\bigcirc	－	∞	a	\bigcirc	$=$	\simeq	\cdots	\pm	\sim	$\stackrel{\square}{\square}$	

Difficulty level-wise Analysis of MHT-CET 2023 Exam Papers (PCM Group)

[^2]Chapter-wise Analysis of MHT-CET 2023 Exam Papers (PCB Group)

Difficulty level-wise Analysis of MHT-CET 2023 Exam Papers (PCB Group)

[^3]\square

1

（2）

 ？

Chapter

2 Solutions

2.1 Introduction

2.2 Types of solutions
2.3 Capacity of solutions to dissolve solute
2.4 Solubility
2.5 Vapour pressure of solutions of liquids in liquids
2.6 Colligative properties of nonelectrolyte solutions
2.7 Vapour pressure lowering
2.8 Boiling point elevation
2.9 Depression in freezing point
2.10 Osmotic pressure
2.11 Colligative properties of electrolytes

Quick Review

> Classification of mixtures:

$>$ Types of solutions (depending on the states of solute and solvent):

State of solute	State of solvent	
Solid	Liquid	Sea water, benzoic acid in benzene, sugar in water
Solid	Solid	Metal alloys such as brass, bronze.
Solid	Gas	Iodine in air
Liquid	Liquid	Gasoline, ethanol in water
Liquid	Solid	Amalgams of mercury with metals i.e., mercury in silver
Liquid	Gas	Chloroform in nitrogen
Gas	Liquid	Carbonated water $\left(\mathrm{CO}_{2}\right.$ in water), oxygen in water.
Gas	Solid	H_{2} in palladium
Gas	Gas	Air $\left(\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{Ar}\right.$ and other gases $)$

$>$ Classification of solution (according to the amount of solute):

	Binary true solution	
	Consists of a solvent and a solute	
\downarrow	∇	V
Unsaturated solution	Saturated solution	Supersaturated solution
Contains less amount of solute than that can be dissolved in solvent at given temperature.	Contains maximum (equilibrium) amount of solute that can be dissolved in solvent at given temperature.	Contains greater than the equilibrium amount of solute.

> Expressing concentration of solutions:

Molarity (M)	
No. of moles of solute	
Volume of solution in L	
	1 Molar solution $:$ 1 M Semimolar solution $:$ $\mathrm{M} / 2=0.5 \mathrm{M}$ Decimolar solution $:$ $\mathrm{M} / 10=0.1 \mathrm{M}$ Centimolar solution $:$ $\mathrm{M} / 100=0.01 \mathrm{M}$ Millimolar solution $:$ $\mathrm{M} / 1000=0.001 \mathrm{M}$

Molality (m)
$\frac{\text { No. of moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}$
Temperature independent Semimolal solution $: \mathrm{m} / 2=0.5 \mathrm{~m}$ Decimolal solution $: \mathrm{m} / 10=0.1 \mathrm{~m}$ Centimolal solution $: \mathrm{m} / 100=0.01 \mathrm{~m}$ Millimolal solution $:$ $\mathrm{m} / 1000=0.001 \mathrm{~m}$

$>\quad$ Solubility of a solute in a solvent:

It is the amount of solute per unit volume of saturated solution at a specific temperature. It is expressed in mol L^{-1}.

Factors affecting solubility

Nature of solute	
and solvent	$\begin{array}{l}\text { Compounds with similar chemical character are more readily soluble in each other: } \\ \text { 'Like dissolves like' }\end{array}$

$-$| Temperature | Solids in liquid: For an endothermic process, solubility increases with increase of
 temperature. For an exothermic process, solubility decreases with increase of temperature. |
| :--- | :--- |
| | Gases in liquid: Solubility decreases with increase of temperature |

Pressure	Solids in liquid: Pressure has no effect on the solubilities of solids and liquids as they are incompressible.
	Gases in liquid: Solubility increases with increasing pressure

> Laws:

Henry's law	Statement: The solubility of a gas in a liquid is directly proportional to the pressure of the gas over the solution. $\mathrm{S} \propto \mathrm{P}$ or $\mathbf{S}=\mathbf{K}_{\mathbf{H}} \mathbf{P}$ where, S is the solubility of the gas in $\mathrm{mol}^{-1}, \mathrm{P}$ is the pressure of the gas in bar over the solution. K_{H} is Henry's law constant and its unit is $\mathrm{mol}^{-1} \mathrm{bar}^{-1}$.
Raoult's law	Statement: The partial vapour pressure of any volatile component of a solution is equal to the vapour pressure of the pure component multiplied by its mole fraction in the solution. For a binary solution of two volatile components:
$\mathrm{P}_{1}=\mathrm{P}_{1}^{0} x_{1}$ and $\mathrm{P}_{2}=\mathrm{P}_{2}^{0} x_{2}$ Using Dalton's law of partial pressures, Total vapour pressure (P) is given by: $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}=\mathrm{P}_{1}^{0} x_{1}+\mathrm{P}_{2}^{0} x_{2}=\left(\mathrm{P}_{2}^{0}-\mathrm{P}_{1}^{0}\right) x_{2}+\mathrm{P}_{1}^{0}$ Composition of vapour phase: If y_{1} and y_{2} are the mole fractions of the components 1 and 2, respectively, in the vapour phase; then using Dalton's law of partial pressures: $\mathrm{P}_{1}=y_{1} \mathrm{P}$ and $\mathrm{P}_{2}=y_{2} \mathrm{P}$	

Statement: The solubility of a gas in a liquid is directly proportional to the pressure of the gas over the solution.

Henry's law $\quad \mathrm{S} \propto \mathrm{P}$ or $\mathbf{S}=\mathbf{K}_{\mathbf{H}} \mathbf{P}$

where, S is the solubility of the gas in $\mathrm{mol}^{-1}, \mathrm{P}$ is the pressure of the gas in bar over the solution. K_{H} is Henry's law constant and its unit is mol L ${ }^{-1} \mathrm{bar}^{-1}$.

Statement: The partial vapour pressure of any volatile component of a solution is equal to the vapour pressure of the pure component multiplied by its mole fraction in the solution.
For a binary solution of two volatile components:
$\mathrm{P}_{1}=\mathrm{P}_{1}^{0} x_{1}$ and $\mathrm{P}_{2}=\mathrm{P}_{2}^{0} x_{2}$
Using Dalton's law of partial pressures,
Total vapour pressure (P) is given by:
$\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}=\mathrm{P}_{1}^{0} x_{1}+\mathrm{P}_{2}^{0} x_{2}=\left(\mathrm{P}_{2}^{0}-\mathrm{P}_{1}^{0}\right) x_{2}+\mathrm{P}_{1}^{0}$
Composition of vapour phase: If y_{1} and y_{2} are the mole fractions of the components 1 and 2, respectively, in the vapour phase; then using Dalton's law of partial pressures: $\mathrm{P}_{1}=y_{1} \mathrm{P}$ and $\mathrm{P}_{2}=y_{2} \mathrm{P}$

> Binary solution of two volatile liquids:

> Colligative properties of nonelectrolyte solutions:

> Types of solution depending on the osmotic pressure of two solutions:

Isotonic (Iso means equal)	Two or more solutions having the same osmotic pressure are said to be isotonic solutions.

E.g. 0.1 M urea solution and 0.1 M sucrose solution are isotonic.

Hypertonic (Hyper means higher)	If two solutions have unequal osmotic pressures, the more concentrated solution with higher osmotic pressure is said to be hypertonic solution.

E.g. If osmotic pressure of sucrose solution is higher than that of urea solution, the sucrose solution is hypertonic to urea solution.
$\left.\begin{array}{l}\text { Hypotonic } \\ \text { (Hypo means } \\ \text { lower) }\end{array}\right\rangle$

A solution having an osmotic pressure lower than that of another solution owing to lower concentration of solute is called hypotonic solution.
E.g. If osmotic pressure of sucrose solution is higher than that of urea solution, the urea solution is hypotonic to sucrose solution.

> van't Hoff factor:

For non-electrolytes, van't Hoff factor (i) is equal to 1. E.g. Glucose, urea

For electrolytes undergoing dissociation, van't Hoff factor (i) is greater than 1.
E.g. $\mathrm{NaCl}, \mathrm{CaCl}_{2}$

For strong electrolytes, $\mathrm{i}=$ No. of particles in solution after dissociation (n)
van't Hoff factor

$\underbrace{-\rightarrow \rightarrow}$

Inclusion of van't Hoff factor modifies the equations for colligative properties:
$\Delta \mathrm{P}=\mathrm{i}_{1}^{0} x_{2}$,
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$,
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$,
$\pi=\mathrm{iMRT}$

For weak electrolytes, $\alpha=\frac{i-1}{n-1}$

Formulae

1. Henry's law:
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}$
$\mathrm{S}=$ solubility,
$\mathrm{P}=$ pressure of the gas,
$\mathrm{K}_{\mathrm{H}}=$ Henry's constant
2. Raoult's law: For a binary solution of two volatile components
$\mathrm{P}_{1}=\mathrm{P}_{1}^{0} x_{1}, \mathrm{P}_{2}=\mathrm{P}_{2}^{0} x_{2}$
P_{1}^{0} is the vapour pressure of pure component 1 and P_{1} is the partial vapour pressure of component 1 in solution.
x_{1} is the mole fraction of component 1 in solution.
P_{2}^{0} is the vapour pressure of pure component 2 and P_{2} is the partial vapour pressure of component 2 .
x_{2} is the mole fraction of component 2 in solution.
3. Dalton's law of partial pressures:

$$
\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2} \quad \text { OR } \quad \mathrm{P}=\mathrm{P}_{1}^{0} x_{1}+\mathrm{P}_{2}^{0} x_{2}
$$

