# SAMPLE CONTENT

# Challenger

# JEE (Main) MATHEMATICS vol - 11

**1506 MCQs with Hints** 

For all Engineering Entrance Examinations held across India.

When a wheel rolls along a straight line, any point on the rim of the circular wheel traces a curve called a cycloid. Parametric form of the equation of a cycloid is more popular than the cartesian form.

> Mr. Vinod Singh M.Sc. (Mathematics)

Mrs. Swarada Kirloskar M.Sc. (Applied Maths) M.Phil (Computer Applications)

Target Publications® Pvt. Ltd.

Ms. Suchitra Yadav M.Sc. (Mathematics), B.Ed.

As per latest syllabus issued by

NTA

Now with more study techniques

# Challenger JEE (Main) Mathematics Vol. II

#### Updated as per latest syllabus for

#### JEE (Main) 2024 issued by NTA on 01<sup>st</sup> November, 2023

#### **Salient Features**

| S | Concise theory for every topic                                       |
|---|----------------------------------------------------------------------|
| G | Eclectic coverage of MCQs under each sub-topic                       |
| G | Exhaustive coverage of questions including selective questions fr    |
|   | examinations updated upto year 2023:                                 |
|   | - <b>1506</b> Questions of the level of various competitive exams    |
|   | - Solutions to the questions are provided for better understanding   |
| G | Inclusion of 'Problems To Ponder' to enhance students' practical and |

Inclusion of 'Problems To Ponder' to enhance students' practical application of mathematical concepts.

selective questions from previous JEE (Main)

- Study Techniques to Enhance Understanding and Problem Solving.
  - Shortcuts
  - Important Notes
- Includes Question Papers and Answer Keys (Solutions through Q.R. code) of:
  - JEE (Main) 2021 24<sup>th</sup> February, 16<sup>th</sup> March (Shift I)
    - JEE (Main) 2022 25<sup>th</sup> July (Shift I)
    - JEE (Main) 2023 24<sup>th</sup> Jan (Shift II)
  - Q.R. codes provide:
    - Solutions of previous years' exam papers of years 2021 to 2023
  - Separate list of questions excluded from the JEE (Main) 2024 syllabus

Printed at: Print to Print, Mumbai

#### © Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

**TEID: 3227** 

#### PREFACE

Target's 'Challenger Maths: Vol-II' is a compact guidebook, extremely handy for preparation of various competitive exams like JEE (Main).

Features of each chapter:

- Coverage of **Theoretical Concepts** that form a vital part of any competitive examination.
- Multiple Choice Questions segregated into two sections. Concept Building Problems Contains questions of various difficulty range and pattern. Practice Problems – Contains ample questions for thorough revision.
- **'Important Note'** highlights the unique points about the topic.
- **Shortcuts** to help students save time while dealing with lengthy questions.
- **Problems to Ponder:** Various types of questions of different pattern created with the primary objective of helping students to understand the application of various concepts of Maths.

MCQs have been created and compiled with the following objective in mind – to help students solve complex problems which require strenuous effort and understanding of multiple-concepts.

The level of difficulty of the questions is at par with that of various competitive examinations like JEE (Main), AIEEE, TS EAMCET (Engg.), BCECE, Assam CEE, AP EAMCET (Engg.) and the likes. Also to keep students updated, questions from the most recent examinations of JEE (Main), of years 2014, 2015, 2016, 2017, 2018, 2019 and 2020 are covered exclusively.

Question Papers and Answer Keys of JEE (Main) **2021** [24<sup>th</sup> February, 16<sup>th</sup> March (Shift - I)], JEE (Main) **2022** 25<sup>th</sup> July (Shift - I) and JEE (Main) **2023** 24<sup>th</sup> Jan (Shift - II) have been provided to offer students glimpse of the complexity of questions asked in entrance examination. Solutions are also provided through a separate Q.R. code. The papers have been split unit-wise to let the students know which of the units were more relevant in the latest examinations.

Considering the latest modifications in the syllabus of JEE (Main) examination, a list of questions based on the concepts excluded from the latest JEE (Main) 2024 syllabus is provided. The purpose of providing these questions is to display various question types and their level of difficulty that have been asked in previous examinations.

We hope the book benefits the learner as we have envisioned.

A book affects eternity; one can never tell where its influence stops.

Publisher Edition : Fifth

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you. Please write to us on : mail@targetpublications.org

#### Disclaimer

This reference book is based on the JEE (Main) syllabus prescribed by National Testing Agency (NTA). We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the National Council of Educational Research and Training (NCERT). Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

 $\ensuremath{\mathbb{C}}$  reserved with the Publisher for all the contents created by our Authors.

No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

## **KEY FEATURES**



#### Why Challenger Series?

Gradually, every year the nature of competitive entrance exams is inching towards conceptual understanding of topics. Moreover, it is time to bid adieu to the stereotypical approach of solving a problem using a single conventional method.

To be able to successfully crack the JEE (Main) examination, it is imperative to develop skills such as data interpretation, appropriate time management, knowing various methods to solve a problem, etc. With Challenger Series, we are sure, you'd develop all the aforementioned skills and take a more holistic approach towards problem solving. The way you'd tackle advanced level MCQs with the help of hints, tips, shortcuts and necessary practice would be a game changer in your preparation for the competitive entrance examinations.

#### > What is the intention behind the launch of Challenger Series?

The sole objective behind the introduction of Challenger Series is to severely test the student's preparedness to take competitive entrance examinations. With an eclectic range of critical and advanced level MCQs, we intend to test a student's MCQ solving skills within a stipulated time period.

#### > What do I gain out of Challenger Series?

After using Challenger Series, students would be able to:

- a. assimilate the given data and apply relevant concepts with utmost ease.
- b. tackle MCQs of different pattern such as match the columns, diagram based questions, multiple concepts and assertion-reason efficiently.
- c. garner the much needed confidence to appear for various competitive exams.

#### Can the Questions presented in Problems to Ponder section be a part of the JEE (Main) Examination?

No, the questions would not appear as it is in the JEE (Main) Examination. However, there are fair chances that these questions could be covered in parts or with a novel question construction.

#### Why is then Problems to Ponder a part of this book?

The whole idea behind introducing Problems to Ponder was to cover an entire concept in one question. With this approach, students would get **more variety and less repetition** in the book.

Best of luck to all the aspirants!



| No. | Topic Name                                                                        | Page No. |
|-----|-----------------------------------------------------------------------------------|----------|
| 1.  | Limits                                                                            | 1        |
| 2.  | Continuity and Differentiability                                                  | 34       |
| 3.  | Derivatives                                                                       | 62       |
| 4.  | Applications of derivatives •                                                     | 97       |
| 5.  | Indefinite Integration                                                            | 159      |
| 6.  | Definite Integrals •                                                              | 205      |
| 7.  | Area under a curve                                                                | 243      |
| 8.  | Differential Equations •                                                          | 265      |
| 9.  | Determinants and Matrices •                                                       | 300      |
| 10. | Vector Algebra •                                                                  | 359      |
| 11. | Three Dimensional Geometry •                                                      | 399      |
| 12. | Mathematical Reasoning                                                            | 436      |
|     | JEE (Main) 2021 24 <sup>th</sup> February (Shift – I) Question Paper & Answer Key | 447      |
|     | JEE (Main) 2021 16 <sup>th</sup> March (Shift – I) Question Paper & Answer Key    | 449      |
|     | JEE (Main) 2022 25 <sup>th</sup> July (Shift – I) Question Paper & Answer Key     | 451      |
|     | JEE (Main) 2023 24 <sup>th</sup> January (Shift – II) Question Paper & Answer Key | 453      |

 Note:
 Image: Complete chapter excluded from the JEE (Main) 2024 syllabus (in index)

 •
 - Part of the chapter excluded from the JEE (Main) 2024 syllabus (in index)

Questions based on the concepts excluded from the JEE (Main) 2024 Syllabus

| Chapter and Excluded Subtopic         Cuestions excluded<br>from 2024 Syltabus           ations of Derivatives         Theory         -           Tangents and Normals         Theory         -           Mean value theorems         Concept Building         All Questions           Mean value theorems         Concept Building         All Questions           Mean value theorems         Theory         -           Mean value theorems         Concept Building         All Questions           Practice Problems         -         34, 35, 36, 38 to 56, 105 to 113           Problems to Ponder         -         1, 2           Innegrals         -         1, 2           Innegrals         -         1, 2           Innegrals at limit of a sum         -         1, 2           Problems         -         1, 2           Innegrals         -         1, 2           Pontoriand         - <td< th=""><th>Page No.</th><th>97 to 99</th><th>103 to 105</th><th>101</th><th>109 and 110</th><th>112, 113 and 117</th><th>117</th><th>208 and 209</th><th>212</th><th>217</th><th>265 and 266</th><th>270</th><th>274 to 277</th><th>302 to 305, 324</th><th>325 and 326</th><th>302 to 305, 324</th><th>326 and 327</th><th>306 to 309, 311</th><th>327 and 328</th></td<>                  | Page No.                                 | 97 to 99 | 103 to 105                                              | 101                    | 109 and 110                  | 112, 113 and 117                    | 117                | 208 and 209        | 212                              | 217               | 265 and 266           | 270                                      | 274 to 277         | 302 to 305, 324                  | 325 and 326                                                                                       | 302 to 305, 324                   | 326 and 327                                                                                                                  | 306 to 309, 311                | 327 and 328                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|---------------------------------------------------------|------------------------|------------------------------|-------------------------------------|--------------------|--------------------|----------------------------------|-------------------|-----------------------|------------------------------------------|--------------------|----------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|
| Chapter and Excluded Subtopic       Theory       Theory       Tangents and Normals     Theory       Tangents and Normals     Theory       Tangents and Normals     Theory       Mean value theorems     Concept Building       Problems     Theory       Problems to Ponder     Theory       Problems to Ponder     Theory       Problems to Ponder     Theory       Problems to Ponder     Theory       Integral as a limit of a sum     Concept Building       Practice Problems     Theory       Practice Problems     Theory   <                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Questions excluded<br>from 2024 SvIlabus |          | All Questions                                           | ·                      | All Questions                | 34, 35, 36, 38 to 56,<br>105 to 113 | 1, 2               | ·                  | All Questions                    | 64                | •                     | All Questions                            | 3, 6 to 10, 26, 39 |                                  | 3, 5, 6, 7, 9, 12, 13, 15, 19                                                                     |                                   | All Questions                                                                                                                |                                | All Questions                |
| Chapter and Excluded Subtopic         ations of Derivatives       Tangents and Normals         Tangents and Normals       Mean value theorems         Mean value theorems       Practice Problems         Practice Problems       Problems to Ponder         Problems to Ponder       Problems         Practice Problems       Practice Problems         Integral as a limit of a sum       Practice Problems         Practice Problems       Practice Problems         Practice Problems       Formation of a differential equation         Practice Problems       Practice Problems         Evaluation of a differential equation       Practice Problems         Practice Problems       Formation of a differential equation         Practice Problems       Formation of a determinant, Evaluation         Practice Problems       Minors and cofactors of a determinant, Evaluation of a determinant, Evaluation of a determinant, Evaluation of a determinant, Properties of determinants, Properties of determinants, Properties of determinants, Monthone Properties of determinants, Propertie |                                          | Theory   | Concept Building<br>Problems                            | Theory                 | Concept Building<br>Problems | ŗ                                   |                    | Theory             | Concept Building<br>Problems     |                   | Theory                | Concept Building<br>Problems             |                    | Theory                           | Concept Building<br>Problems                                                                      | Theory                            | Concept Building<br>Problems                                                                                                 | Theory                         | Concept Building<br>Problems |
| Applic<br>4.3<br>4.6<br>4.6<br>6.3<br>6.3<br>6.3<br>8.2<br>8.2<br>9.1<br>9.1<br>9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chapter and Excluded Subtopic            |          | Applications of Derivatives<br>4.3 Tangents and Normals | 1.6 Mon relies thereas |                              | Practice Problems                   | Problems to Ponder | Doff-its Internals | 6.3 Integral as a limit of a sum | Practice Problems | Difformtial Equations | 8.2 Formation of a differential equation | Practice Problems  | <b>Determinants and Matrices</b> | 9.1 Minors and cofactors of a determinant,<br><i>Evaluation of a determinant using properties</i> | 0.0 Trinching of Action of Action | 9.2 Evaluation of special determinants, multiplication of determinants, Factor theorem ( <i>Properties of determinants</i> ) | 10.0 Homesen and and an income | equations                    |