P is the total pressure of solution.
4. Composition of vapour phase (binary solution of two volatile components):
$\mathrm{P}_{1}=y_{1} \mathrm{P}, \mathrm{P}_{2}=y_{2} \mathrm{P}$
y_{1} and y_{2} as the mole fractions of two components in the vapour.
P_{1} and P_{2} are the partial pressures of two components in the vapour.
P is the total vapour pressure.
5. Raoult's law: For a solution containing a nonvolatile solute
$\mathrm{P}_{1}=\mathrm{P}_{1}^{0} x_{1}$
P_{1} is the vapour pressure of the solution,
P_{1}^{0} is the vapour pressure of pure solvent, x_{1} is its mole fraction in solution.
6. Relative lowering of vapour pressure:
$\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=x_{2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$\mathrm{P}_{1}^{0}=$ vapour pressure of pure solvent,
$\mathrm{P}_{1}=$ vapour pressure of solution,
$x_{2}=$ Mole fraction of solute,
$\mathrm{n}_{1}=$ Moles of solvent, $\mathrm{n}_{2}=$ Moles of solute
7. Molecular mass determination from lowering of vapour pressure:
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{~W}_{1} \mathrm{M}_{2}}$
$\mathrm{W}_{2}=$ Mass of solute,
$\mathrm{W}_{1}=$ Mass of solvent,
$\mathrm{M}_{2}=$ Molar mass of solute,
$\mathrm{M}_{1}=$ Molar mass of solvent
8. Elevation of boiling point:
i. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0}$
$\Delta \mathrm{T}_{\mathrm{b}}=$ Elevation in boiling point,
$\mathrm{T}_{\mathrm{b}}=$ Boiling point of solution,
$\mathrm{T}_{\mathrm{b}}^{0}=$ Boiling point of pure solvent.
ii. $\quad \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{m}$
$\mathrm{m}=$ Molality of solution,
$\mathrm{K}_{\mathrm{b}}=$ boiling point elevation constant
iii. $\Delta \mathrm{T}_{\mathrm{b}}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\Delta \mathrm{T}_{\mathrm{b}}=$ Elevation in boiling point,
$\mathrm{K}_{\mathrm{b}}=$ Molal elevation constant,
$\mathrm{W}_{1}=$ Mass of solvent,
$\mathrm{W}_{2}=$ Mass of solute,
$\mathrm{M}_{2}=$ Molar mass of solute
9. Molecular mass determination from elevation of boiling point:
Molecular mass of solute,
$\mathrm{M}_{2}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{W}_{1}}$
10. Depression of freezing point:
i. $\quad \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}$
$\Delta \mathrm{T}_{\mathrm{f}}=$ Depression in freezing point,
$\mathrm{T}_{\mathrm{f}}=$ Freezing point of solution,
$\mathrm{T}_{\mathrm{f}}^{0}=$ Freezing point of pure solvent.
ii. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}$
$\mathrm{m}=$ Molality of solution
$\mathrm{K}_{\mathrm{f}}=$ Freezing point depression constant
iii. $\Delta \mathrm{T}_{\mathrm{f}}=\frac{1000 \mathrm{~K}_{\mathrm{f}} \mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\Delta \mathrm{T}_{\mathrm{f}}=$ Depression in freezing point,
$\mathrm{K}_{\mathrm{f}}=$ Molal depression constant,
$\mathrm{W}_{2}=$ Mass of solute,
$\mathrm{W}_{1}=$ Mass of solvent,
$\mathrm{M}_{2}=$ Molar mass of solute
11. Molecular mass determination from depression of freezing point:
Molecular mass of solute,
$\mathrm{M}_{2}=\frac{1000 \mathrm{~K}_{\mathrm{f}} \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{f}} \mathrm{W}_{1}}$
12. Osmotic pressure (π) :
$\pi=\mathrm{MRT}=\mathrm{CRT}$
$\mathrm{M}=\mathrm{C}=$ Concentration of solution in $\mathrm{mol} \mathrm{L}^{-1}$,
$\mathrm{R}=\operatorname{Gas}$ constant $\left(0.08206 \mathrm{~atm} \mathrm{dm}{ }^{-3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$,
$\mathrm{T}=$ Temperature in Kelvin
13. Molecular mass from osmotic pressure:
$\pi=\frac{\mathrm{W}_{2} \mathrm{RT}}{\mathrm{M}_{2} \mathrm{~V}} \quad$ OR $\quad \mathrm{M}_{2}=\frac{\mathrm{W}_{2} \mathrm{RT}}{\pi \mathrm{V}}$
$\pi=$ Osmotic pressure,
$\mathrm{R}=\mathrm{Gas}$ constant,
$\mathrm{M}_{2}=$ Molecular mass of solute,
$\mathrm{W}_{2}=$ Mass of solute,
$\mathrm{T}=$ Temperature in Kelvin,
$\mathrm{V}=$ volume in dm^{3}
14. van't Hoff factor (i):
$\mathrm{i}=\frac{\text { Colligative property of electrolyte solution }}{\text { Colligative property of nonelectrolyte solution }}$
of the same concentration
$=\frac{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)}{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{0}}=\frac{\left(\Delta \mathrm{T}_{\mathrm{b}}\right)}{\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{0}}=\frac{(\Delta \mathrm{P})}{(\Delta \mathrm{P})_{0}}=\frac{(\pi)}{(\pi)_{0}}$
Actual moles of particles in solution
$=\frac{\text { after dissociation }}{\text { Moles of formula units dissolved in solution }}$
$=\frac{\text { Formula mass of substance }}{\text { Observed molar mass of substance }}$
$=\frac{\mathrm{M}_{\text {Theoretical }}}{\mathrm{M}_{\text {Observed }}}$
15. Modified equations for colligative properties by inclusion of van't Hoff factor:
i. $\quad \Delta \mathrm{P}=\mathrm{i} \mathrm{P}_{1}^{0} x_{2}=\mathrm{i} \frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
ii. $\quad \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}=\mathrm{i} \frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
iii. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}=\mathrm{i} \frac{1000 \mathrm{~K}_{\mathrm{f}} \mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
iv. $\quad \pi=\mathrm{iMRT}=\mathrm{i} \frac{\mathrm{W}_{2} \mathrm{RT}}{\mathrm{M}_{2} \mathrm{~V}}$
16. Degree of dissociation (α) :
$\alpha=\frac{i-1}{n-1}$
$\mathrm{i}=$ van't Hoff factor,
$\mathrm{n}=$ Moles of ions obtained from dissociation of 1 mole of electrolyte

Multiple Choice Questions

2.2 Types of solutions

1. What type of solution is obtained when benzoic acid is added in benzene?
[2020]
(A) Solid in liquid
(B) Liquid in solid
(C) Solid in solid
(D) Liquid in liquid
2. Which of the following statement is NOT correct about solution?
[2020]
(A) The three states of matter solid, liquid and gas may play the role of either solute or solvent.
(B) True solution is a heterogeneous mixture of two or more substances with fixed composition.
(C) The component of solution which constitutes smaller part is called solute.
(D) When water is solvent, the process of solvation is known as hydration.
3. An amalgam of mercury with sodium is an example of \qquad .
[2020]
(A) liquid in liquid solution
(B) solid in liquid solution
(C) solid in solid solution
(D) liquid in solid solution
4. Hydrogen in palladium is an example of a solution of \qquad -
[2021]
(A) gas in solid
(B) liquid in gas
(C) gas in liquid
(D) gas in gas
5. Air is an example of a solution of \qquad
[2021]
(A) gas in solid
(B) gas in liquid
(C) liquid in gas
(D) gas in gas
6. What type of solution is sea water?
[2022]
(A) Liquid in solid
(B) Liquid in liquid
(C) Solid in liquid
(D) Solid in solid
7. What is the relation between molality of the solution and molar mass of solute?
[2022]
(A) $\mathrm{m}=\frac{1000 \mathrm{~W}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{2}}$
(B) $\mathrm{m}=\frac{\mathrm{M}_{2} \mathrm{~W}_{2}}{1000 \mathrm{~W}_{1}}$
(C) $\mathrm{m}=\frac{1000 \mathrm{~W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
(D) $\mathrm{m}=\frac{\mathrm{M}_{2} \mathrm{~W}_{1}}{1000 \mathrm{~W}_{2}}$
8. What type of solution is carbonated water?
[2022]
(A) Liquid in liquid
(B) Gas in solid
(C) Liquid in gas
(D) Gas in liquid
9. What is the unit of molality?
[2022]
(A) $\quad \mathrm{mol} \mathrm{kg}^{-1} \mathrm{~K}$
(B) $\mathrm{mol} \mathrm{kg}^{-1}$
(C) $\mathrm{mol} \mathrm{dm}^{-3}$
(D) mol kg
10. What type of solution is bronze?
[2022]
(A) Gas in solid
(B) Solid in liquid
(C) Liquid in solid
(D) Solid in solid
11. What type of solution is the ethyl alcohol in water?
[2023]
(A) Liquid in solid
(B) Solid in liquid
(C) Liquid in liquid
(D) Gas in liquid
12. What type of following solutions is the gasoline?
[2023]
(A) Liquid as solute and liquid as solvent
(B) Liquid as solute and solid as solvent
(C) Solid as solute and liquid as solvent
(D) Gas as solute and liquid as solvent
13. What type of solution is obtained when chloroform is mixed with excess dinitrogen?
[2023]
(A) Solid as solute and gas as solvent
(B) Liquid as solute and gas as solvent
(C) Gas as solute and liquid as solvent
(D) Gas as solute and solid as solvent

2.4 Solubility

1. ' K_{H} ' is Henry's constant and has the unit: [2019]
(A) $\mathrm{atm} \mathrm{mol}^{-1} \mathrm{dm}^{3}$
(B) $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$
(C) $\mathrm{atm} \mathrm{mol} \mathrm{dm}{ }^{-3}$
(D) $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~atm}^{-1}$
2. The Henry's law constant for oxygen is $1.3 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$. If partial pressure of oxygen is 0.46 atmosphere, what is the concentration of dissolved oxygen at $25^{\circ} \mathrm{C}$ and 1 atm pressure?
[2020]
(A) $2.82 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $5.98 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $3.53 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $5.98 \mathrm{~mol} \mathrm{dm}^{-3}$
3. Henry's law is a relation between \qquad .[2020]
(A) temperature and pressure
(B) pressure and solubility
(C) volume and solubility
(D) pressure and volume
4. Solubility of a gas in liquid increases with: [2020]
(A) decrease in pressure and increase in temperature.
(B) decrease in pressure and decrease in temperature.
(C) increase in pressure and increase in temperature.
(D) increase in pressure and decrease in temperature.
5. Calculate solubility of a gas in $\mathrm{H}_{2} \mathrm{O}$ at 0.75 bar if Henry's law constant for the gas is 7×10^{-4} mol L ${ }^{-1}$ bar $^{-1}$?
[2021]
(A) $0.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(B) $5.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(C) $4.20 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(D) $3.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
6. In which of the following salts, the solubility increases appreciably with increase in temperature?
[2021]
(A) KBr
(B) NaBr
(C) NaCl
(D) KCl
7. Henry's law constant for $\mathrm{CH}_{3} \mathrm{Br}$ is $0.16 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$ at 298 K . What is solubility of $\mathrm{CH}_{3} \mathrm{Br}$ in water at 380 mm Hg ?
[2021]
(A) $0.24 \mathrm{~mol} \mathrm{~L}^{-1}$
(B) $0.08 \mathrm{~mol} \mathrm{~L}^{-1}$
(C) $0.32 \mathrm{~mol} \mathrm{~L}^{-1}$
(D) $0.16 \mathrm{~mol} \mathrm{~L}^{-1}$
8. What is the value of Henry's law constant for $\mathrm{CH}_{3} \mathrm{Br}$ if its solubility is $0.08 \mathrm{~mol} \mathrm{~L}^{-1}$ at 0.5 bar?
[2021]
(A) $0.50 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
(B) $0.40 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
(C) $0.16 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
(D) $0.08 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
9. What is Henry's law constant if solubility of a gas in water at 298 K and 1 bar pressure is $7 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$?
[2021]
(A) $2.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
(B) $7.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
(C) $3.5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
(D) $3.1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
10. Calculate the solubility of gas in water at 260 mm Hg and $25^{\circ} \mathrm{C}$, if Henry's law constant of gas is $0.159 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$ at $25^{\circ} \mathrm{C}$. [2022]
(A) $3.8 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $2.7 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $5.4 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
11. Calculate the solubility of gas in water at 1.2 atm and $25^{\circ} \mathrm{C}$ if Henry's law constant is $0.145 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$ at $25^{\circ} \mathrm{C}$.
[2022]
(A) $0.174 \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $0.31 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
(C) $0.45 \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$
12. Which of the following lawls represents the quantitative relationship between the solubility of gas in liquid and its pressure?
[2022]
(A) Henry's law
(B) Charles' law
(C) Raoult's law
(D) Avogadro's law
13. In which of following salts solubility increases appreciably with increase in temperature? [2022]
(A) KCl
(B) NaCl
(C) KNO_{3}
(D) NaBr
14. Calculate the solubility of a gas in water at 0.8 atm and $25^{\circ} \mathrm{C}$. [Henry's law constant is $\left.6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}\right]$
[2022]
(A) $3.94 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $2.74 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $5.48 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
15. Calculate Henry's law constant if the solubility of certain gas in water at $25^{\circ} \mathrm{C}$ and 1 atm is $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.
[2022]
(A) $4.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$
(B) $3.42 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$
(C) $2.3 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$
(D) $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$
16. Calculate the solubility of a gas dissolved in water at 0.75 atm if the solubility of gas in water at $25^{\circ} \mathrm{C}$ and 1 atm is $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.
(Henry's law constant is $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ atm^{-1})
[2022]
(A) $7.5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $10.2 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $5.14 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $2.5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
17. Calculate the pressure of gas if the solubility of gas in water at $25^{\circ} \mathrm{C}$ is $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.
(Henry's law constant is $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ bar^{-1})
[2022]
(A) 1 bar
(B) 0.5 bar
(C) 1.5 bar
(D) 2.0 bar
18. Which among the following gases exhibits very low solubility in water at room temperature?
[2023]
(A) O_{2}
(B) CO_{2}
(C) NH_{3}
(D) HCl
19. The solubility of a gas in a liquid is directly proportional to the pressure of the gas over the solution. Identify the law for this statement.
[2023, 2022]
(A) Henry's law
(B) Raoult's law
(C) Dalton's law
(D) Avogadro's law
20. What is the solubility of a gas in water at $25^{\circ} \mathrm{C}$ if partial pressure is 0.18 atm ?
$\left(\mathrm{K}_{\mathrm{H}}=0.16 \mathrm{~mol} \mathrm{dm} \mathrm{atm}^{-1}\right)$
[2023]
(A) $0.029 \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $0.022 \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $0.032 \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $0.038 \mathrm{~mol} \mathrm{dm}^{-3}$
21. Which among following salts shows decrease in solubility with increase in temperature?
[2023]
(A) $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$
(B) KNO_{3}
(C) NaNO_{3}
(D) KBr
22. What is the solubility of gas in water at $25^{\circ} \mathrm{C}$ if partial pressure is 0.346 bar [Henry's law constant is $\left.0.159 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{bar}^{-1}\right]$?
[2023]
(A) $0.055 \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $0.028 \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $0.083 \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $0.11 \mathrm{~mol} \mathrm{dm}^{-3}$
23. Which among the following salts exhibits inverse relation between its solubility and temperature?
[2023]
(A) NaBr
(B) NaNO_{3}
(C) $\quad \mathrm{KNO}_{3}$
(D) $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$
24. What is Henry's law constant of a gas if solubility of gas in water at $25^{\circ} \mathrm{C}$ is $0.028 \mathrm{~mol} \mathrm{dm}^{-3}$?
[Partial pressure of gas $=0.346 \mathrm{bar}]$
[2023]
(A) $0.081 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
(B) $0.075 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
(C) $0.093 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
(D) $0.049 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
25. Which among the following salts dissolves in water with the absorption of heat?
[2023]
(A) $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$
(B) CaCl_{2}
(C) $\quad \mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(D) KCl
26. Calculate Henry's law constant if solubility of nitrogen gas in water at $25^{\circ} \mathrm{C}$ is $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.
[Partial pressure of nitrogen gas $=0.9$ bar] [2023]
(A) $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
(B) $4.71 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
(C) $3.43 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
(D) $7.6 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
27. Calculate the partial pressure of oxygen if its solubility in water is $3.2 \mathrm{mg} \mathrm{dm}^{-3}$.
$\left(\mathrm{K}_{\mathrm{H}}=2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}\right)$
[2023]
(A) 0.03 atm
(B) 0.04 atm
(C) 0.05 atm
(D) 0.06 atm
28. Calculate the solubility of nitrogen gas dissolved in water at $25^{\circ} \mathrm{C}$ if partial pressure of nitrogen gas is 0.7 bar.
$\left(\mathrm{K}_{\mathrm{H}}=6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}\right)$
[2023]
(A) $4.795 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $5.480 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $2.745 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
29. Calculate the solubility of gas in water at $25^{\circ} \mathrm{C}$ and 0.328 atm .
$\left[\mathrm{K}_{\mathrm{H}}=0.159 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}\right.$ at $25^{\circ} \mathrm{C}$]
[2023]
(A) $4.1 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
(B) $2.5 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $5.21 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
(D) $1.56 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$

2.5 Vapour pressure of solutions of liquids in liquids

1. Which of the following solutions shows negative deviation from Raoult's law? [2021]
(A) Benzene + Toluene
(B) Carbon disulphide + Acetone
(C) Ethanol + Acetone
(D) Phenol + Aniline
2. Which of the following solutions shows positive deviation from Raoult's law?
[2021]
(A) Ethanol + Acetone
(B) Chloroform + Acetone
(C) Benzene + Toluene
(D) Phenol + Aniline
3. Which of the following solutions behaves nearly as an ideal solution?
[2021]
(A) Benzene + toluene
(B) Chloroform + acetone
(C) Phenol + aniline
(D) Ethanol + acetone
4. Which of the following conditions is obeyed by an ideal solution?
[2021]
(A) Vapour pressure of solution $>$ Vapour pressure of solvent
(B) $\Delta_{\text {mix }} V \neq 0$
(C) Magnitude of solute and solvent interactions are comparable
(D) $\Delta_{\text {mix }} \mathrm{H} \neq 0$
5. Which of the following mathematical expressions is CORRECT regarding Raoult's law for a binary mixture of two volatile liquids if x_{2}, x_{1} are mole fractions and $\mathrm{P}_{1}^{0}, \mathrm{P}_{2}^{0}$ are vapour pressure of pure liquids?
[2022]
(A) $\mathrm{P}=\left(\mathrm{P}_{2}^{0}-\mathrm{P}_{1}^{0}\right) x_{2}+\mathrm{P}_{1}^{0}$
(B) $\mathrm{P}=\left(\mathrm{P}_{2}^{0}-\mathrm{P}_{1}^{0}\right) x_{1}+\mathrm{P}_{1}^{0}$
(C) $\mathrm{P}=\left(\mathrm{P}_{1}^{0}+\mathrm{P}_{2}^{0}\right) x_{1}-\mathrm{P}_{2}^{0}$
(D) $\quad \mathrm{P}=\left(\mathrm{P}_{2}^{0}-\mathrm{P}_{1}^{0}\right) x_{2}-\mathrm{P}_{1}^{0}$