|     | 9.6                     | Adjoint of a matrix and inverse of a matrix ( <i>Elementary transformations</i> ) | Theory                       |                                                                   | 320 and 321     |
|-----|-------------------------|-----------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|-----------------|
|     |                         | Practice Problems                                                                 | I                            | 2 to 8, 10 to 13, 15, 16, 17, 20,<br>21, 23 to 35, 37, 38, 52, 61 | 330 to 333, 335 |
|     |                         | Problems to Ponder                                                                | •                            | 1,2                                                               | 336             |
| 10. | Vector                  | Algebra                                                                           | Theory                       |                                                                   | 365 and 366     |
|     | 10.3                    | Scalar and vector triple products and their applications                          | Concept Building<br>Problems | All Questions                                                     | 370 and 371     |
|     |                         | Practice Problems                                                                 |                              | 42 to 61, 63 to 65                                                | 375 and 376     |
| 11. | Three                   | Dimensional Geometry                                                              | Theory                       | I                                                                 | 405 to 408      |
|     | 11.3                    | Equations of a plane in different forms                                           | Concept Building<br>Problems | All Questions                                                     | 410 to 412      |
|     |                         |                                                                                   | Theory                       |                                                                   | 407 to 409      |
|     | 11.4                    | Intersection of a line and a plane, Coplanar lines                                | Concept Building<br>Problems | All Questions                                                     | 412 and 413     |
|     |                         | Practice Problems                                                                 |                              | 18, 20, 23 to 48                                                  | 414 to 417      |
|     |                         | Problems to Ponder                                                                |                              | 1, 2, 3                                                           | 417             |
| 12. | Mathe                   | matical Reasoning                                                                 | Entire Ch                    | apter Deleted                                                     | 436 to 446      |
| JEE | <b>(Main)</b> 2<br>MCQs | .021 - 24 <sup>th</sup> February (Shift - I)                                      |                              | 3, 8, 9, 10, 11                                                   | 447 and 448     |
|     | Numeri                  | cal Value Type Questions (NVT)                                                    |                              | 4                                                                 | 448             |
| JEE | <b>(Main)</b> 2<br>MCQs | .021 - 16 <sup>th</sup> March (Shift - I)                                         | T                            | 8, 9, 10                                                          | 449 and 450     |
|     | Numeri                  | cal Value Type Questions (NVT)                                                    |                              | 3, 4, 6                                                           | 450             |

| 451 and 452                                                       | 452                                  | 453                                                                   |
|-------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|
| 7, 9, 11, 12                                                      | 2,4                                  | 5, 6, 8, 9, 10                                                        |
| I                                                                 | ı                                    | I                                                                     |
| <b>JEE (Main) 2022 – 25<sup>th</sup> July (Shift - I)</b><br>MCQs | Numerical Value Type Questions (NVT) | <b>JEE (Main) 2023 – 24<sup>th</sup> January (Shift - II)</b><br>MCQs |

- The above table contains the list of chapters/subtopics/question numbers that are excluded from the latest syllabus of JEE (Main) 2024. Note: i. ii. iii.
  - Only the concepts highlighted in italics are excluded from the latest syllabus within the specified subtopics.
- These questions are covered to give an idea about the variety and difficulty levels of questions asked in the examination over the years.

Limits

- 1.1 Evaluation by factorization
- 1.2 Evaluation by rationalization
- 1.3 Standard trigonometric limits
- 1.4 Standard exponential and logarithmic limits

#### 1. Concept of limits:

- i. Consider an *n*-sided polygon inscribed in a circle. Let  $A_n$  and A be the areas of the polygon and of the circle respectively. Then we make the following observations:
  - a.  $A_n < A$
  - b.  $A_n$  starts approaching A as n increases indefinitely.
  - c. The difference between  $A_n$  and A can be made as small as we wish by taking sufficiently large *n*.

Mathematically, the whole instance is expressed as  $\lim_{n \to \infty} A_n = A$ 

(We read it as "As *n* approaches  $\infty$ ,  $A_n$  approaches A".)

ii. Consider the series

$$S_{n} = 1 + \frac{1}{3} + \frac{1}{3^{2}} + \dots + \frac{1}{3^{n-1}} \text{ and } S = 1 + \frac{1}{3} + \frac{1}{3^{2}} + \dots \infty$$
  
We have  $S_{n} = \frac{1 - \frac{1}{3^{n}}}{1 - \frac{1}{3}} = \frac{3}{2} \left( 1 - \frac{1}{3^{n}} \right)$   
and  $S = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}$ 

We make the following observations:

- a.  $S_n < S$
- b.  $S_n$  starts approaching S as *n* increases indefinitely.
- c. The difference between  $S_n$  and S can be made as small as we wish by taking sufficiently large n.

Mathematically, we express it as  $\lim_{n \to \infty} S_n = S$ 

(We read it as "As *n* tends to  $\infty$ , S<sub>n</sub> tends to S".)

#### **Important Note**

• If  $A_n$  approaches A (i.e.,  $A_n$  tends to A), then  $A_n$  does not attain value A.

- 1.5 Limit of f(n) as  $n \to \infty$
- 1.6 Evaluation using series expansion
- 1.7 Use of Sandwich theorem
- 2. Neighbourhood of a point x = a and meaning of 'x tends to a'

i. Neighbourhood of x = a:

A neighbourhood of x = a is an open interval around x = a, denoted by N<sub> $\delta$ </sub> (*a*) and is defined as

 $N_{\delta}(a) = \{ x : |x - a| < \delta \}$ (where  $\delta$  is a small number)

#### ii. Meaning of $x \rightarrow a$ (i.e., x tends to a)

 $x \rightarrow a \quad \Leftrightarrow \quad x \in \mathbb{N}_{\delta}(a) \quad \text{but } x \neq a$ 

- a. When x < a and x ∈ N<sub>δ</sub> (a) ⇒ x → a<sup>-</sup>
  (We read it as 'x approaches a from its left.')
- b. When x > a and  $x \in N_{\delta}(a) \Rightarrow x \rightarrow a^{+}$ (We read it as 'x approaches a from its right.')

#### 3. Limit of a function:

- i. Left hand and right hand limits (L.H.L. and R.H.L.)
  - a. L.H.L. = a value where *f* approaches as  $x \rightarrow a^{-}$
  - b. R.H.L. = a value where f approaches as  $x \rightarrow a^+$

**ii. Definition :** If L.H.L. =  $\lim f(x)$  and

R.H.L. = 
$$\lim_{x \to a^+} f(x)$$

exist and are equal to, say, l

then *l* is called the limit of the function as  $x \rightarrow a$  and is denoted as  $\lim f(x)$ .

**e.g.**  $\lim_{x \to \frac{\pi}{2}} \cos x = 0$ ,  $\lim_{x \to \frac{\pi}{4}} \tan x = 1$ ,

 $\lim_{x \to \frac{\pi}{2}} (\tan x) \text{ does not exist.}$ 

#### **Important Notes**



**Remark:**  $\lim_{x \to a} f(x) = \infty$  or  $-\infty$  is a wrong statement.

#### 4. Algebra of limits:

Let  $\lim_{x \to a} f(x) = l_1$  and  $\lim_{x \to a} g(x) = l_2$ , then

- i.  $\lim_{x \to a} (\alpha \ f(x) + \beta \ g(x)) = \alpha \ l_1 + \beta \ l_2 \text{ where } \alpha, \beta$ are constants. (Linearity property)
- ii.  $\lim_{x \to 0} (f(x) g(x)) = l_1 l_2$
- iii.  $\lim_{x \to a} \left( \frac{f(x)}{g(x)} \right) = \frac{l_1}{l_2} \text{ provided } l_2 \neq 0$
- iv.  $\lim_{x \to a} (f(x))^{g(x)} = (l_1)^{l_2}$

#### 5. Indeterminate forms:

There are certain situations in evaluating limits, where algebra of limits does not work.

e.g. 
$$f(x) = x^2 - 3x + 2$$
,  $g(x) = x^2 - 6x + 5$ 

 $\lim_{x \to 1} f(x) = 0, \qquad \lim_{x \to 1} g(x) = 0$ 

but  $\lim_{x\to 1} \frac{f(x)}{g(x)}$  cannot be evaluated by algebra of

limits.

Such limits (forms) are called indeterminate forms.

There are many indeterminate forms viz.

$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty - \infty, \infty^0, 0^0, 1^\infty$$

#### **Important Note**

✤  $\frac{0}{0} \text{ and } \frac{\infty}{\infty} \text{ are just the names of the indeterminate forms. It should be clearly understood that we are not trying to divide 0 by 0 (or ∞ by ∞) as lim g(x) = 0$ 

i.e. g(x) approaches 0 and the value of g(x) is not 0 as x tends to a.

The forms  $\frac{0}{0}$  and  $\frac{\infty}{\infty}$  are equivalent forms. The form  $\frac{\infty}{\infty}$  indicates that  $\lim_{x \to a} f(x)$  and

 $\lim_{x \to a} g(x) \text{ do not exist but } \lim_{x \to a} \frac{f(x)}{g(x)} \text{ may exist.}$ 

- i. The forms  $0 \times \infty, \infty \infty$  can be reduced to  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$  form.
- a. In  $0 \times \infty$  form, let  $\lim_{x \to a} f(x) = 0$  and  $\lim_{x \to a} g(x)$  does not exist (as g(x) gets indefinitely large as  $x \to a$ ).

$$\lim_{x \to a} (f(x) \times g(x)) = \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} \quad \dots \begin{bmatrix} \frac{0}{0} \text{ form} \end{bmatrix}$$

b. In  $\infty - \infty$  form,  $\lim_{x \to a} f(x)$  and  $\lim_{x \to a} g(x)$  do not exist (as f(x) and g(x) get indefinitely large as  $x \to a$ ).

$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} \left( \frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{g(x)}} \right)$$
$$= \lim_{x \to a} \left( \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)} \cdot \frac{1}{g(x)}} \right)$$
$$\dots \left[ \frac{0}{0} \text{ form} \right]$$

- ii. The forms  $\infty^0$ ,  $1^\infty$  etc. can also be reduced to  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$  form.
- a.  $\lim_{x \to a} f(x)$  does not exist (as f(x) gets indefinitely large as  $x \to a$ ),  $\lim_{x \to a} g(x) = 0$ .

But  $\lim (f(x))^{g(x)}$  may exist.

Let L = 
$$\lim_{x \to a} f(x)^{g(x)}$$
. Then,

$$\log L = \lim_{x \to \infty} g(x) \log f(x) \dots [0 \times \infty \text{ form}]$$

(which can be reduced to  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$  form.)

 $\lim_{x \to \infty} f(x) = 1$  and  $\lim_{x \to \infty} g(x)$  does not exist b. (as g (x) gets indefinitely large as  $x \to a$ ). But  $\lim (f(x))^{g(x)}$  may exist. Let L =  $\lim_{x \to a} (f(x))^{g(x)}$ . Then,  $\operatorname{Log} L = \lim_{x \to a} g(x) \log (f(x)) \dots [0 \times \infty \text{ form}]$ (which can be reduced to  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$  form.)

#### Methods of evaluation of $\lim_{x \to a} f(x)$ : 6.

i. Substitution method: Replace x by a if  $\lim_{x \to a} f(x)$  is not in indeterminate form.

e.g.  $\lim_{x \to 1} (x^2 + x + 1) = 3$ ,  $\lim_{x \to 1} \frac{x^2 + 2}{x} = \frac{1 + 2}{1} = 3$ 

#### ii. **Factorization method:**

If  $\lim_{x \to a} f(x)$  is in  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$  form, then the numerator and denominator would surely have a factor (x - a). By cancelling out the common factor, we get rid of  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$  form.

e.g. 
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{(x - 2)^2}{(x - 1)(x - 2)}$$

$$= \lim_{x \to 2} \frac{x-2}{x-1}$$

$$\dots \left( \text{not in } \frac{0}{0} \text{ form} \right)$$

$$= \frac{2-2}{2-1} = 0$$

#### iii. **Rationalization Method:**

This method is used if  $\lim_{x \to a} \frac{f(x)}{g(x)}$  is in  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$ form, where f(x) and / or g(x) have square roots, is to be evaluated. By rationalising we get a factor (x - a) in numerator as well as denominator.