Page no. 179 to 188 are purposely left blank.
To see complete chapter buy Target Notes
18. Which of the following solutions has minimum freezing point depression?
[2022]
(A) $0.2 \mathrm{~m} \mathrm{MgCl}_{2}$
(B) $2 \mathrm{~m} \mathrm{AlCl}_{3}$
(C) 0.2 m KCl
(D) 0.1 m NaCl
19. Which of the following solutions exhibits lowest value of boiling point elevation assuming complete dissociation?
[2023]
(A) $0.1 \mathrm{~m} \mathrm{AlCl}_{3}$
(B) $0.01 \mathrm{~m} \mathrm{MgCl}_{2}$
(C) 1 m KCl
(D) 0.5 m NaCl
20. What is osmotic pressure of solution of $1.7 \mathrm{~g} \mathrm{CaCl}_{2}$ in $1.25 \mathrm{dm}^{3}$ water at 300 K if van't Hoff factor and molar mass of CaCl_{2}, are 2.47 and $111 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively?
$\left[\mathrm{R}=0.082 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}\right]$
[2023]
(A) 0.625 atm
(B) 0.744 atm
(C) 0.827 atm
(D) 0.936 atm
21. Calculate osmotic pressure of 0.2 M aqueous KCl solution at $0^{\circ} \mathrm{C}$ if van't Hoff factor for KCl is 1.83 . $\left[\mathrm{R}=0.082 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}\right] \quad$ [2023]
(A) 8.2 atm
(B) 9.4 atm
(C) 10.6 atm
(D) 6.5 atm
22. Which among the following solutions has minimum boiling point elevation?
[2023]
(A) 0.1 m NaCl
(B) $0.2 \mathrm{~m} \mathrm{KNO}_{3}$
(C) $0.1 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(D) $0.05 \mathrm{~m} \mathrm{CaCl}_{2}$
23. If 0.15 m aqueous solution of KCl freezes at $-0.51^{\circ} \mathrm{C}$, calculate van't Hoff factor of KCl . (cryoscopic constant of water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
[2023]
(A) 1.45
(B) 1.26
(C) 1.82
(D) 3.00
24. Calculate van't Hoff factor of $\mathrm{K}_{2} \mathrm{SO}_{4}$ if 0.1 m aqueous solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ freezes at $-0.43{ }^{\circ} \mathrm{C}$ and cryoscopic constant of water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
[2023]
(A) 2.3
(B) 2.7
(C) 3.1
(D) 3.5
25. Which among the following equimolar solutions has maximum value of osmotic pressure assuming complete ionisation?
[2023]
(A) $\mathrm{Li}_{2} \mathrm{SO}_{4}$
(B) KCl
(C) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(D) BaCl_{2}
26. If 0.01 m aqueous solution of an electrolyte freezes at $-0.056{ }^{\circ} \mathrm{C}$. Calculate van't Hoff factor for an electrolyte. (Cryoscopic constant of water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
[2023]
(A) 1.30
(B) 2.33
(C) 3.00
(D) 4.11
27. A 0.5 m aqueous solution of monofluoro acetic acid freeze at $-1.0^{\circ} \mathrm{C}$. Calculate the van't Hoff factor of monofluoro acetic acid if cryoscopic constant of water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
(A) 1.08
(B) 2.10
(C) 1.30
(D) 2.15
28. Which from following substances in their solutions of same concentration generates the highest osmotic pressure?
[2023]
(A) $\quad \mathrm{Li}_{2} \mathrm{SO}_{4}$
(B) KCl
(C) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(D) $\quad \mathrm{BaCl}_{2}$
29. Calculate van't Hoff factor for formic acid if 0.01 M aqueous solution of formic acid freezes at $-0.021^{\circ} \mathrm{C}$ and cryoscopic constant of water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
[2023]
(A) 1.13
(B) 2.26
(C) 0.39
(D) 1.82
30. Which of the following solutions having same concentration exhibits the highest elevation in boiling point?
[2023]
(A) NaCl
(B) $\quad \mathrm{AlPO}_{4}$
(C) $\quad \mathrm{MgCl}_{2}$
(D) KCl
31. Which among the following solution has minimum freezing point depression assuming complete ionisation?
[2023]
(A) 0.1 m NaCl
(B) $0.2 \mathrm{~m} \mathrm{KNO}_{3}$
(C) $0.1 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(D) $0.05 \mathrm{~m} \mathrm{CaCl}_{2}$

Concept Fusion

1. Identify the CORRECT statement from the following:
[2020]
(A) Vapour pressure of a solution containing a non-volatile solute is always less than vapour pressure of pure solvent.
(B) Liquids having greater intermolecular forces have lower boiling points.
(C) Boiling point of pure solvent is always greater than boiling point of its solution containing a non-volatile solute.
(D) Vapour pressure of a solution containing a non-volatile solute is always greater than vapour pressure of pure solvent.
2. Which of the following concentration terms depends on temperature?
[2023]
(A) Molality
(B) Molarity
(C) Mole fraction
(D) Percent by mass

Answers and Solutions to MCQs

2.2 Types of solutions

1. (A)
2. (B)
3. (D)
4. (A)
5. (D)
6. (C)
7. (C)
8. (D)
9. (B)
10. (D)
11. (C)
12. (A)
13. (B)

2.4 Solubility

1. (B)

Henry's constant, $\mathrm{K}_{\mathrm{H}}=\frac{\mathrm{S}}{\mathrm{P}}=\frac{\mathrm{mol} \mathrm{dm}^{-3}}{\mathrm{~atm}}$
$\therefore \quad$ Unit of $\mathrm{K}_{\mathrm{H}}=\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$
2. (B)

According to Henry's law,
S $=\mathrm{K}_{\mathrm{H}} \times \mathrm{P}$
$\therefore \quad \mathrm{S}=1.3 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1} \times 0.46 \mathrm{~atm}$
$=5.98 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{3}$
3. (B) 4 (D)
5. (B)

According to Henry's law, $\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}=7 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1} \times 0.75 \mathrm{bar}$

$$
=5.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}
$$

6. (A)

Solubility of KBr increases appreciably with increase in temperature whereas solubility of $\mathrm{NaBr}, \mathrm{NaCl}$ and KCl changes slightly with increase in temperature.
7. (B)

$$
\begin{aligned}
\mathrm{P} & =380 \mathrm{~mm} \mathrm{Hg} \times \frac{1}{760 \mathrm{mmHg} / \mathrm{atm}} \\
& =0.5 \mathrm{~atm} \times 1.013 \mathrm{bar} / \mathrm{atm} \\
& =0.5065 \mathrm{bar}
\end{aligned}
$$

According to Henry's law,

$$
\begin{aligned}
\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P} & =0.16 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1} \times 0.5065 \mathrm{bar} \\
& =0.08 \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
$$

8. (C)

$$
\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}
$$

$\therefore \quad \mathrm{K}_{\mathrm{H}}=\frac{\mathrm{S}}{\mathrm{P}}=\frac{0.08 \mathrm{~mol} / \mathrm{L}}{0.5 \mathrm{bar}}=0.16 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}$
9. (B)

$$
\mathrm{K}_{\mathrm{H}}=\frac{\mathrm{S}}{\mathrm{P}}=\frac{7 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}}{1 \mathrm{bar}}=7 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{bar}^{-1}
$$

Thinking Hatke - Q. 9

Solubility of a gas (S) in a liquid is equal to K_{H}, when pressure of the gas over the solution is 1 bar.
10. (C)
$\mathrm{P}=260 \mathrm{~mm} \mathrm{Hg} \times \frac{1}{760 \mathrm{~mm} \mathrm{Hg} / \mathrm{atm}}=0.342 \mathrm{~atm}$
According to Henry's law,
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}=0.159 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1} \times 0.342 \mathrm{~atm}$

$$
=5.4 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}
$$

11. (A)

According to Henry's law,
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}=0.145 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1} \times 1.2 \mathrm{~atm}$ $=0.174 \mathrm{~mol} \mathrm{dm}^{-3}$
12. (A)
13. (C)

Solubility of KNO_{3} increases appreciably with increase in temperature whereas solubility of $\mathrm{NaCl}, \mathrm{NaBr}$ and KCl changes slightly with temperature.
14. (D)

According to Henry's law,
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}=6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1} \times 0.8 \mathrm{~atm}$
$=5.48 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
15. (D)

According to Henry's law,
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}$
$\mathrm{K}_{\mathrm{H}}=\frac{\mathrm{S}}{\mathrm{P}}=\frac{6.86 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}{1 \mathrm{~atm}}$
$=6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}$
16. (C)

According to Henry's law,
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}=6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1} \times 0.75 \mathrm{~atm}$

$$
=5.14 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}
$$

17. (A)

Henry's law: $\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}$
$\therefore \quad \mathrm{P}=\frac{\mathrm{S}}{\mathrm{K}_{\mathrm{H}}}=\frac{6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}{6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}}=1 \mathrm{bar}$