Illustration: Evaluate: 
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$
  
Solution:  $\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$   
 $= \lim_{x \to 0} \frac{(\sqrt{1+x} - 1)(\sqrt{1+x} + 1)}{x(\sqrt{1+x} + 1)}$   
 $= \lim_{x \to 0} \frac{1+x-1}{x(\sqrt{1+x} + 1)}$   
 $= \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1} = \frac{1}{2}$ 

iv.

Method for evaluating 
$$\lim_{x \to \infty} f(x)$$
:  
Replace x by  $\frac{1}{t}$ . As  $x \to \infty$ ,  $t \to 0$ , and proceed  
as discussed before.  
Illustration: Evaluate:  $\lim_{x \to \infty} \frac{(2x-3)(3x-4)}{(4x-5)(5x-6)}$   
Solution: Substitute  $x = \frac{1}{t}$   
 $\lim_{x \to \infty} \frac{(2x-3)(3x-4)}{(4x-5)(5x-6)}$   
 $= \lim_{t \to 0} \frac{\left(\frac{2}{t}-3\right)\left(\frac{3}{t}-4\right)}{\left(\frac{4}{t}-5\right)\left(\frac{5}{t}-6\right)} = \lim_{t \to 0} \frac{(2-3t)(3-4t)}{(4-5t)(5-6t)}$   
 $= \frac{(2)(3)}{(4)(5)} = \frac{3}{10}$ 

7. **Standard formulae:** 

i.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin (kx)}{x} = k$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan kx}{x} = k$$

$$\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1$$

$$\lim_{x \to \infty} \frac{\sin^{-1} (kx)}{x} = k$$

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

$$\lim_{x \to \infty} \frac{\sin kx}{x} = 0$$

$$\lim_{x \to \infty} x \sin \left(\frac{1}{x}\right) = 1$$

$$\lim_{x \to \infty} x \sin \frac{k}{x} = k$$

#### **Illustrations:**

1. Evaluate: 
$$\lim_{x \to a} \frac{\sin(x-a)}{x-a}$$

Solution:

Substitute 
$$x - a = t$$
  
$$\lim_{x \to a} \frac{\sin(x - a)}{x - a} = \lim_{t \to 0} \frac{\sin t}{t} = 1$$

2. Evaluate: 
$$\lim_{x \to 0} \frac{\sin x^{\circ}}{x}$$

Solution:

$$180^{\circ} = \pi \text{ radians}$$
  

$$\Rightarrow x^{\circ} = \frac{\pi x}{180} \text{ radians}$$
  

$$\lim_{x \to 0} \frac{\sin x^{\circ}}{x} = \lim_{x \to 0} \left( \frac{\sin \left( \frac{\pi x}{180} \right)}{x} \right)$$
  

$$= \lim_{x \to 0} \left( \frac{\pi}{180} \right) \cdot \frac{\sin \left( \frac{\pi x}{180} \right)}{\left( \frac{\pi x}{180} \right)}$$
  

$$= \frac{\pi}{180}$$

**ii.** • 
$$\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = e$$
 •  $\lim_{x \to 0} \left( 1 + x \right)^{\frac{1}{x}} = e$ 

1

• 
$$\lim_{x \to 0} (1 + f(x))^{\overline{f(x)}} = e$$
 provided  $\lim_{x \to 0} f(x) = 0$ 

iii. • 
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$
 •  $\lim_{x \to 0} \frac{e^x - 1}{x} = \log_e e = 1$ 

• 
$$\lim_{x \to 0} \frac{a^{f(x)} - 1}{f(x)} = \log_e a \text{ provided } \lim_{x \to 0} f(x) = 0$$

• 
$$\lim_{x \to 0} \frac{e^{f(x)} - 1}{f(x)} = \log_e e = 1$$
 provided  $\lim_{x \to 0} f(x) = 0$ 

#### **Illustration:**

Evaluate: 
$$\lim_{x \to 0} \frac{\log(1+x)}{x}$$

Solution:

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \log(1+x)^{\frac{1}{x}}$$
$$= \log_e e \quad \dots \left[ \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \right]$$
$$= 1$$

**Remark:** Great mathematician Leonhard Euler (1707 – 1783) discovered the number *e* (an irrational number) as the limits of the sequences

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
 and  $b_n = \left(1 + \frac{1}{n}\right)^n$   
 $e \approx 2.71828$ 

#### iv. Series expansion:

• 
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
  
•  $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$   
•  $\tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots$   
•  $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$   
•  $e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$   
•  $\log (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$   
•  $\log (1 - x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4}$ 

• 
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

If  $f(x) \le g(x) \le h(x)$  and  $\lim_{x \to a} f(x) = l = \lim_{x \to a} h(x)$  then  $\lim_{x \to a} g(x) = l$ .

#### **Illustration:**

If 
$$1 - \frac{x^2}{4} \le f(x) \le 1 + \frac{x^2}{2}$$
,  $x \ne 0$ , find  $\lim_{x \to 0} f(x)$ .  
**Solution:**  
Let  $g(x) = 1 - \frac{x^2}{4}$  and  $h(x) = 1 + \frac{x^2}{2}$   
 $\Rightarrow \lim_{x \to 0} g(x) = 1$  and  $\lim_{x \to 0} h(x) = 1$   
Given  $1 - \frac{x^2}{4} \le f(x) \le 1 + \frac{x^2}{2}$ ,  
by Sandwich theorem  $\lim_{x \to 0} f(x) = 1$ 

#### Concept Building Problems

#### **1.1 EVALUATION BY FACTORIZATION**

1. 
$$\lim_{x \to 1} \frac{(\sqrt{x} - 1)(\sqrt[3]{x} - 1)}{x - 1}$$
  
(A) is 1 (B) is - 1  
(C) is 0 (D) does not exist

2. The value of 
$$\lim_{x \to 3} \frac{x - x}{x - 3}$$
 is  
(A) 3 (B) 9  
(C) 18 (D) 21

3. If 
$$f(x) = \frac{2}{x-3}$$
,  $g(x) = \frac{x-3}{x+4}$  and  $h(x) = -\frac{2(2x+1)}{x^2+x-12}$ , then

$$\lim_{x \to 3} [f(x) + g(x) + h(x)] \text{ is}$$
(A) -2 (B)

(A) 
$$-2$$
 (B)  $-1$   
(C)  $-\frac{2}{7}$  (D)  $0$ 

4. 
$$\lim_{x \to 2} \frac{x^4 - 4x^3 + 8x^2 - 16x + 16}{x^3 - 3x^2 + 4} =$$
  
(A)  $\frac{4}{3}$  (B)  $\frac{8}{3}$ 

(A) 
$$\frac{1}{3}$$
 (B)  $\frac{1}{3}$   
(C)  $\frac{5}{2}$  (D)  $\frac{7}{2}$ 

5. 
$$\lim_{x \to 1} \frac{x^{\circ} - 2x + 1}{x^{4} - 2x + 1}$$
 equals  
(A) 3 (B) 0  
(C) -3 (D) 1

6. If 
$$\lim_{x \to a} \frac{(x+2)^{\frac{3}{2}} - (a+2)^{\frac{3}{2}}}{x-a} = \frac{m}{n}(a+2)^{\frac{p}{q}}$$
  
then  $(m+p) - (n+q)$  is  
(A) 2 (B) -1  
(C) 0 (D) 1

| 7.  | $\lim_{\theta \to \pi} \frac{\cot^2 \theta - 3}{\csc \theta - 2} =$                                                          | 1.3 |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----|
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                         | 1.  |
| 1.2 | EVALUATION BY RATIONALIZATION                                                                                                |     |
|     | $\sqrt{1+\sqrt{1+\sqrt{4}}}$                                                                                                 | 2.  |
| 1.  | $\lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^{-}} - \sqrt{2}}}{y^4}$                                                          |     |
|     | [JEE (Main) Jan 2019]                                                                                                        |     |
|     | (A) does not exist<br>(B) exists and equals $\frac{1}{}$                                                                     |     |
|     | (c) $\frac{1}{2\sqrt{2}}$                                                                                                    | 3.  |
|     | (C) exists and equals $\frac{1}{4\sqrt{2}}$                                                                                  |     |
|     | (D) exists and equals $\frac{1}{2\sqrt{2}(\sqrt{2}+1)}$                                                                      |     |
| 2.  | If $\lim_{x \to a} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} = \frac{\sqrt{p}}{q\sqrt{r}}$ , $a \neq 0$ , then | 4.  |
|     | p(q-r)  equals (A) 10 (B) 0                                                                                                  |     |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                         |     |
| 3.  | If $G(x) = -\sqrt{25 - x^2}$ , then $\lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} =$                                             | 5.  |
|     | (A) $\frac{1}{24}$ (B) $\frac{1}{5}$                                                                                         |     |
|     | (C) $-\sqrt{24}$ (D) $\frac{1}{\sqrt{24}}$                                                                                   | 6.  |
| 4.  | Let $f(x) = \frac{x\sqrt{x-2\sqrt{x-1}}}{\sqrt{x-1}-1}$ , then                                                               |     |
|     | (A) $\lim_{x \to 2^{-}} f(x) = 2$                                                                                            | 7.  |
|     | (B) $\lim_{x \to 2^+} f(x) = -2$                                                                                             |     |
|     | (C) $\lim_{x \to 2} f(x)$ does not exist.                                                                                    |     |
|     | (D) $\lim_{x \to 2} f(x) = 2$                                                                                                |     |
| 5   | Let I = lim<br>$a - \sqrt{a^2 - x^2} - \frac{x^2}{4}$ $a > 0$ Given                                                          | 8.  |
| 5.  | that L is finite, then $x^4$ , $u \neq 0$ . Given                                                                            |     |
|     | (A) $a = 2, L = \frac{1}{32}$                                                                                                |     |
|     | (B) $a = 2, L = \frac{1}{ct}$                                                                                                | 9.  |
|     | (C) $a = 4, L = \frac{1}{2}$                                                                                                 |     |
|     | (D) $x = 4$ L = $\frac{1}{2}$                                                                                                |     |
|     | (D) $u = 4, L = \frac{1}{32}$                                                                                                |     |

| 1.3 | STA                                  | NDARD TR                                                 | IGONOM                                                          | ETRIC LIMITS      |
|-----|--------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|-------------------|
| 1.  | $\lim_{x\to 0} \frac{S}{x}$          | in(2+x) - sin(2)                                         | (-x) =                                                          |                   |
|     | (A)<br>(C)                           | sin 2<br>2 cos 2                                         | (B)<br>(D)                                                      | 2 sin 2<br>2      |
| 2.  | $\lim_{x\to 0}\frac{(1)}{x}$         | $\frac{1-\cos 2x}{1+\cos 2x}$                            | $\frac{\cos x}{\cos x}$ is equal                                | al to             |
|     |                                      |                                                          | J                                                               | EE (Main) 2015]   |
|     | (A)                                  | 4                                                        | (B)                                                             | 3                 |
|     | (C)                                  | 2                                                        | (D)                                                             | $\frac{1}{2}$     |
| 3.  | $\lim_{x\to 0}\frac{\mathrm{si}}{-}$ | $\frac{\ln(\pi\cos^2 x)}{x^2}$ is e                      | equal to [J]                                                    | EE (Main) 2014]   |
|     | (A)                                  | $-\pi$                                                   | (B)                                                             | π                 |
|     | (C)                                  | $\frac{\pi}{2}$                                          | (D)                                                             | 1                 |
| 4.  | $\lim_{x\to 0} - \sqrt{x}$           | $\frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}$          | equals                                                          |                   |
|     |                                      |                                                          | [JEE (M                                                         | [ain) April 2019] |
|     | (A)                                  | $4\sqrt{2}$                                              | (B)                                                             | $\sqrt{2}$        |
|     | (C)                                  | $2\sqrt{2}$                                              | (D)                                                             | 4                 |
| 5.  | If $\lim_{x\to 0}$                   | $\int_{0} \frac{\tan x - \sin x}{x^3} =$                 | $= \frac{m}{p!}$ , then                                         | <i>mp</i> is      |
|     | (A)<br>(C)                           | 2<br>4                                                   | (B)<br>(D)                                                      | 3<br>1            |
| 6.  | If $\lim_{x\to 0}$                   | $\frac{\tan^3 x - \sin^3 x}{x^5}$                        | $=\frac{p}{q}$ ,                                                |                   |
|     | where                                | e G.C.D. of (p                                           | (p, q) = 1, the                                                 | en                |
|     | (A)                                  | p - q  = 1                                               | (B)                                                             | p + 2q = 5        |
|     | (C)<br>                              | 2q - p  = 3                                              | (D)                                                             | p+q=4             |
| 7.  | $\lim_{x\to 0}\frac{x}{-}$           | $\frac{\tan 2x - 2x \tan x}{\left(1 - \cos 2x\right)^2}$ | $\frac{1}{2}$ equals                                            |                   |
|     | (A)                                  | 0                                                        | (B)                                                             | $\frac{1}{2}$     |
|     | (C)                                  | 2                                                        | (D)                                                             | 1                 |
| 8.  | The v                                | value of $\lim_{x\to 0} \frac{1}{s}$                     | $\frac{\cos\left(\frac{\pi}{2\cos x}\right)}{\sin(\sin x^2)} =$ | is                |
|     | (A)                                  | $\frac{\pi}{4}$                                          | (B)                                                             | $-\frac{\pi}{4}$  |
|     | (C)                                  | $\frac{\pi}{2}$                                          | (D)                                                             | $-\frac{\pi}{2}$  |
| 9.  | If $\lim_{x\to \infty}$              | $\int_{0}^{1} \frac{\sin 2x + a \sin x}{x^3}$            | b = b, where                                                    | a and $b$ are     |
|     | consta<br>NOT                        | ants, then wh correct?                                   | nich of the                                                     | following is      |