Thinking Hatke - Q. 17

Since solubility of a gas (S) in a liquid is equal to K_{H}, pressure of the gas over the solution is 1 bar.
18. (A)

Thinking Hatke - Q. 18

Gases like $\mathrm{CO}_{2}, \mathrm{NH}_{3}$ and HCl do not obey Henry's law as they react with water.
19. (A)
20. (A)

$$
\begin{aligned}
\mathrm{S} & =\mathrm{K}_{\mathrm{H}} \times \mathrm{P} \\
& =0.16 \times 0.18 \\
& =0.0288 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

21. (A)

Dissolution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in water is an exothermic process. When a substance dissolves in water by an exothermic process, its solubility decreases with an increase in temperature. Hence, solubility of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in water decreases with increase in temperature.
22. (A)
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}=0.159 \mathrm{~mol} \mathrm{dm}^{-3} \operatorname{bar}^{-1} \times 0.346$ bar

$$
=0.055 \mathrm{~mol} \mathrm{dm}^{-3}
$$

23. (D)

Solubility of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ decreases with increase of temperature.
24. (A)
$K_{H}=\frac{S}{P}=\frac{0.028}{0.346}$

$$
=0.081 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}
$$

25. (D)

Dissolution of $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{CaCl}_{2}$ and $\mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in water are exothermic processes while dissolution of KCl in water is an endothermic process.
26. (D)

$$
\begin{aligned}
\mathrm{S} & =\mathrm{K}_{\mathrm{H}} \times \mathrm{P} \\
\therefore \quad \mathrm{~K}_{\mathrm{H}} & =\frac{\mathrm{S}}{\mathrm{P}} \\
& =\frac{6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}{0.9 \mathrm{bar}} \\
& =7.6 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}
\end{aligned}
$$

27. (C)

Solubility $=3.2 \mathrm{mg} \mathrm{dm}^{-3}=3.2 \times 10^{-3} \mathrm{~g} \mathrm{dm}^{-3}$
Solubility in $\mathrm{mol} \mathrm{dm}^{-3}$
$=\frac{3.2 \times 10^{-3}}{32}=1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$S=K_{H} P$
$\therefore \quad \mathrm{P}=\frac{\mathrm{S}}{\mathrm{K}_{\mathrm{H}}}=\frac{1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}{2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}}=0.05 \mathrm{~atm}$
28. (A)
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \mathrm{P}=6.85 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \operatorname{bar}^{-1} \times 0.7 \mathrm{bar}$ $=4.795 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
29. (C)
$\mathrm{S}=\mathrm{K}_{\mathrm{H}} \times \mathrm{P}$
$=0.159 \times 0.328$
$=0.0521$
$=5.21 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$

2.5 Vapour pressure of solutions of liquids in liquids

1. (D)
2. (A)
3. (A)
4. (C)
5. (A)
$\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}=\mathrm{P}_{1}^{0} x_{1}+\mathrm{P}_{2}^{0} x_{2}$
Now, $x_{1}=1-x_{2}$
$\therefore \quad \mathrm{P}=\mathrm{P}_{1}^{0}\left(1-x_{2}\right)+\mathrm{P}_{2}^{0} x_{2}=\mathrm{P}_{1}^{0}-\mathrm{P}_{1}^{0} x_{2}+\mathrm{P}_{2}^{0} x_{2}$
$\mathrm{P}=\left(\mathrm{P}_{2}^{0}-\mathrm{P}_{1}^{0}\right) x_{2}+\mathrm{P}_{1}^{0}$
6. (D)

The vapour pressure of ideal solution always lies between vapour pressures of pure components.
7. (C)
8. (C)

The solutions in which the interactions between solvent and solute molecules are stronger than solute-solute or solvent-solvent interactions exhibit negative deviations. Solution of chloroform and acetone exhibits negative deviation from the Raoult's law.
9. (A)

2.6 Colligative properties of nonelectrolyte solutions

1. (D)
2. (D)
3. (A)
4. (B)

2.7 Vapour pressure lowering

1. (C)

Relative lowering of vapour pressure,

$$
\begin{aligned}
\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=x_{2} & =\frac{\frac{\mathrm{W}_{2}}{\mathrm{M}_{2}}}{\frac{\mathrm{~W}_{1}}{\mathrm{M}_{1}}+\frac{\mathrm{W}_{2}}{\mathrm{M}_{2}}}=\frac{\frac{9}{180}}{\frac{90}{18}+\frac{9}{180}} \\
& =\frac{0.05}{5+0.05}=0.0099
\end{aligned}
$$

2. (A)

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \times \mathrm{M}_{1}}{\mathrm{~W}_{1} \times \mathrm{M}_{2}} \\
& \frac{660-600}{660}=\frac{3.6 \times 10^{-3} \times 78}{40 \times 10^{-3} \times \mathrm{M}_{2}} \\
& \mathrm{M}_{2}=\frac{3.6 \times 10^{-3} \times 78}{40 \times 10^{-3} \times 0.09}=78.0 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

3. (C)

Addition of water to 1 molal aqueous solution of KI causes the concentration of the solution to decrease thereby increasing the vapour pressure.
4. (B)

For a solution containing a non-volatile solute, relative lowering of vapour pressure, $\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=x_{2}=$ Mole fraction of solute
5. (A)
$\mathrm{n}_{2}=\frac{38.4}{384}=0.1 \mathrm{~mol}$
$\mathrm{n}_{1}=\frac{116}{58}=2 \mathrm{~mol}$
Mole fraction of solvent $\left(x_{1}\right)$
$=\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{2}{2+0.1}=0.95$
By Raoult's law, the vapour pressure of the solution is given by
$\mathrm{P}_{1}=\mathrm{P}_{1}^{0} x_{1}=0.842 \mathrm{~atm} \times 0.95=0.7999 \mathrm{~atm}$
6. (A)

Relative lowering of vapour pressure,
$\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=x_{2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
7. (A)

Relative lowering of vapour pressure, $\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=x_{2}$
$\therefore \quad \frac{10}{\mathrm{P}_{1}^{0}}=0.2$
$\therefore \quad \mathrm{P}_{1}^{0}=50 \mathrm{~mm}$ of Hg
8. (D)
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \times \mathrm{M}_{1}}{\mathrm{~W}_{1} \times \mathrm{M}_{2}}$
$\frac{450-400}{450}=\frac{1.5 \times 78}{30 \times \mathrm{M}_{2}}$
$\mathrm{M}_{2}=\frac{1.5 \times 78}{30 \times 0.111}=35.1 \mathrm{~g} \mathrm{~mol}^{-1}$
9. (C)

$$
\begin{array}{ll}
& \frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}} \\
\therefore \quad & \frac{143-\mathrm{P}_{1}}{143}=\frac{0.5 \times 154}{100 \times 65} \\
\therefore \quad & 143-\mathrm{P}_{1}=1.694 \\
\therefore \quad & \mathrm{P}_{1}=143-1.694=141.306 \mathrm{~mm} \mathrm{Hg} \\
& \approx 141.42 \mathrm{~mm} \mathrm{Hg}
\end{array}
$$

10. (B)

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=x_{2} \\
& \frac{0.9-0.6}{0.9}=0.333
\end{aligned}
$$

$$
\text { Now, } x_{1}+x_{2}=1
$$

$$
\therefore \quad x_{1}=1-x_{2}=1-0.333=0.667
$$

11. (B)

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}} \\
\therefore \quad & \frac{24-\mathrm{P}_{1}}{24}=\frac{6 \times 18}{60 \times 16.2}
\end{aligned}
$$

$\therefore \quad \mathrm{P}_{1}=21.33 \mathrm{~mm} \mathrm{Hg} \approx 21.6 \mathrm{~mm} \mathrm{Hg}$
12. (A)
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=x_{2}$
$\frac{240-216}{240}=0.1$
Now, $x_{1}+x_{2}=1$
$\therefore \quad x_{1}=1-x_{2}=1-0.1=0.9$
13. (C)
$x_{1}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{20}{20+2}=0.909$
$\mathrm{P}_{1}=\mathrm{P}_{1}^{0} x_{1}=32 \mathrm{~mm} \mathrm{Hg} \times 0.909=29.1 \mathrm{~mm} \mathrm{Hg}$
14. (A)
15. (B)
$\Delta \mathrm{P}=\mathrm{P}_{1}^{0}-\mathrm{P}_{1}=120-108=12 \mathrm{~mm} \mathrm{Hg}$
Relative lowering of vapour pressure, $\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=x_{2}$
$\therefore \quad x_{2}=\frac{12 \mathrm{~mm} \mathrm{Hg}}{120 \mathrm{~mm} \mathrm{Hg}}=0.1$
$\therefore \quad$ Mole fraction of solvent $\left(x_{1}\right)=1-x_{2}$

$$
=1-0.1=0.9
$$

16. (A)
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\therefore \quad \frac{400-\mathrm{P}_{1}}{400}=\frac{2.4 \times 18}{60 \times 10.8}$
$\therefore \quad 400-\mathrm{P}_{1}=26.67$
$\therefore \quad P_{1}=400-26.67=373.33 \mathrm{~mm} \mathrm{Hg}$
17. (C)