(A) a+b+3=0 (B) ab=2(C) b-a=1 (D) b=2a

Page no. 6 to 8 are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes** 

#### Practice Problems

1. If the function f is defined by  $f(x) = \frac{5x}{|x| + 7x},$  $x \neq 0$ x = 0= 0then the limit of the function as x approaches 0 (A) is  $\frac{5}{8}$ (B) is  $\frac{5}{6}$ (C) is  $\frac{5}{7}$ (D) does not exist If f(x) = |x| + |x - 1| and  $l_1 = \lim_{x \to 0} f(x)$ , 2.  $l_2 = \lim_{x \to 1} f(x)$ , then  $l_1 + l_2$  equals (A) 1 (B) 0 (C) 2 (D) -1 3. If  $f: \mathbb{R} \to \mathbb{R}$  is defined by f(x) = [x - 3] + |x - 4| for  $x \in \mathbb{R}$ , where [] represents the greatest integer function, then  $\lim f(x)$  is equal to  $x \rightarrow 3^{-}$ (A) –2 (B) -1 (D) (C) 1 0 For what value of p, does  $\lim_{x\to 1} f(x)$  exist if 4.  $f(x) = 2 px + 3 \qquad , \qquad x < 1$  $= 1 - px^2 \qquad , \qquad x \ge 1$ (A)  $\frac{2}{3}$  (B) (B)  $\frac{3}{2}$ (D)  $-\frac{2}{3}$ (C)  $-\frac{3}{2}$  $\lim_{x \to 0} \frac{\log (1 + \{x\})}{\{x\}}, \text{ where } \{x\} \text{ represents the}$ 5. fractional part of x, (A) is e(B) is 1 (C) is 0 (D) does not exist  $\lim_{x \to 0} \left( \frac{1}{x} - \frac{n!}{x(x+1)(x+2)...(x+n)} \right)$  is 6. (A) *n*! (B)  $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$  $\frac{1}{n!}$ (C)  $\frac{n(n+1)}{2}$ (D)  $\frac{x + x^2 + ... + x^{100} - 100}{x - 1}$  equals  $\lim_{x\to 1}$ 7.

4950

5000

(A)

(C)

5050

5100

(B)

(D)

|     |                                                                                     |                                           | Chapter 1: Limits            |
|-----|-------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|
| 8.  | $\lim_{x \to 2} \frac{ x^2 - 5x + 6 }{(x - 2)(x - 3)}$                              |                                           |                              |
|     | <ul><li>(A) is 1</li><li>(C) does not exist</li></ul>                               | (B)<br>(D)                                | is – 1<br>is 0               |
| 9.  | $\lim_{x \to 5^+} \left( \frac{x^2 - 9x + 20}{x - [x]} \right) - \lim_{x \to 4^-} $ | $\frac{1}{x}\left(\frac{x^2-x}{x}\right)$ | $\frac{9x+20}{-[x]}$ , where |
|     | [ ] represents the gree<br>equals                                                   | eatest                                    | integer function,            |
|     | (A) 5<br>(C) 9                                                                      | (B)<br>(D)                                | -4<br>1                      |
| 10. | Let $f(x) = \frac{\sin\{x-10\}}{\{10-x\}}$ ,                                        | where                                     | { } represents the           |
|     | fractional part. Which incorrect?                                                   | n of                                      | the following is             |
|     | (A) $\lim_{x \to 8^+} f(x) = 0$                                                     |                                           |                              |
|     | (B) $\lim_{x \to 8^-} f(x)$ does no                                                 | t exist                                   | •                            |
|     | (C) $\lim_{x \to 8} f(x)$ exists.                                                   |                                           |                              |
|     | (D) $\lim_{x \to 8} f(x)$ does not                                                  | t exist.                                  |                              |
| 11. | The value of $\lim_{x \to 0} \frac{11 + 2^{\frac{1}{3}}}{3 + 8^{\frac{1}{x}}}$      | <u>1</u><br>x                             |                              |
|     | (A) is $\frac{11}{3}$                                                               | (B)                                       | is 1                         |
|     | (C) is 0                                                                            | (D)                                       | does not exist               |
| 12. | If $\lim_{x \to \infty} \left( \sqrt{ax^2 + bx + c} - x \right)$                    | $= -\frac{1}{2}$                          | , where $a, b, c$ are        |
|     | constants, then $(A) = a = 1 b = -1 a c$                                            | - D                                       |                              |
|     | (A) $u = 1, b = -1, c = 0$<br>(B) $a = 0, b = 1, c = 0$                             | : K                                       |                              |
|     | (C) $a = 1, b = 1, c \in \mathbb{R}$<br>(D) none of these                           | ٤                                         |                              |
| 12  | $\sin \frac{\sin  x }{x}$                                                           |                                           |                              |
| 13. | $\lim_{x \to 0} \frac{1}{x}$                                                        | (B)                                       | ie _ 1                       |
|     | $\begin{array}{c} (A) & \text{is 0} \\ (C) & \text{is 1} \end{array}$               | (D)<br>(D)                                | does not exist               |
| 14. | $\lim_{x \to \frac{\pi}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} =$      |                                           |                              |
|     | (A) $\log a$<br>(C) $a$                                                             | (B)<br>(D)                                | $\log 2 \\ \log x$           |
| 15. | $\lim_{x \to -1} \frac{\sqrt{\pi} - \sqrt{\cos^{-1} x}}{\sqrt{x+1}} =$              |                                           |                              |
|     | (A) $\frac{1}{\sqrt{2}}$                                                            | (B)                                       | $\frac{1}{\sqrt{\pi}}$       |
|     | (C) $\frac{1}{\sqrt{2}}$                                                            | (D)                                       | $\frac{1}{\sqrt{2}}$         |

 $\sqrt{2\pi}$ 

 $2\sqrt{\pi}$ 

| 16. | If $\lim_{t \to 0} k t$ cosec $t =$                                              | $\lim_{t\to 0} t \cos t$ | sec $k$ $t$ , then $k$ |
|-----|----------------------------------------------------------------------------------|--------------------------|------------------------|
|     | equals                                                                           |                          |                        |
|     | (A) 1                                                                            | (B)                      | - 1                    |
|     | (C) 1 or – 1                                                                     | (D)                      | a number               |
|     |                                                                                  |                          | $\neq \pm 1$           |
| 17. | $ \lim_{x \to \frac{\pi}{4}} \frac{4\sqrt{2} - (\cos x + \sin x)}{1 - \sin 2x} $ | $(x)^{5} =$              |                        |
|     | (A) $5\sqrt{2}$                                                                  | (B)                      | $3\sqrt{2}$            |
|     | (C) $\sqrt{2}$                                                                   | (D)                      | $4\sqrt{2}$            |

- 18. If  $\lim_{x \to 0} \frac{((a-n)nx \tan x)\sin nx}{x^2} = 0$ , where  $n \neq 0$  and *a* are constants, then *a* equals
  - (A) 0 (B)  $\frac{n+1}{n}$ (C) n (D)  $n + \frac{1}{n}$
- 19. If  $\lim_{x \to \frac{1}{\sqrt{2}}} \left( \frac{x \cos(\sin^{-1}x)}{1 \tan(\sin^{-1}x)} \right) = p$ , then  $\sqrt{2} p$  is (A) 1 (B) -1 (C)  $2\sqrt{2}$  (D)  $\frac{1}{2}$
- 20.  $\lim_{x \to -\infty} \frac{x^4 \sin\left(\frac{1}{x}\right) + x^2}{1 + |x|^3} \text{ equals}$ (A) -1 (B) 1 (C) 0 (D) 2
- 21.  $\lim_{x \to 0} \left( \tan \left( \frac{\pi}{4} + x \right) \right)^{\frac{2}{x}} \text{ equals}$ (A)  $e^{-4}$  (B)  $e^{2}$ (C)  $e^{4}$  (D)  $e^{-2}$
- 22. If  $\lim_{x \to 0} \frac{(3(p-2)x \tan 3x)}{x^2}$  sin 2x = 0, then the value of p is (A)  $\frac{2}{3}$  (B)  $\frac{3}{2}$  (C) 3 (D) 2
- 23. The value of  $\lim_{x \to 0} \frac{\cos 6x \cos 10x}{x^2}$  is (A) 36 (B) 64 (C) 32 (D) 18
- 24. The value of  $\lim_{x \to \infty} 5^{x-3} \tan\left(\frac{b}{5^x}\right)$  is
  - (A)  $\frac{b}{5}$  (B)  $\frac{b}{125}$  (C)  $\frac{125}{b}$  (D) 5b

25. The value of 
$$\lim_{x \to 0} \frac{(\sqrt{x^2 + 1} - 1)x}{\sqrt{x^2 + 1} (\tan^{-1} x)^3}$$
 is  
(A)  $\frac{1}{2}$  (B) 2 (C) 1 (D) 0

The value of  $\lim_{x\to\infty} x\left(\tan^{-1}\frac{x+2}{x+3}-\frac{\pi}{4}\right)$  is 26. (A)  $\frac{1}{2}$  (B) 2 (C)  $-\frac{1}{2}$  (D) -2The value of  $\lim_{x \to 1} \frac{8x^3 - x^2 \log x + \log x - 8}{x^2 - 1}$  is 27. (A) 24  $(\mathbf{B})$ (C)  $12 - \log 2$ (D) log 2 Let  $f(x) = \frac{\sqrt{1 - e^{-x^2}}}{x}$ . If x approaches 0, then 28. which of the following is a correct statement? (A) L. H. L. and R. H. L. exist and are unequal. L. H. L. and R.H. L. exist and both are (B) equal. (C) L. H. L. does not exist. (D) R. H. L. does not exist. The value of  $\lim_{x\to 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{5} - \sqrt{4} + \cos x}$  is 29. (A)  $\sqrt{5} (\log 3)^2$  (B)  $8\sqrt{5} \log 3$ (C)  $16\sqrt{5} \log 3$  (D)  $8\sqrt{5} (\log 3)^2$  $\lim_{x \to -1} \left(2 + 3x + 3x^2 + x^3\right)^{\frac{2}{(x+1)^3}}$ 30. (B) is  $e^2$ (D) does not exist (A) is e(C) is  $\sqrt{e}$ If  $\lim_{x \to \infty} \left( 1 + \frac{a}{r} + \frac{b}{r^2} \right)^{2x} = e^2$ , then the values of a and 31. *b* are (A) a = 1, b = 2 (B)  $a = 1, b \in \mathbb{R}$ (C)  $a \in \mathbb{R}, b = 2$  (D)  $a \in \mathbb{R}, b \in \mathbb{R}$ If  $\lim_{n \to \infty} \frac{1 - (10)^n}{1 + (10)^{n+1}} = -\frac{\alpha}{10}$ , then the value of  $\alpha$  is 32. (A) 0 (C) 1 (B) -1 (D) 2 33. Let  $a_n = 1 + 2 + 3 + \ldots + n$  and  $L_n = \frac{a_2}{a_2 - 1} \cdot \frac{a_3}{a_2 - 1} \cdot \frac{a_4}{a_4 - 1} \dots \frac{a_n}{a_n - 1}$ , where  $n \in \mathbb{N}$  ( $n \ge 2$ ). Then  $\lim L_n$  equals

(A) 
$$\frac{3}{2}$$
 (B) 2 (C) 0 (D) 3

34. The value of 
$$\lim_{n \to \infty} \left( \frac{1^2}{n^3} + \frac{2^2}{n^3} + \frac{3^2}{n^3} + \dots + \frac{n^2}{n^3} \right)$$
 is  
(A)  $\frac{1}{2}$  (B) 0 (C) 1 (D)  $\frac{1}{3}$ 

35. The value of 
$$\lim_{n\to\infty} \frac{5^{n+1} + 3^{n+2}}{7.5^n - 3^{n-1}}$$
 is  
(A)  $\frac{7}{5}$  (B)  $\frac{5}{7}$  (C) 1 (D) 0  
36. The value of  $\lim_{x\to2} \frac{4^x + 4^{3-x} - 20}{4^{3-x} - 4^{\frac{3}{2}}}$  equals  
(A) 2 (B) 0 (C) 1 (D) -2  
37. If  $p, q, r, s$  all > 0, then  $\lim_{x\to\infty} \left(1 + \frac{1}{p+qx}\right)^{r+sx}$  is  
(A)  $e^{\frac{r}{p}}$  (B)  $e^{\frac{q}{q}}$   
(C)  $\frac{s}{q}$  (D)  $e^{\frac{q}{s}}$   
38. If  $f(x) = \left\{\frac{1}{1+e^{-\frac{1}{x}}}, x \neq 0$   
 $= 0$  ,  $x = 0$   
then at  $x = 0$   
(A) right hand limit of  $f(x)$  exists but not left  
hand limit.  
(B) left hand limit of  $f(x)$  exists but not right  
hand limit.  
(C) both limits exist and are unequal.  
(D) both limits exist and are unequal.  
(D) both limits  $exist$  and are unequal.  
(D) then  $\lim_{x\to\infty} x_n$  is equal to  
(A)  $-\frac{1}{3}$  (B)  $-\frac{2}{3}$  (C)  $\frac{2}{3}$  (D) 1  
40. The value of  $\lim_{x\to\infty} \frac{\sqrt[3]{1+x^2} - \sqrt[3]{1+x^5}}{\sqrt[3]{1+x^2} - \sqrt[3]{1+x^5}}$  is  
(A) 1 (B) 2 (C) 0 (D)  $\frac{1}{2}$   
41. The value of  $\lim_{x\to\infty} \frac{q^{limix} - e^x}{x-t ax}$   
(A) is 0 (B) is -1  
(C) is 2 (D) does not exist  
43. The value of  $\lim_{x\to0} \frac{e^{4x} - ax - e^4}{x}$  is  
(A)  $e^4$  (B) 1  
(C)  $e^4 + 1$  (D)  $e^4 - 1$ 

| 44.               | The value of $\lim_{n \to \infty} \frac{1}{(n)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{(4(n+1))!}{(4+1)^4(4n)!}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | (A) 16<br>(C) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) 0<br>(D) 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 45.               | The value of $\lim_{x\to\infty} \left(\sqrt{x}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | (A) 0<br>(C) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) 1<br>(D) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 46.               | If the value of $\lim_{x\to 0^+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\left(\frac{\frac{5}{x}+1}{\frac{5}{x}-1}\right)^{\frac{1}{x}}$ can be expressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | in the form of $e^q$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | where $p$ and $q$ are prime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | (A) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | (C) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 47.               | $\lim_{x \to 0} \frac{(5 + \cos x) (1 - \cos x)}{x \tan 8x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{s}{x} \frac{4x}{x}$ equals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | (A) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | (C) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 48.               | Let a convergent s<br>numbers satisfy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sequence $\langle b_n \rangle$ of real the recurrence relation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | $b_{n+1} = \frac{1}{2} \left( 2b_n + \frac{125}{L^2} \right), b_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $b_n \neq 0$ , then $\lim b_n =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | $3 \left( b_n^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $n \to \infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | (A) is 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) does not exist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | (A) is 0<br>(C) is 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) does not exist<br>(D) $\frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 49.               | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) does not exist<br>(D) $\frac{2}{3}$<br>(D) where <i>a</i> , <i>b</i> are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 49.               | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$<br>constants, then $(a, b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) does not exist<br>(D) $\frac{2}{3}$<br>(D) $\frac{2}{3}$<br>(D) $\frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 49.               | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$ constants, then $(a, b)$<br>(A) $(1, -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) (-1, 1)<br>(D) (0 - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 49.               | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$<br>constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 49.<br>50.        | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$ constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$<br>The value of $\lim_{x \to 0} \frac{e^x + 1}{x + 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 49.<br>50.        | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$ constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$<br>The value of $\lim_{x \to 0} \frac{e^x + 1}{2}$<br>(A) is 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{2}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 49.<br>50.        | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$ constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$<br>The value of $\lim_{x \to 0} \frac{e^x + 1}{x + 1}$<br>(A) is 0<br>(C) is -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 49.<br>50.<br>51. | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$<br>constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$<br>The value of $\lim_{x \to 0} \frac{e^x + 1}{2}$<br>(A) is 0<br>(C) is -1<br>Let <i>n</i> be an odd number of the unordered present the set of the se | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>(D) $(0, -1)$<br>$\frac{1}{x^2}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{x^2}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{x^2}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{x^2}$<br>(B) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{x^2}$<br>(B) $(-1, 1)$<br>(C) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{x^2}$<br>(C) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{x^2}$<br>(D) $(-1, 1)$<br>(D) $(-1, 1)$<br>(C) $(-1, 2)^{-2}$<br>(C) $(-1, 2)^{-2}$ |
| 49.<br>50.<br>51. | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$<br>constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$<br>The value of $\lim_{x \to 0} \frac{e^x + 1}{x + 1}$<br>(A) is 0<br>(C) is -1<br>Let <i>n</i> be an odd number of the unordered prepositive integers who                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) does not exist<br>(D) $\frac{2}{3}$<br>(D) $\frac{2}{3}$<br>(E) $(-1, 1)$<br>(D) $(0, -1)$<br>$\frac{1}{100} \frac{(1+x) - (1-x)^{-2}}{x^2}$<br>(B) is $-3$<br>(D) does not exist<br>ber and S (n) denote the sum<br>roducts of all the pairs of<br>pse sum = n. Then $\lim_{n \to \infty} \frac{S(n)}{n^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 49.<br>50.<br>51. | (A) is 0<br>(C) is 5<br>If $\lim_{x\to\infty} \left(\frac{x^2+1}{x+1}-ax-b\right)$<br>constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$<br>The value of $\lim_{x\to 0} \frac{e^x + b^2}{2}$<br>(A) is 0<br>(C) is -1<br>Let <i>n</i> be an odd number of the unordered pre-<br>positive integers who is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) $\frac{2}{3}$<br>(D) $\frac{2}{3}$<br>(D) $\frac{2}{3}$<br>(D) $\frac{2}{3}$<br>(D) $\frac{2}{3}$<br>(D) $(0, -1)$<br>(D) $(0, -1)$<br>(D) $(0, -1)$<br>(D) $\frac{10g(1+x)-(1-x)^{-2}}{x^2}$<br>(B) is $-3$<br>(D) does not exist<br>per and S ( <i>n</i> ) denote the sum<br>roducts of all the pairs of<br>pse sum = <i>n</i> . Then $\lim_{n \to \infty} \frac{S(n)}{n^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 49.<br>50.<br>51. | (A) is 0<br>(C) is 5<br>If $\lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right)$<br>constants, then $(a, b)$<br>(A) $(1, -1)$<br>(C) $(1, 0)$<br>The value of $\lim_{x \to 0} \frac{e^x + 1}{x + 1}$<br>(A) is 0<br>(C) is -1<br>Let <i>n</i> be an odd number of the unordered propositive integers whom<br>is<br>(A) $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) does not exist<br>(D) $\frac{2}{3}$<br>(B) does not exist<br>(D) $\frac{2}{3}$<br>(D) $\frac{2}{3}$<br>(E) $(-1, 1)$<br>(D) $(0, -1)$<br>(D) $(0, -1)$<br>(E) $\frac{1}{3}$<br>(D) does not exist<br>(D) does not exist<br>(D) does not exist<br>(D) does not exist<br>(D) does sum = n. Then $\lim_{n \to \infty} \frac{S(n)}{n^3}$<br>(B) $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

11

| 52. | If $\lim_{x \to \infty} \frac{30 + 4\sqrt{x} + 7\sqrt[3]{x}}{2 + \sqrt{4x - 7} + \sqrt[3]{6x}}$           | $\frac{1}{1-2} = \frac{1}{2}$                    | $\frac{p}{q}$ , then                       |
|-----|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|
|     | (A) $q = 2p$<br>(C) $p = 2q$                                                                              | (B)<br>(D)                                       | q = 3p $p = 3q$                            |
| 53. | Let $f: \mathbb{R} \to \mathbb{R}$ be a positive with $\lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1$ . Then | tive in $\lim_{x\to\infty} \frac{1}{x\to\infty}$ | accreasing function $\frac{f(2x)}{f(x)} =$ |
|     | (A) $\frac{3}{2}$                                                                                         | (B)                                              | 3                                          |
|     | (C) 1                                                                                                     | (D)                                              | $\frac{2}{3}$                              |
| 54. | $\lim_{n\to\infty}\frac{7^n}{n!} \text{ equals}$                                                          |                                                  |                                            |
|     | (A) 7<br>(C) 1                                                                                            | (B)<br>(D)                                       | 0<br>none of these                         |
| 55. | $\lim_{x \to \infty} \left[ \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right]$                            | is equa                                          | al to                                      |
|     | (A) 0                                                                                                     | (B)                                              | $\frac{1}{2}$                              |
|     | (C) log 2                                                                                                 | (D)                                              | $e^4$                                      |
| 56. | $\lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \dots}{x^{10} + 10^{10}}$                            | +(x+1)                                           | $(00)^{10}$ is equal to                    |
|     | (A) 0<br>(C) 10                                                                                           | (B)<br>(D)                                       | 1<br>100                                   |
| 57. | If $f(x) = \lim_{n \to \infty}$                                                                           | $\frac{x^{3n} \operatorname{si}}{2}$             | $\frac{n x + \cos x}{x^{3n} + 2}$ , then   |
|     | $f\left(\frac{\pi}{6}\right) + f\left(\frac{\pi}{3}\right)$ is                                            |                                                  |                                            |
|     | (A) $2\sqrt{3}$                                                                                           | (B)                                              | $\frac{\sqrt{3}}{2}$                       |
|     | (C) $\frac{3\sqrt{3}}{4}$                                                                                 | (D)                                              | $\frac{2\sqrt{3}+1}{4}$                    |
| 58. | The value of $\lim_{x \to \frac{1}{4}} \frac{a^{\sin 2\pi x}}{\tan^2 4}$                                  | $\frac{1}{4\pi x}$                               | is                                         |
|     | (A) $\frac{1}{8}$                                                                                         | (B)                                              | $-\frac{\log a}{8}$                        |
|     | (C) $\frac{\log a}{8}$                                                                                    | (D)                                              | $-\frac{1}{8}$                             |
| 59. | If $S_1 = \sum n, S_2 = \sum n^2, S_3$                                                                    | $=\Sigma n^3$ ,                                  | then the value of                          |
|     | $\lim_{n \to \infty} \frac{S_1 \left( 1 + \frac{S_3}{8} \right)}{S_2^2} \text{ is equal to}$              | 0                                                |                                            |
|     | (A) $\frac{3}{32}$                                                                                        | (B)                                              | $\frac{3}{64}$                             |
|     | (C) $\frac{9}{32}$                                                                                        | (D)                                              | $\frac{9}{64}$                             |