Given: $\mathrm{M}_{2}=2 \mathrm{M}_{1}, \mathrm{~W}_{2}=\frac{1}{10} \mathrm{~W}_{1}$
Relative lowering in vapour pressure of solution is given by
$\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}=\frac{\frac{\mathrm{W}_{1}}{10} \times \mathrm{M}_{1}}{2 \mathrm{M}_{1} \times \mathrm{W}_{1}}=\frac{\mathrm{W}_{1} \mathrm{M}_{1}}{10 \times 2 \mathrm{M}_{1} \times \mathrm{W}_{1}}$
$\therefore \quad \frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=\frac{1}{20}$
Here $P_{1}^{0}=200 \mathrm{~mm} \mathrm{Hg}$ (Given).
$\therefore \quad$ Lowering in vapour pressure, $\Delta \mathrm{P}=\frac{200}{20}$
$=10 \mathrm{~mm} \mathrm{Hg}$
18. (B)
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=x_{2}$
$\therefore \quad \frac{\mathrm{P}_{1}^{0}}{\mathrm{P}_{1}^{0}}-\frac{\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=x_{2}$
$\therefore \quad x_{2}=1-0.15=0.85$
19. (A)

Relative lowering of vapour pressure,
$\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\therefore \quad 0.06=\frac{2 \times 78}{\mathrm{M}_{2} \times 60}$
$\therefore \quad \mathrm{M}_{2}=\frac{2 \times 78}{0.06 \times 60}=43.3 \mathrm{~g} \mathrm{~mol}^{-1}$
20. (D)

Molar mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=180 \mathrm{~g} \mathrm{~mol}^{-1}$
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\therefore \quad \frac{32-\mathrm{P}_{1}}{32}=\frac{1.8 \times 18}{180 \times 16.2}$
$\therefore \quad 32-\mathrm{P}_{1}=0.011 \times 32$
$\therefore \quad \mathrm{P}_{1}=32-0.352=31.648 \mathrm{~mm} \mathrm{Hg} \approx 31.7 \mathrm{~mm} \mathrm{Hg}$
21. (C)

Relative lowering of vapour pressure,
$\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\therefore \quad 0.025=\frac{\mathrm{W}_{2} \times 18 \mathrm{~g} \mathrm{~mol}^{-1}}{342 \mathrm{~g} \mathrm{~mol}^{-1} \times 612 \mathrm{~g}}$
$\therefore \quad \mathrm{W}_{2}=\frac{0.025 \times 342 \times 612}{18}=290.7 \mathrm{~g}$
22. (D)

Relative lowering of vapour pressure, $\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=x_{2}$ where x_{2} is mole fraction of solute.
23. (D)
24. (C)
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\therefore \quad 0.06=\frac{2.3 \mathrm{~g} \times 78 \mathrm{~g} \mathrm{~mol}^{-1}}{\mathrm{M}_{2} \times 46 \mathrm{~g}}$
$\therefore \quad \mathrm{M}_{2}=\frac{2.3 \mathrm{~g} \times 78 \mathrm{~g} \mathrm{~mol}^{-1}}{0.06 \times 46 \mathrm{~g}}=65 \mathrm{gram} \mathrm{mol}^{-1}$
25. (C)

$$
\begin{aligned}
& \mathrm{P}_{1}^{0}=40 \mathrm{~mm}, x_{1}=0.9, x_{2}=1-x_{1}=1-0.9=0.1 \\
& \frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=x_{2}
\end{aligned}
$$

$\frac{40-\mathrm{P}_{1}}{40}=0.1$
$40-P_{1}=4$
$\mathrm{P}_{1}=40-4=36 \mathrm{~mm} \mathrm{Hg}$
26. (D)
$\mathrm{n}_{2}=1 \mathrm{~mol}$
$\mathrm{n}_{1}=\frac{36}{18}=2 \mathrm{~mol}$
Relative lowering of vapour pressure
$=\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=x_{2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$\therefore \quad \frac{32 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}}{32 \mathrm{~mm} \mathrm{Hg}}=\frac{1}{3}$
$96 \mathrm{~mm} \mathrm{Hg}-3 \mathrm{P}_{1}=32 \mathrm{~mm} \mathrm{Hg}$
$64 \mathrm{~mm} \mathrm{Hg}=3 \mathrm{P}_{1}$
$\therefore \quad \mathrm{P}_{1}=21.33 \mathrm{~mm} \mathrm{Hg} \approx 21.44 \mathrm{~mm} \mathrm{Hg}$
27. (A)

Relative lowering of vapour pressure
$=\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}$
$=\frac{640-590}{640}=0.078$
28. (D)

Using formula,
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\frac{32 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}}{32 \mathrm{~mm} \mathrm{Hg}}=\frac{3 \mathrm{~g} \times 18 \mathrm{~g} \mathrm{~mol}^{-1}}{60 \mathrm{~g} \mathrm{~mol}^{-1} \times 8.1 \mathrm{~g}}$
$\therefore \quad \frac{32 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}}{32 \mathrm{~mm} \mathrm{Hg}}=0.1$
$\therefore \quad 32 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}=0.1 \times 32 \mathrm{~mm} \mathrm{Hg}$
$\therefore \quad 32 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}=3.2 \mathrm{~mm} \mathrm{Hg}$
$\therefore \quad \mathrm{P}_{1}=32 \mathrm{~mm} \mathrm{Hg}-3.2 \mathrm{~mm} \mathrm{Hg}=28.8 \mathrm{~mm} \mathrm{Hg}$
29. (C)

Relative lowering of vapour pressure $=\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{0}}=x_{2}$

$$
=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}
$$

$\therefore \quad 0.025=\frac{3 \times 18}{\mathrm{M}_{2} \times 36}$
$\therefore \quad \mathrm{M}_{2}=\frac{3 \times 18}{0.025 \times 36}=60 \mathrm{~g} \mathrm{~mol}^{-1}$
30. (C)

$$
\begin{aligned}
& x_{2}=\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}^{\circ}} \\
\therefore \quad & x_{2}=\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{25.8 \mathrm{~mm} \mathrm{Hg}-24.1 \mathrm{~mm} \mathrm{Hg}}{25.8 \mathrm{~mm} \mathrm{Hg}}=0.066
\end{aligned}
$$

31. (A)

Relative lowering of vapour pressure
$=\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=0.025$
$\therefore \quad \frac{17 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}}{17 \mathrm{~mm} \mathrm{Hg}}=0.025$
$\therefore \quad 17 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}=0.025 \times 17 \mathrm{~mm} \mathrm{Hg}$
$\therefore \quad 17 \mathrm{~mm} \mathrm{Hg}-\mathrm{P}_{1}=0.425 \mathrm{~mm} \mathrm{Hg}$
$\therefore \quad P_{1}=17 \mathrm{~mm} \mathrm{Hg}-0.425 \mathrm{~mm} \mathrm{Hg}=16.58 \mathrm{~mm} \mathrm{Hg}$
32. (A)

Molar mass of water is $18 \mathrm{~g} \mathrm{~mol}^{-1}$
$\frac{\mathrm{P}_{1}^{0}-\mathrm{P}_{1}}{\mathrm{P}_{1}^{0}}=\frac{\mathrm{W}_{2} \mathrm{M}_{1}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\therefore \quad 0.03=\frac{19 \mathrm{~g} \times 18 \mathrm{~g} \mathrm{~mol}^{-1}}{\mathrm{M}_{2} \times 200 \mathrm{~g}}$
$\therefore \quad 0.03=\frac{1.71 \mathrm{~g} \mathrm{~mol}^{-1}}{\mathrm{M}_{2}}$
$\therefore \quad \mathrm{M}_{2}=\frac{1.71 \mathrm{~g} \mathrm{~mol}^{-1}}{0.03}=57.00 \mathrm{~g} \mathrm{~mol}^{-1}$

2.8 Boiling point elevation

1. (D)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \frac{1000 \mathrm{~W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$;
$\mathrm{K}_{\mathrm{b}}=\frac{\Delta \mathrm{T}_{\mathrm{b}} \mathrm{M}_{2} \mathrm{~W}_{1}}{1000 \mathrm{~W}_{2}}=\frac{\Delta \mathrm{T}_{\mathrm{b}} \times 100 \times 500}{1000 \times 50}=\Delta \mathrm{T}_{\mathrm{b}}$
2. (A)

Given: $\mathrm{m}=0.25 \mathrm{~m}, \mathrm{~K}_{\mathrm{b}}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{m} \mathrm{K} \mathrm{K}_{\mathrm{b}}=0.25 \times 0.52=0.13 \mathrm{~K}$
3. (D)

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0} & =100.18-100 \\
& =0.18^{\circ} \mathrm{C}=0.18 \mathrm{~K}
\end{aligned}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$\therefore \quad \mathrm{m}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{0.18 \mathrm{~K}}{0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}}=0.35 \mathrm{~mol} \mathrm{~kg}^{-1}$
4. (D)
5. (B)
6. (B)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$\therefore \quad \mathrm{K}_{\mathrm{b}}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{m}}$
where $\mathrm{m}=$ Molality of solution
7. (C)
8. (D)

Decimolal solution implies that the molality of the solution is 0.1 m .
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$=0.52{ }^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1} \times 0.1 \mathrm{~mol} \mathrm{~kg}^{-1}=0.052{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0}$
$\therefore \quad \mathrm{T}_{\mathrm{b}}=\Delta \mathrm{T}_{\mathrm{b}}+\mathrm{T}_{\mathrm{b}}^{0}=0.052+100=100.052{ }^{\circ} \mathrm{C}$
9. (B)

$$
\begin{aligned}
\mathrm{M}_{2} & =\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{~W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{~W}_{1}}=\frac{1000 \times 2.77 \times 50}{5.54 \times 150} \\
& =166.6 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