60. 1 ► X 0 -3 3 - 1 Consider the graph of y = f(x) and the following statements: I : The domain of f is R. II : The range of f is R - [-1, 1]. III :  $\lim f(x)$  does not exist.  $x \rightarrow$ IV :  $\lim f(x) = -1$ Which of the statements is / are correct? (A) II, III, IV only (B) I, II, III, IV (C) III and IV only (D) I only 61. Consider a decreasing sequence  $(x_n)$  as  $\tan^{-1} 2 = x_1 > x_2 > x_3 > \dots > x_n > \dots \infty$ , of strictly positive terms such that  $\sin (x_{n+1} - x_n) + 2^{-(n+1)} \sin x_n \sin x_{n+1} = 0 \text{ for}$ all  $n \ge 1$ . Then (A)  $\cot x_n = \frac{7}{8} \Longrightarrow n > 3$ (B)  $\lim_{n\to\infty} x_n = \frac{\pi}{4}$ (C)  $\cot x_n > 1$  for all *n* (D)  $\cot x_n$  is not rational for all *n*. 62. Let f and g be two functions defined as f(x) = -1 + |x - 1|,  $-1 \le x \le 3$ g(x) = 2 - |x + 1|,  $-2 \le x \le 2$ Then  $\lim_{x \to \infty} (gof)(x)$  equals 2 (A) 3 **(B)** (C) – 2 (D) 0 If *m* and *n* are positive integers, then 63.  $\lim_{x \to 1} \left( \frac{mx^m}{x^m - 1} - \frac{nx^n}{x^n - 1} \right) \text{ equals}$ (A)  $\frac{m+n}{2}$ (B)  $\frac{m-n}{2}$ (C)  $-\left(\frac{m+n}{2}\right)$  (D)  $-\frac{m-n}{2}$ The value of  $\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e + \frac{1}{2}ex}{x^2}$  is 64. (B)  $-\frac{11e}{24}$ 11e (A) 24 (D)  $-\frac{e}{24}$ е

(C)

24

| The expression $\lim_{x \to \infty} \left\{ \frac{\sin x}{x} \right\}^{\frac{1}{\left\{ \frac{\tan x}{x} \right\}}}$ , where $\{ \}$                | 70. | The value of $\lim_{n \to \infty} \frac{1}{2}$                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------|
| $x \to 0 \ x \ $ represents the fractional part is                                                                                                  |     | [x] denotes the great                                                                                      |
| (A) $e$ (B) $\sqrt{e}$                                                                                                                              |     | (A) $\frac{x}{x}$                                                                                          |
| $(C) = \frac{1}{1}$ $(D) = \frac{1}{1}$                                                                                                             |     | 4                                                                                                          |
| $(C)  \frac{1}{e} \qquad (D)  \frac{1}{\sqrt{e}}$                                                                                                   |     | (C) 4                                                                                                      |
| Let $f(x) = [\sin [x]]$ , where [] represents the greatest integer function. Which of the following statement is NOT correct?                       | 71. | If $S_n = \frac{1}{1.3} + \frac{2}{1.3.5} + .$                                                             |
| (A) $\lim_{x \to 1^+} f(x) = \lim_{x \to 2^+} f(x) = \lim_{x \to 3^+} f(x)$                                                                         |     | $S_n = \frac{1^2 \cdot 2^2}{1^2 \cdot 2^2} + \frac{1^2 \cdot 2^2}{2^2 \cdot 3^2}$                          |
| (B) $\lim_{x \to 4^+} f(x) < \lim_{x \to 3^-} f(x)$                                                                                                 |     | $L_1 = \lim_{n \to \infty} S_n \text{ and } L_2 =$                                                         |
| (C) $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 3^{-}} f(x)$                                                                                             |     | then $\frac{L_1}{L_2}$ is                                                                                  |
| (D) $\lim_{x\to 0^-} f(x) > \lim_{x\to 5^-} f(x)$                                                                                                   |     | (A) $\frac{1}{2}$                                                                                          |
| Let $f(x) = e^{\left\{e^{ x _{sgn x}}\right\}}, g(x) = e^{\left[e^{ x _{sgn x}}\right]}, x \in \mathbb{R},$                                         |     | (C) $\frac{4}{3}$                                                                                          |
| where $sgn(x) = -1$ , $x < 0$                                                                                                                       |     | Problems To                                                                                                |
| = 0 , $x = 0$                                                                                                                                       | 1   |                                                                                                            |
| = 1 , $x > 0and, { } and [ ] represent fractional part andgreatest integer function respectively. Ifh(x) = \log f(x) + \log g(x) then which of the$ |     | consider a regular j<br>in a circle of radius<br>its perimeter and<br>$l_1 = \lim_{n \to \infty} P(n)$ and |
| $n(x) = \log f(x) + \log g(x)$ , then which of the following statement is correct?                                                                  |     | $l_2 = \lim_{n \to \infty} A(n)$ . Evalu                                                                   |
| (A) $\lim_{x \to 0^{-}} h(x) = 1$                                                                                                                   |     | i. $P(n)$<br>iii. $l_1$                                                                                    |
| (B) $\lim_{x \to 0^+} \frac{h(x) - 1}{x} = 1$                                                                                                       | 2.  | P is any point on an extended diameter                                                                     |
| (C) $\lim_{x \to 0^+} h(x) = h(0)$                                                                                                                  |     | of a circle (centre $\Omega$ ) PO is a tangent                                                             |
| (D) $\lim_{x \to 0^+} h(x)$ does not exist.                                                                                                         |     | at Q. M is the projection of Q on                                                                          |
| Let $f$ be an odd function such that                                                                                                                |     | OP. Let $\angle OPQ = \theta$ .                                                                            |
| (A) $\lim \frac{f(x)-1}{x} = 1$                                                                                                                     |     | Prove that $\lim_{\theta \to \frac{\pi}{2}} \frac{ 1M }{ MN }$                                             |
| (B) $\lim_{x \to 3^{-}} \frac{(f(x))^2 - 4}{x - [x]} = 5$                                                                                           | 3.  | ABC is a triangle in<br>in a circle of radius $r$<br>  AB   =   AC   a                                     |
| (C) $\lim_{x \to 2} \frac{f(x) - 2}{x - 2}$ does not exist.                                                                                         |     | altitude from A has <i>h</i> . Show that                                                                   |
| (D) $\lim_{x \to 1} \frac{\sqrt{f(x) - 1}}{x - 1} = \frac{1}{\sqrt{2}}$                                                                             |     | i. the perimet triangle is                                                                                 |
| If $\lim_{x \to 0} \frac{axe^x - b\log(1+x)}{x^2} = 3$ , then the values of <i>a</i> ,                                                              |     | $\mathbf{P} = 2 \left( \sqrt{2rh} - \right)$                                                               |
| b are respectively                                                                                                                                  |     | ii. the area of the                                                                                        |
|                                                                                                                                                     |     |                                                                                                            |

65.

66.

67.

68.

69.

| 0. | The value of $\lim_{n \to \infty} \frac{\left[1^3 x\right] + \left[2^3 x\right] + \dots + \left[n^3 x\right]}{n^4}$ , where |
|----|-----------------------------------------------------------------------------------------------------------------------------|
|    | [x] denotes the greatest integral part of x, is                                                                             |
|    | (A) $\frac{x}{4}$ (B) $\frac{1}{4}$                                                                                         |
|    | (C) 4 (D) $\frac{4}{x}$                                                                                                     |
| 1. | If $S_n = \frac{1}{1.3} + \frac{2}{1.3.5} + \dots + \frac{n}{1.3.5\dots(2n-1)}$ ,                                           |
|    | $\mathbf{S}_{n}' = \frac{3}{1^{2} \cdot 2^{2}} + \frac{5}{2^{2} \cdot 3^{2}} + \dots + \frac{(2n+1)}{n^{2}(n+1)^{2}},$      |
|    | $L_1 = \lim_{n \to \infty} S_n$ and $L_2 = \lim_{n \to \infty} S_n'$ ,                                                      |
|    | then $\frac{L_1}{L_2}$ is                                                                                                   |
|    | (A) $\frac{1}{2}$ (B) 2                                                                                                     |
|    | (C) $\frac{4}{3}$ (D) $\frac{3}{4}$                                                                                         |
|    |                                                                                                                             |

#### lems To Ponder

der a regular polygon of n sides inscribed ircle of radius r. Let P(n) and A(n) denote erimeter and area respectively. Let m P (n) and

ii.

$$l_2 = \lim_{n \to \infty} A(n)$$
. Evaluate



A(*n*)

P. Let 
$$\angle OPQ = \theta$$
.  
rove that  $\lim_{\theta \to \frac{\pi}{2}} \frac{|PM|}{|MN|} = 2$ 

is a triangle inscribed rcle of radius r.

| = | AC | and the e from A has length w that



the perimeter oftriangle is

$$\mathbf{P} = 2\left(\sqrt{2rh - h^2} + \sqrt{2hr}\right)$$

the area of the triangle is  $\Delta = h \sqrt{2rh - h^2}$ 

iii. 
$$\lim_{h \to 0} \left( \frac{\Delta}{\mathbf{P}^3} \right) = \frac{1}{128\mu}$$

|                                                             |                                                                                       |            |             |            |                                    |            |            | А          | nsv       | <i>r</i> ers          | to ]                                     | MCQ                                                                                  | )s        |            |           |                 |     |     |           |            |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------|------------|-------------|------------|------------------------------------|------------|------------|------------|-----------|-----------------------|------------------------------------------|--------------------------------------------------------------------------------------|-----------|------------|-----------|-----------------|-----|-----|-----------|------------|--|--|
|                                                             | Cond                                                                                  | ont        | <b>D</b> 11 | 141-       | NG D                               | nobl       | 0 <b>m</b> | 8          |           |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             | Cond                                                                                  | ept        | DU.         | liaii      | ig P                               | ropi       | em         | 5          |           |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
| 1.1:                                                        | 1.                                                                                    | (C)        | 2.          | (D)        | 3.                                 | (C)        | 4.         | (B)        | 5.        | (A)                   | 6.                                       | (C)                                                                                  | 7.        | (B)        |           |                 |     |     |           |            |  |  |
| 1.2:                                                        | 1.                                                                                    | (C)        | 2.          | (B)        | 3.                                 | (D)        | 4.         | (C)        | 5.        | (B)                   |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
| 1.3:                                                        | 1.<br>11.                                                                             | (C)<br>(B) | 2.<br>12.   | (C)<br>(C) | 3.<br>13.                          | (B)<br>(C) | 4.<br>14.  | (A)<br>(B) | 5.<br>15. | (A)<br>(B)            | 6.<br>16.                                | (A)<br>(C)                                                                           | 7.<br>17. | (B)<br>(C) | 8.        | (B)             | 9.  | (D) | 10.       | (C)        |  |  |
| 1.4:                                                        | 1.                                                                                    | (C)        | 2.          | (A)        | 3.                                 | (B)        | 4.         | (A)        | 5.        | (A)                   | 6.                                       | (B)                                                                                  | 7.        | (B)        | 8.        | (C)             | 9.  | (D) |           |            |  |  |
| 1.5:                                                        | 1.<br>11.                                                                             | (D)<br>(B) | 2.<br>12.   | (B)<br>(B) | 3.<br>13.                          | (D)<br>(B) | 4.<br>14.  | (C)<br>(B) | 5.<br>15. | (D)<br>(A)            | 6.<br>16.                                | (A)<br>(B)                                                                           | 7.<br>17. | (B)<br>(C) | 8.<br>18. | (A)<br>(D)      | 9.  | (A) | 10.       | (C)        |  |  |
| 1.6:                                                        | 1.                                                                                    | (B)        | 2.          | (A)        | 3.                                 | (A)        | 4.         | (B)        | 5.        | (D)                   |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
| 1.7:                                                        | 1.                                                                                    | (C)        | 2.          | (C)        | 3.                                 | (A)        | 4.         | (B)        | 5.        | (B)                   |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             |                                                                                       |            |             |            |                                    |            |            |            |           |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             | Practice Problems                                                                     |            |             |            |                                    |            |            |            |           |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             | 1.                                                                                    | (D)        | 2.          | (C)        | 3.                                 | (C)        | 4.         | (D)        | 5.        | (D)                   | 6.                                       | (B)                                                                                  | 7.        | (B)        | 8.        | (C)             | 9.  | (D) | 10.       | (C)        |  |  |
|                                                             | 11.                                                                                   | (D)        | 12.         | (C)<br>(A) | 13.                                | (D)        | 14.        | (A)        | 15.       | (C)                   | 16.                                      | (C)                                                                                  | 17.       | (A)        | 18.       | (D)             | 19. | (B) | 20.       | (C)<br>(A) |  |  |
|                                                             | 21.                                                                                   | (C)        | 22.         | (C)        | 23.                                | (C)        | 24.        | (B)        | 25.       | (A)                   | 26.                                      | (C)                                                                                  | 27.       | (B)        | 28.       | (A)             | 29. | (D) | 30.       | (B)        |  |  |
|                                                             | 31.                                                                                   | (B)        | 32.         | (C)        | 33.                                | (D)        | 34.        | (D)        | 35.       | (B)                   | 36.                                      | (D)                                                                                  | 37.       | (B)        | 38.       | (C)             | 39. | (B) | 40.       | (C)        |  |  |
|                                                             | 41.                                                                                   | (C)        | 42.         | (B)        | 43.                                | (D)        | 44.        | (D)        | 45.       | (B)                   | 46.                                      | (C)                                                                                  | 47.       | (B)        | 48.       | (C)             | 49. | (A) | 50.       | (B)        |  |  |
|                                                             | 51.                                                                                   | (C)        | 52.         | (C)        | 53.                                | (C)        | 54.        | (B)        | 55.       | (B)                   | 56.                                      | (D)                                                                                  | 57.       | (C)        | 58.       | (B)             | 59. | (D) | 60.       | (A)        |  |  |
|                                                             | 61.                                                                                   | (B)        | 62.         | (A)        | 63.                                | (B)        | 64.        | (A)        | 65.       | (D)                   | 66.                                      | (D)                                                                                  | 67.       | (B)        | 68.       | (B)             | 69. | (A) | 70.       | (A)        |  |  |
|                                                             | 71.                                                                                   | (A)        |             |            |                                    |            |            |            | 6         |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             | Prol                                                                                  | olem       | ns T        | o Po       | nde                                | r          |            |            |           |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             | 1.                                                                                    | i.         | 2 n         | r sin      | $\frac{\pi}{n}$ ii. $\frac{1}{2}n$ |            |            |            |           |                       | $r^2 \sin\left(\frac{2\pi}{n}\right)$ if |                                                                                      |           |            |           | ii. 2π <i>r</i> |     |     | $\pi r^2$ |            |  |  |
|                                                             |                                                                                       | ts to      | M           | CQs        |                                    |            |            |            |           |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             |                                                                                       |            |             |            |                                    |            |            |            |           |                       |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
| Concept Building Problems                                   |                                                                                       |            |             |            |                                    |            |            |            |           |                       |                                          | 3. $f(x) + g(x) + h(x) = \frac{2}{x-3} + \frac{x-3}{x+4} - \frac{2(2x+1)}{x^2+x-12}$ |           |            |           |                 |     |     |           |            |  |  |
| 1.1 EVALUATION BY FACTORIZATION                             |                                                                                       |            |             |            |                                    |            |            |            |           |                       |                                          | $x^{2} - 8x + 15$                                                                    |           |            |           |                 |     |     |           |            |  |  |
| $(\sqrt{x}-1)(\sqrt[3]{x}-1)$ $(\sqrt{x}-1)(\sqrt[3]{x}-1)$ |                                                                                       |            |             |            |                                    |            |            |            |           | $-\frac{1}{x^2+x-12}$ |                                          |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
| 1.                                                          | 1. $\lim_{x \to 1} \frac{1}{x-1} = \lim_{x \to 1} \frac{1}{(\sqrt{x}-1)(\sqrt{x}+1)}$ |            |             |            |                                    |            |            |            |           |                       | $=\frac{(x-3)(x-5)}{(x-2)(x+4)}$         |                                                                                      |           |            |           |                 |     |     |           |            |  |  |
|                                                             | $\sqrt[3]{x-1}$                                                                       |            |             |            |                                    |            |            |            |           |                       |                                          | (x-3)(x+4)                                                                           |           |            |           |                 |     |     |           |            |  |  |
|                                                             | $= \lim_{x \to 1} \left( \frac{\sqrt{x-1}}{\sqrt{x+1}} \right) = 0$                   |            |             |            |                                    |            |            |            |           |                       |                                          | $\lim_{x \to 3} [f(x) + g(x) + h(x)] = \lim_{x \to 3} \frac{(x-3)(x-5)}{(x-3)(x-4)}$ |           |            |           |                 |     |     |           |            |  |  |

 $\lim_{x \to 3} \frac{x^3 - x^2 - 18}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 2x + 6)}{x - 3}$ 2.  $= \lim_{x \to 3} (x^2 + 2x + 6)$ = 9 + 6 + 6 = 21

 $\lim_{x \to 3} [f(x) + g(x) + h(x)] = \lim_{x \to 3} \frac{(x-3)(x-5)}{(x-3)(x+4)}$  $= \lim_{x \to 3} \frac{x-5}{x+4}$  $= -\frac{2}{7}$ 

#### 14

Page no. 15 to 22 are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes** 

As L<sub>2</sub> exists and L<sub>2</sub>  $\neq 0$   $\Rightarrow m$  cannot be greater or less than 5.  $\Rightarrow m = 5$ , and that gives L<sub>2</sub> =  $\frac{3}{40}$  $\Rightarrow m - n = 2$ 

#### 1.7 Use of Sandwich Theorem

1. Using 
$$x - 1 < [x] \le x$$
, we have

$$\frac{n}{5} - 1 < \left[\frac{n}{5}\right] \le \frac{n}{5}, \qquad \dots (i)$$

$$\frac{n}{7} - 1 < \left\lfloor \frac{n}{7} \right\rfloor \le \frac{n}{7}, \qquad \dots \text{(ii)}$$
$$\frac{n}{7} - 1 < \left\lceil \frac{n}{77} \right\rceil \le \frac{n}{77}$$

$$20 \qquad \lfloor 20 \rfloor \qquad 20 \Rightarrow -\frac{n}{20} \le -\left[\frac{n}{20}\right] < 1 - \frac{n}{20} \qquad \dots \text{ (iii)}$$

Adding (i), (ii) and (iii), we get

$$\frac{\frac{n}{5} + \frac{n}{7} - \frac{n}{20} - 2}{n} < \frac{\left[\frac{n}{5}\right] + \left[\frac{n}{7}\right] - \left[\frac{n}{20}\right]}{n} \le \frac{\frac{n}{5} + \frac{n}{7} - \frac{n}{20} + 1}{n}$$

Taking limit  $n \to \infty$  and using Sandwich theorem,  $\lim_{n \to \infty} \frac{\left[\frac{n}{5}\right] + \left[\frac{n}{7}\right] - \left[\frac{n}{20}\right]}{n} = \frac{1}{5} + \frac{1}{7} - \frac{1}{20}$  $= \frac{28 + 20 - 7}{140} = \frac{41}{140}$ 

2.  $x \le f(x) \le \sqrt{6-x}$ ,  $x \in [1, 2)$   $1 + \frac{2}{x} \le f(x) \le \sqrt{6-x}$ ,  $x \in [2, 3)$   $L_1 = \lim_{x \to 2^-} f(x), L_2 = \lim_{x \to 2^+} f(x)$ Also  $\lim_{x \to 2^+} \sqrt{6-x} = 2$  and  $\lim_{x \to 2^+} \left(1 + \frac{2}{x}\right) = 2$   $\Rightarrow$  Using Sandwich theorem,  $L_1 = 2$  and  $L_2 = 2$   $\Rightarrow L_1 = L_2$ 3.  $\frac{1}{n^2 + 1} < \frac{1}{n^2}, \frac{2}{n^2 + 2} < \frac{2}{n^2}$  etc., on addition, lead to  $\sum_{r=1}^n \frac{r}{n^2 + r} < \frac{1 + 2 + 3 + ... + n}{n^2}$   $\Leftrightarrow \sum_{r=1}^n \frac{r}{n^2 + r} < \frac{n(n+1)}{2n^2}$  ... (i) Also,  $\frac{1}{n^2 + 1} > \frac{1}{n^2 + n}, \frac{2}{n^2 + 2} > \frac{2}{n^2 + n}$  etc.,

on addition, lead to

$$\sum_{r=1}^{n} \frac{r}{n^2 + r} > \frac{1 + 2 + 3 + \dots + n}{n^2 + n}$$

 $\Leftrightarrow \sum_{r=1}^{n} \frac{r}{n^2 + r} > \frac{n(n+1)}{2(n^2 + n)} \qquad \dots (ii)$ 

Taking limit  $n \to \infty$  in (i), (ii) and using Sandwich theorem,  $\lim_{n\to\infty} u_n = \frac{1}{2}$ 

4. Using 
$$x - 1 < [x] \le x$$
, we have  
 $1^{2}x - 1 < [1^{2}x] \le 1^{2}x$   
 $2^{2}x - 1 < [2^{2}x] \le 2^{2}x$   
 $\vdots$   
 $n^{2}x - 1 < [n^{2}x] \le n^{2}x$   
 $\Leftrightarrow \frac{n(n+1)(2n+1)x}{6} - n < \sum_{r=1}^{n} [r^{2}x] < \frac{n(n+1)(2n+1)x}{6}$ 

Taking limit  $n \rightarrow \infty$  and using Sandwich theorem,

$$\lim_{n \to \infty} n^{3} = 6 = 3$$

$$\frac{1}{x} - 1 < \left[\frac{1}{x}\right] \le \frac{1}{x}$$

$$\frac{2}{x} - 1 < \left[\frac{2}{x}\right] \le \frac{2}{x}$$

$$\sum_{r=1}^{15} \left(\frac{r}{x} - 1\right) < \sum_{r=1}^{15} \left[\frac{r}{x}\right] \le \sum_{r=1}^{15} \frac{r}{x}$$

$$120 < \lim_{x \to 0^{+}} x \left(\sum_{r=1}^{15} \left[\frac{r}{x}\right]\right) \le 120$$

$$\lim_{x \to 0^{+}} x \left(\left[\frac{1}{x}\right] + \left[\frac{2}{x}\right] + \dots + \left[\frac{15}{x}\right]\right) = 120$$

 $\lim_{x \to 1} \frac{\sum_{r=1}^{n} \left[ r^2 x \right]}{x} = \frac{2x}{2} = \frac{x}{2}$ 

5.

1. 
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{5x}{-x + 7x} \quad \text{if } x < 0, |x| = -x$$
$$= \lim_{x \to 0^{-}} \frac{5x}{6x} = \frac{5}{6}$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{5x}{x + 7x} \quad \text{if } x > 0, |x| = x$$
$$= \lim_{x \to 0^{+}} \frac{5x}{8x} = \frac{5}{8}$$
$$\lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x)$$
$$\Rightarrow \text{Limit does not exist.}$$
2. 
$$f(x) = 1 - 2x \quad , \quad x < 0$$

2. 
$$f(x) = 1 - 2x$$
,  $x < 0$   
= 1,  $0 \le x < 1$   
= 2x - 1,  $x \ge 1$   
 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (1 - 2x) = 1$   
 $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (1) = 1$   $\Rightarrow \lim_{x \to 0} f(x) = 1 = l_1$ 