10. (C)

$$
\begin{aligned}
\mathrm{M}_{2} & =\frac{1000 \times \mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{~W}_{1}} \\
\therefore \quad \mathrm{~K}_{\mathrm{b}} & =\frac{\mathrm{M}_{2} \times \Delta \mathrm{T}_{\mathrm{b}} \times \mathrm{W}_{1}}{1000 \times \mathrm{W}_{2}} \\
& =\frac{111 \mathrm{~g} \mathrm{~mol}^{-1} \times 8.3 \mathrm{~K} \times 150 \mathrm{~g}}{1000 \mathrm{~g} \mathrm{~kg}^{-1} \times 50 \mathrm{~g}} \\
& =2.76 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}
\end{aligned}
$$

11. (C)
12. (C)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0}=85-76=9{ }^{\circ} \mathrm{C}=9 \mathrm{~K}$
$\mathrm{M}_{2}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{W}_{1}}$
$\therefore \quad \mathrm{W}_{2}=\frac{\mathrm{M}_{2} \Delta \mathrm{~T}_{\mathrm{b}} \mathrm{W}_{1}}{1000 \mathrm{~K}_{\mathrm{b}}}=\frac{120 \times 9 \times 160}{1000 \times 2.7}=64 \mathrm{~g}$
13. (B)

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0}=310-308=2 \mathrm{~K}
$$

$\mathrm{M}_{2}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2} \times 1000}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{W}_{1}}=\frac{2.4 \times 5 \times 1000}{2 \times 100}$

$$
=60 \mathrm{~g} \mathrm{~mol}^{-1}
$$

14. (D)

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2} \times 1000}{\mathrm{M}_{2} \times \mathrm{W}_{1}} \\
\therefore \quad & \mathrm{~W}_{2}=\frac{\Delta \mathrm{T}_{\mathrm{b}} \times \mathrm{M}_{2} \times \mathrm{W}_{1}}{\mathrm{~K}_{\mathrm{b}} \times 1000}=\frac{2 \times 60 \times 100}{2.5 \times 1000}=4.8 \text { gram }
\end{aligned}
$$

15. (B)

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}
$$

$\therefore \quad \mathrm{m}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{1.74}{3}=0.58 \mathrm{~mol} \mathrm{~kg}^{-1}$
16. (B)
$\begin{aligned} \mathrm{M}_{2} & =\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2} \times 1000}{\Delta \mathrm{~T}_{\mathrm{b}} \times \mathrm{W}_{1}}=\frac{3.5 \times 2 \times 1000}{0.5 \times 80} \\ & =175 \mathrm{~g} \mathrm{~mol}^{-1}\end{aligned}$

$$
=175 \mathrm{~g} \mathrm{~mol}^{-1}
$$

17. (C)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$\therefore \quad \mathrm{m}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{1.75}{5}=0.35 \mathrm{~mol} \mathrm{~kg}^{-1}$
18. (B)

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{~W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}} \\
\therefore \quad \mathrm{~K}_{\mathrm{b}} & =\frac{\Delta \mathrm{T}_{\mathrm{b}} \times \mathrm{M}_{2} \times \mathrm{W}_{1}}{\mathrm{~W}_{2} \times 1000} \\
& =\frac{7 \times 132 \times 180}{60 \times 1000}=2.77 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}
\end{aligned}
$$

19. (A)
20. (B)
21. (D)
22. (C)

$$
\begin{aligned}
\mathrm{M}_{2} & =\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2} \times 1000}{\Delta \mathrm{~T}_{\mathrm{b}} \times \mathrm{W}_{1}}=\frac{2.5 \times 3.5 \times 1000}{0.35 \times 100} \\
& =250 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

23. (D)

The aqueous solution contains 36 g glucose per dm^{3}, so mass of solute W_{2} is 36 g .
Assuming that the density of solution is
$1 \mathrm{~g} / \mathrm{dm}^{3}$, the mass of solvent (water) is 1000 g .
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{1000 \mathrm{~g} \mathrm{~kg}^{-1} \times \mathrm{K}_{\mathrm{b}} \times 36 \mathrm{~g}}{180 \mathrm{~g} \times 1000 \mathrm{~g}}$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{2 \mathrm{~K}_{\mathrm{b}}}{10}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{\mathrm{o}}$
$\mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}^{\mathrm{o}}+\Delta \mathrm{T}_{\mathrm{b}}$
$\therefore \quad \mathrm{T}_{\mathrm{b}}=\left(100+\frac{2 \mathrm{~K}_{\mathrm{b}}}{10}\right)^{\circ} \mathrm{C}$
24. (A)
$\mathrm{M}_{2}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{W}_{1}}$
$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{M}_{2} \times \Delta \mathrm{T}_{\mathrm{b}} \times \mathrm{W}_{1}}{1000 \times \mathrm{W}_{2}}=\frac{150 \times 0.65 \times 30}{1000 \times 1.5}$
$=1.95 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
25. (C)

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m} \\
& 1.89=3.15 \times \mathrm{m} \\
\therefore \quad & \mathrm{~m}=\frac{1.89}{3.15}=0.6 \mathrm{~mol} \mathrm{~kg}^{-1}
\end{aligned}
$$

26. (A)
$\mathrm{M}_{2}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{W}_{1}}$

$$
=\frac{1000 \times 3 \times 5.6}{1.75 \times 50}=192 \mathrm{~g} \mathrm{~mol}^{-1}
$$

27. (A)

$$
\begin{aligned}
& \mathrm{M}_{2}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{~W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{~W}_{1}} \\
\therefore \quad & \mathrm{~K}_{\mathrm{b}}=\frac{\mathrm{M}_{2} \Delta \mathrm{~T}_{\mathrm{b}} \mathrm{~W}_{1}}{1000 \mathrm{~W}_{2}}
\end{aligned}
$$

Now, $\mathrm{W}_{2}=$ one gram mole $=\mathrm{M}_{2} \mathrm{~g}$
$\mathrm{W}_{1}=1 \mathrm{~kg}=1000 \mathrm{~g}$
$\therefore \quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{M}_{2} \times x \times 1000}{1000 \times \mathrm{M}_{2}}$
$=x \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$

Thinking Hatke - Q. 27

One gram mole solute dissolved in 1 kg solvent $=1$ molal solution

When concentration of solution is 1 molal, elevation in boiling point $\left(\Delta \mathrm{T}_{\mathrm{b}}\right)$ is equal to molal elevation constant (K_{b}).

Therefore, $\mathrm{K}_{\mathrm{b}}=x \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
28. (C)

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}
$$

$\therefore \quad \mathrm{m}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{7.15 \mathrm{~K}}{2.75 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}}=2.6 \mathrm{~mol} \mathrm{~kg}^{-1}$
29. (B)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0}=84-75=9{ }^{\circ} \mathrm{C}=9 \mathrm{~K}$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\mathrm{M}_{2}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \mathrm{W}_{1}}=\frac{1000 \times 2.7 \times 50}{9 \times 150}=100 \mathrm{~g} \mathrm{~mol}^{-1}$
30. (B)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
$\therefore \quad \mathrm{K}_{\mathrm{b}}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{m}}=\frac{0.68 \mathrm{~K}}{0.34 \mathrm{~mol} \mathrm{~kg}^{-1}}=2.0 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
31. (B)

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0} \\
& =84.27^{\circ} \mathrm{C}-77.27^{\circ} \mathrm{C} \\
& =7.00^{\circ} \mathrm{C}=7.00 \mathrm{~K}
\end{aligned}
$$

Now,
$\mathrm{M}_{2}=\frac{1000 \times \mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \times \mathrm{W}_{1}}$
$\begin{aligned} \mathrm{M}_{2} & =\frac{1000 \mathrm{~g} \mathrm{~kg}^{-1} \times 2.73 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 50 \mathrm{~g}}{7.00 \mathrm{~K} \times 150 \mathrm{~g}} \\ & =130 \mathrm{~g} \mathrm{~mol}^{-1}\end{aligned}$
$=130 \mathrm{~g} \mathrm{~mol}^{-1}$
32. (A)

$$
\begin{aligned}
\mathrm{M}_{2} & =\frac{1000 \times \mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2}}{\Delta \mathrm{~T}_{\mathrm{b}} \times \mathrm{W}_{1}} \\
& =\frac{1000 \times 2.77 \times 30}{7.2 \times 120} \\
& =96.2 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

33. (A)

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{~m} & =2.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 0.7 \mathrm{~mol} \mathrm{~kg}^{-1} \\
& =1.75 \mathrm{~K}
\end{aligned}
$$

34. (B)
35. (C)

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{~m}
$$

$\therefore \quad \mathrm{K}_{\mathrm{b}}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{m}}=\frac{0.125 \mathrm{~K}}{0.25 \mathrm{~mol} \mathrm{~kg}^{-1}}$

$$
=0.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}
$$

Page no. 196 to 200 are purposely left blank.
To see complete chapter buy Target Notes

18. (D)

Depression of freezing point is colligative property which depends on number of particles present in solution. Lesser is the number of particles, less will be the depression.