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (1) = 1$$
  

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (2x - 1) = 1$$
  

$$\Rightarrow \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} [x - 3] + \lim_{x \to 3^{-}} |x - 4|$$
  

$$= \lim_{x \to 3^{-}} ([x] - 3) + \lim_{x \to 3^{-}} (4 - x)$$
  

$$= (2 - 3) + (4 - 3) \dots \left[\lim_{x \to 0^{-}} [x] = a - 1\right]$$
  

$$= -1 + 1 = 0$$
  
4. 
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$
  

$$\Leftrightarrow \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$
  

$$\Leftrightarrow 2p + 3 = 1 - p$$
  

$$\Leftrightarrow p = -\frac{2}{3}$$
  
5. 
$$\lim_{x \to 0^{-}} \frac{\log(1 + \{x\})}{\{x\}} = \lim_{x \to 0^{-}} \frac{\log(1 + x - [x])}{x - [x]}$$
  

$$L.H.L. = \lim_{x \to 0^{-}} \frac{\log(1 + x - (-1))}{x - (-1)}$$
  

$$= \lim_{x \to 0^{+}} \log(2 + x) = \log 2$$
  

$$R.H.L. = \lim_{x \to 0^{+}} \frac{\log(1 + x - 0)}{x - (-1)}$$
  

$$= \lim_{x \to 0^{+}} \log(1 + x)^{\frac{1}{x}} = \log_{x} e = 1$$
  

$$L.H.L. \neq R.H.L. \Rightarrow Limit does not exist.$$
  
6. 
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{n!}{x(x + 1)(x + 2)\dots(x + n)}\right)$$
  

$$= \lim_{x \to 0^{+}} \frac{(x + 1)(x + 2)\dots(x + n)}{x(x + 1)(x + 2)\dots(x + n)}$$
  

$$= \lim_{x \to 0} \frac{a_{n-1}}{x(x + 1)(x + 2)\dots(x + n)}$$
  

$$= \lim_{x \to 0} \frac{a_{n-1}}{x(x + 1)(x + 2)\dots(x + n)}$$
  

$$= \lim_{x \to 0} \frac{a_{n-1}}{x(x + 1)(x + 2)\dots(x + n)}$$
  

$$= \lim_{x \to 0} \frac{a_{n-1}}{x + 1} + \frac{1}{n}$$
  
7. 
$$\lim_{x \to 1} \frac{x + x^{2} + \dots + x^{100} - 100}{x - 1}$$
  

$$= \lim_{x \to 1} \frac{(x - 1) + (x^{2} - 1) + \dots + (x^{100} - 1)}{x - 1}$$
  

$$= \lim_{x \to 1} [1 + (x + 1) + (x^{2} + x + 1) + \dots + (x^{99} + x^{98} + \dots + 1)]$$
  

$$= 1 + 2 + 3 + \dots + 100 = \frac{(100)(101)}{2} = 5050$$

8. L.H.L. = 
$$\lim_{x\to 2^{-1}} \frac{|x^2 - 5x + 6|}{(x - 2)(x - 3)}$$
  
=  $\lim_{x\to 2^{-1}} \frac{(x^2 - 5x + 6)}{(x - 2)(x - 3)} = 1$   
R.H.L. =  $\lim_{x\to 2^{+1}} \frac{|x^2 - 5x + 6|}{(x - 2)(x - 3)}$   
=  $\lim_{x\to 2^{+1}} \frac{-(x^2 - 5x + 6)}{(x - 2)(x - 3)} = -1$   
L.H.L.  $\neq$  R.H.L.  $\Rightarrow$  Limit does not exist.  
9.  $\lim_{x\to 5^{+}} \left(\frac{x^2 - 9x + 20}{x - [x]}\right) - \lim_{x\to 4^{-1}} \left(\frac{x^2 - 9x + 20}{x - [x]}\right)$   
=  $\lim_{x\to 5^{+}} \left(\frac{x - 5\right)(x - 4}{x - 5} - \lim_{x\to 4^{-1}} \frac{(x - 5)(x - 4)}{x - 3}\right)$   
=  $(5 - 4) + 0 = 1$   
10. L. H. L. =  $\lim_{x\to 5^{-}} f(x) = \lim_{x\to 5^{-}} \frac{\sin(x - 10)}{(10 - x)}$   
=  $\lim_{x\to 5^{+}} \frac{\sin(x - 10 - [x - 10])}{10 - x - [10 - x]}$   
=  $\lim_{x\to 5^{-}} \frac{\sin(x - 10 - 3)}{10 - x - 2}$   
=  $\lim_{x\to 5^{+}} \frac{\sin(x - 10 + 3)}{10 - x - 2}$   
=  $\lim_{x\to 5^{+}} \frac{\sin(x - 10 + 3)}{10 - x - 2}$   
=  $\lim_{x\to 5^{+}} \frac{\sin(x - 10 + 3)}{10 - x - 2}$   
=  $\lim_{x\to 5^{+}} \frac{\sin(x - 10 + 2)}{10 - x - 1} = 0$   
11. L.H.L. =  $\lim_{x\to 0^{+}} \frac{11 + (2)^{\frac{1}{2}}}{3 + (8)^{\frac{1}{2}}} = \frac{11}{3}$   
R.H.L. =  $\lim_{x\to 0^{+}} \frac{11 + 2^{\frac{1}{2}}}{3 + 8^{\frac{1}{2}}}$   
=  $\lim_{x\to 0^{+}} \frac{11 + 2^{\frac{1}{2}}}{3 + 8^{\frac{1}{2}}}$   
=  $\lim_{x\to 0^{+}} \frac{11 (2^{-y}) + 1}{3(2^{-y}) + 2^{2y}} = 0$   
 $\Rightarrow$  L.H.L.  $\neq$  R.H.L.  
 $\Rightarrow$  Limit does not exist  
12.  $\lim_{x\to \infty} (\sqrt{ax^2 + bx + c} - x) = -\frac{1}{2}$   
 $\Leftrightarrow \lim_{x\to \infty} (\frac{(ax^2 + bx + c) - x^2}{\sqrt{ax^2 + bx + c} + x}} = -\frac{1}{2}$  ... (i)

Page no. 25 to 32 are purposely left blank.

To see complete chapter buy **Target Notes** or **Target E-Notes** 

$$= \frac{1}{2} \sum_{r=1}^{n} \frac{2r+1-1}{1\cdot 3\cdot 5\cdot ...\cdot (2r+1)}$$

$$= \frac{1}{2} \sum_{r=1}^{n} \left[ \frac{1}{1\cdot 3\cdot 5...(2r-1)} - \frac{1}{1\cdot 3\cdot 5...(2r+1)} \right]$$

$$= \frac{1}{2} \left[ \left( 1 - \frac{1}{1\cdot 3} \right) + \left( \frac{1}{1\cdot 3} - \frac{1}{1\cdot 3\cdot 5} \right) + ... + \frac{1}{1\cdot 3\cdot 5...(2n-1)} - \frac{1}{1\cdot 3\cdot 5...(2n+1)} \right]$$

$$= \frac{1}{2} \left[ 1 - \frac{1}{1\cdot 3\cdot 5...(2n-1)} - \frac{1}{1\cdot 3\cdot 5...(2n+1)} \right]$$

$$S_{n}' = \sum_{r=1}^{n} \frac{2r+1}{r^{2}(r+1)^{2}} = \sum_{r=1}^{n} \frac{(r+1)^{2} - r^{2}}{r^{2}(r+1)^{2}}$$

$$= \sum_{r=1}^{n} \left[ \frac{1}{r^{2}} - \frac{1}{(r+1)^{2}} \right] = 1 - \frac{1}{(n+1)^{2}}$$

$$L_{1} = \lim_{n \to \infty} S_{n} = \frac{1}{2}, \quad L_{2} = \lim_{n \to \infty} S_{n}' = 1$$

$$\Rightarrow \frac{L_{1}}{L_{2}} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$
Problems To Ponder

Å

1. 
$$|AB| = 2 |AM|$$
  
 $= 2 \cdot r \sin\left(\frac{\pi}{n}\right)$   
i. Perimeter  $= P(n) = n |AB|$   
 $= 2 n r \sin\left(\frac{\pi}{n}\right)$   
ii.  $|OM| = r \cos\frac{\pi}{n}$   
Area  $= A(n) = \left(\frac{1}{2}|AB| \cdot |OM|\right) \cdot n$   
 $= \frac{n}{2} \cdot 2r \sin\left(\frac{\pi}{n}\right) \cdot r \cos\left(\frac{\pi}{n}\right)$   
 $= \frac{1}{2}nr^2 \cdot \left(2 \sin\frac{\pi}{n}\cos\frac{\pi}{n}\right)$   
 $= \frac{1}{2}nr^2 \sin\left(\frac{2\pi}{n}\right)$ 

iii. 
$$l_1 = \lim_{n \to \infty} 2r n \sin\left(\frac{\pi}{n}\right) = \lim_{n \to \infty} 2r \pi \cdot \frac{\sin\left(\frac{\pi}{n}\right)}{\frac{\pi}{n}}$$
  
 $\Rightarrow l_1 = 2 \pi r$   
... [ as  $\lim_{n \to \infty} \frac{\pi}{n} = 0$  and hence  $\lim_{n \to \infty} \frac{\sin\left(\frac{\pi}{n}\right)}{\left(\frac{\pi}{n}\right)} = 1$ ]

iv. 
$$l_{2} = \lim_{n \to \infty} \frac{1}{2} nr^{2} \sin\left(\frac{2\pi}{n}\right)$$
$$= \lim_{n \to \infty} \frac{1}{2} r^{2} (2\pi) \cdot \frac{\sin\left(\frac{2\pi}{n}\right)}{\left(\frac{2\pi}{n}\right)}$$
$$\Rightarrow l_{2} = \pi r^{2}$$
$$\dots \left[ \text{ as } \lim_{n \to \infty} \left(\frac{2\pi}{n}\right) = 0 \text{ and hence } \lim_{n \to \infty} \frac{\sin\left(\frac{2\pi}{n}\right)}{\left(\frac{2\pi}{n}\right)} = 1 \right]$$
2. 
$$|\text{ MN}| = |\text{ ON}| - |\text{ OM}|$$
$$= r - r \sin \theta$$
$$|\text{ PM}| = |\text{ OP}| - |\text{ OM}|$$
$$= \frac{r}{\sin \theta} - r \sin \theta$$
$$= \frac{r (1 - \sin^{2} \theta)}{\sin \theta}$$
$$\therefore \quad \frac{|\text{PM}|}{|\text{MN}|} = \frac{r (1 - \sin^{2} \theta)}{\sin \theta} \times \frac{1}{r(1 - \sin \theta)}$$
$$= \frac{1 + \sin \theta}{\sin \theta}$$
$$\therefore \quad \lim_{\theta \to \frac{\pi}{2}} \frac{|\text{PM}|}{|\text{MN}|} = \lim_{\theta \to \frac{\pi}{2}} \left(\frac{1 + \sin \theta}{\sin \theta}\right) = \frac{1 + 1}{1} = 2$$
3. 
$$|\text{ BM}| = \sqrt{r^{2} - (h - r)^{2}} = \sqrt{2hr - h^{2}}$$
$$|\text{AB}|^{2} = \left(\sqrt{2hr - h^{2}}\right)^{2} + h^{2}$$
$$= 2hr$$

i. Perimeter  $P = 2\sqrt{2hr} + 2\sqrt{2hr - h^2}$  and

ii. area 
$$\Delta = \frac{1}{2}h(2\sqrt{2hr-h^2})$$
$$= h\sqrt{2hr-h^2}$$

iii. 
$$\frac{\Delta}{\mathbf{P}^3} = \frac{h\sqrt{2hr - h^2}}{8\left(\sqrt{2hr} + \sqrt{2hr - h^2}\right)^3}$$

$$= \frac{\sqrt{2hr - h^2}}{8\sqrt{h}\left(\sqrt{2r} + \sqrt{2r - h}\right)^3} = \frac{\sqrt{2r - h}}{8\left(\sqrt{2r} + \sqrt{2r - h}\right)^3}$$

$$\therefore \qquad \lim_{h \to 0} \frac{\Delta}{\mathbf{P}^3} = \frac{\sqrt{2r}}{8\left(\sqrt{2r} + \sqrt{2r}\right)^3}$$
$$= \frac{\sqrt{2r}}{8 \times 8\left(2\sqrt{2}\right)\left(r\sqrt{r}\right)} = \frac{1}{128r}$$

Give your NEET & JEE exam preparation the **TECHNOLOGY BOOST!** 

Practice more than 17,000 MCQs for just ₹749/-

Use Coupon Code

### Also available for X<sup>th</sup>, XI<sup>th</sup>, XII<sup>th</sup> & MHT-CET

- Practice chapter-wise & full syllabus MCQs in test format
- Get instant verification of your answer
- Detailed analysis of every test on completion
- Option to save questions for future reference



Scan QR Code to download the app

Visit our website to know more about our range of books for **X<sup>th</sup>, XI<sup>th</sup>, XII<sup>th</sup> & MHT-CET** 

## **Visit Our Website**



actice Test

(1)

Quill

Target

(2) (3) (6) (6)

(A)- 40°

(B)+ 40°

(C)- 80°

(0)-20

Cet the next one right tor

ich of the following

8

AP

Address: B2, 9<sup>th</sup> Floor, Ashar, Road No. 16/Z, Wagle Industrial Estate, Thane (W)- 400604

Tel: 88799 39712 / 13 / 14 / 15 Website: www.targetpublications.org Email: mail@targetpublications.org



Explore our range of NEET & JEE Books