Solution	Dissociation	Molality of ions after dissociation
$0.2 \mathrm{~m} \mathrm{MgCl}_{2}$	$\mathrm{MgCl}_{2} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}$	3×0.2 $=0.6 \mathrm{~m}$
$2 \mathrm{~m} \mathrm{AlCl}_{3}$	$\mathrm{AlCl}_{3} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}$	$4 \times 2=8 \mathrm{~m}$
0.2 m KCl	$\mathrm{KCl} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$	0.2×2 $=0.4 \mathrm{~m}$ 0.1 m NaCl
	$\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$	0.1×2

19. (B)

	Solution	Moles of particles in $\mathbf{1} \mathbf{~ k g ~ s o l u t i o n ~}$
(A)	$0.1 \mathrm{~m} \mathrm{AlCl}_{3}$	0.4
(B)	$0.01 \mathrm{~m} \mathrm{MgCl}_{2}$	0.03
(C)	1 m KCl	2
(D)	0.5 m NaCl	1

$0.01 \mathrm{~m} \mathrm{MgCl}_{2}$ solution has minimum number of particles in solution, so it shows the lowest value of boiling point elevation.
20. (B)

$$
\begin{aligned}
\pi & =\mathrm{iMRT}=\frac{\mathrm{i} \times \mathrm{W}_{2} \mathrm{RT}}{\mathrm{M}_{2} \mathrm{~V}} \\
\pi & =\frac{2.47 \times 1.7 \mathrm{~g} \times 0.082 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K}}{111 \mathrm{~g} \mathrm{~mol}^{-1} \times 1.25 \mathrm{dm}^{3}} \\
& =0.744 \mathrm{~atm}
\end{aligned}
$$

21. (A)

$$
\begin{aligned}
\pi & =\mathrm{iMRT} \\
& =1.83 \times 0.2 \times 0.082 \times 273 \\
& =8.2 \mathrm{~atm}
\end{aligned}
$$

22. (D)
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
Total ions $=0.1+0.1=0.2$ ions
$\mathrm{KNO}_{3} \longrightarrow \mathrm{~K}^{+}+\mathrm{NO}_{3}^{-}$
Total ions $=0.2+0.2=0.4$ ions
$\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}$
Total ions $=0.2+0.1=0.3$ ions
$\mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}$
Total ions $=0.05+0.1=0.15$ ions
$0.05 \mathrm{~m} \mathrm{CaCl}_{2}$ solution has minimum ions in solution, so it shows minimum boiling point elevation.
23. (C)
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}=0-\left(-0.51^{\circ} \mathrm{C}\right)=0.51^{\circ} \mathrm{C}=0.51 \mathrm{~K}$
$\therefore \quad \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{iK}_{\mathrm{f}} \mathrm{m}$
$\therefore \quad \mathrm{i}=\frac{\Delta \mathrm{T}}{\mathrm{K}_{\mathrm{f}} \mathrm{m}}=\frac{0.51 \mathrm{~K}}{1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 0.15 \mathrm{~mol} \mathrm{~kg}^{-1}}=1.82$
24. (A)
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$
$\therefore \quad 0.43=\mathrm{i} \times 1.86 \times 0.1$
$\therefore \quad i=\frac{0.43}{1.86 \times 0.1}=2.3$
[Note: In the question, the freezing point of aqueous solution is changed from -0.43 K to $-0.43{ }^{\circ} \mathrm{C}$ to apply appropriate textual concepts.]
25. (C)

Osmotic pressure is a colligative property that depends on number of particles in solution. The solution having more number of particles will have large osmotic pressure.
Suppose the concentration of each substance is 1 m . Then,
$\mathrm{Li}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Li}^{+}+\mathrm{SO}_{4}^{2-}$
$1 \mathrm{~m} \quad 2.0 \mathrm{~m} \quad 1 \mathrm{~m}$
Total particles in solution $=3 \mathrm{~mol}$
$\mathrm{KCl} \longrightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$
$1 \mathrm{~m} \quad 1 \mathrm{~m} \quad 1 \mathrm{~m}$
Total particles in solution $=2 \mathrm{~mol}$

Total particles in solution $=5 \mathrm{~mol}$
$\underset{1 \mathrm{~m}}{\mathrm{BaCl}_{2}} \longrightarrow \underset{1 \mathrm{~m}}{\mathrm{Ba}^{2+}}+\underset{2 \mathrm{~m}}{2 \mathrm{Cl}^{-}}$
Total particles in solution $=3 \mathrm{~mol}$
Hence, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution gives more number of particles and has the highest osmotic pressure among the given.
26. (C)
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$0.056=\mathrm{i} \times 1.86 \times 0.01$
$\therefore \quad i=\frac{0.056}{1.86 \times 0.01}=3.01$
[Note: In the question, the freezing point of aqueous solution is changed from -0.056 K to $-0.056^{\circ} \mathrm{C}$ to apply appropriate textual concepts.]
27. (A)
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$1.0=\mathrm{i} \times 1.86 \times 0.5$
$\mathrm{i}=\frac{1.0}{1.86 \times 0.5}=1.08$
[Note: In the question, the freezing point of the aqueous solution is changed from -1.0 K to $-1.0^{\circ} \mathrm{C}$ to apply appropriate textual concepts.]

28. (C)

Osmotic pressure is a colligative property that depends on number of particles in solution. The solution having more number of particles will have large osmotic pressure.
Suppose the concentration of each substance is 1 m . Then,
$\begin{array}{ll}\mathrm{Li}_{2} \mathrm{SO}_{4} \longrightarrow \\ 1 \mathrm{~m} & 2 \mathrm{Li}^{+} \\ 2 \mathrm{~m}\end{array}+\underset{4}{\mathrm{SO}_{4}^{2-}} \underset{ }{1 \mathrm{~m}}$
Total particles in solution $=3 \mathrm{~mol}$
$\mathrm{KCl} \longrightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$
$1 \mathrm{~m} \quad 1 \mathrm{~m} \quad 1 \mathrm{~m}$
Total particles in solution $=2 \mathrm{~mol}$

Total particles in solution $=5 \mathrm{~mol}$
$\begin{gathered}\mathrm{BaCl}_{2} \\ 1 \mathrm{~m}\end{gathered} \longrightarrow \begin{gathered}\mathrm{Ba}^{2+} \\ 1 \mathrm{~m}\end{gathered}+\underset{2 \mathrm{~m}}{2 \mathrm{Cl}^{-}}$
Total particles in solution $=3 \mathrm{~mol}$
Hence, solution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ gives more number of particles and has the highest osmotic pressure among the given.
29. (A)

Assuming molarity is equal to molality,
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$\therefore \quad 0.021=\mathrm{i} \times 1.86 \times 0.01$
$\mathrm{i}=\frac{0.021}{1.86 \times 0.01}=1.13$
[Note: In the question, the freezing point of the aqueous solution is changed from -0.021 K to $-0.021^{\circ} \mathrm{C}$ to apply appropriate textual concepts.]
30. (C)

One formula unit of MgCl_{2} dissolved in water produces three ions while given others produce 2 ions each per formula unit. Hence, among given equimolar solutions, MgCl_{2} solution produces the highest elevation in boiling point
31. (D)

$0.1 \mathrm{~m} \quad 0.1 \mathrm{~m} \quad 0.1 \mathrm{~m}$
Total particles in solution $=0.2 \mathrm{~mol}$
$\mathrm{KNO}_{3} \longrightarrow \mathrm{~K}^{+}+\mathrm{NO}_{3}^{-}$
$0.2 \mathrm{~m} \quad 0.2 \mathrm{~m} \quad 0.2 \mathrm{~m}$
Total particles in solution $=0.4 \mathrm{~mol}$
$\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}$
$0.1 \mathrm{~m} \quad 0.2 \mathrm{~m} \quad 0.1 \mathrm{~m}$
Total particles in solution $=0.3 \mathrm{~mol}$
$\mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}$
$0.05 \mathrm{~m} \quad 0.05 \mathrm{~m} \quad 0.1 \mathrm{~m}$
Total particles in solution $=0.15$ mole

Hence, 0.05 m CaCl 2 solution has minimum moles and particles. Hence, it shows minimum freezing point depression.

Concept Fusion

1. (A) 2. (B)

Give your MHT-CET exam preparation the TECHNOLOGY BOOST!

Practice more than 23,000 MCQs

Also available for $\mathrm{X}^{\mathrm{th}}, \mathrm{XI}^{\mathrm{th}}, \mathrm{XIIt}^{\mathrm{th}}$, NEET \& JEE

- Practice chapter-wise \& full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference

Visit our website to know more about our the app range of books for

[^0]: (C) Target Publications Pvt. Ltd.

 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

[^1]: Disclaimer
 This reference book is transformative work based on the latest Textbooks of Std. XI and XII Chemistry published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.
 No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

[^2]: E - Easy: Questions whose answers can be directly and easily answered by the information given in Std. XI and XII Textbooks.
 M - Medium: These questions require students to identify and apply the appropriate concepts which they studied from Std. XI and XII Textbooks.
 D - Difficult: The most Challenging Questions that require application of various concepts and encourage students to think beyond the information

 - Analysis of questions by difficulty level: Although the proportion of easy, medium, and difficult questions varies amongst the twelve papers, the quantity of easy and medium questions is nearly equal, with a few difficult questions.

 This demonstrates that the entrance exam places a strong emphasis on careful reading, comprehension of the text, and application of principles. When studying for the entrance exam, it is advisable that students pay close attention to each chapter, concentrate on comprehending various chemical reactions, and practice solving numerical problems.

[^3]: E - Easy: Questions whose answers can be directly and easily answered by the information given in Std. XI and XII Textbooks.
 M - Medium: These questions require students to identify and apply the appropriate concepts which they studied from Std. XI and XII Textbooks.
 D - Difficult: The most Challenging Questions that require application of various concepts and encourage students to think beyond the information given in the textbooks.
 $>$ Analysis of questions by difficulty level: Although the proportion of easy, medium, and difficult questions varies amongst the twelve papers, more numbers of easy and medium questions are asked, with a few difficult questions.

 This demonstrates that the entrance exam places a strong emphasis on careful reading, comprehension of the text and application of principles. When studying for the entrance exam, it is advisable that students pay close attention to each chapter, concentrate on comprehending various chemical reactions, and practice solving numerical problems.

