BOARD QUESTION PAPER : MARCH 2022 MATHEMATICS AND STATISTICS

Time: 3 Hrs.

Max. Marks: 80

The question paper is divided into FOUR sections.

- (1) Section A: Q.1 contains Eight multiple choice type of questions, each carrying Two marks. Q.2 contains Four very short answer type questions, each carrying one mark.
- (2) Section B: Q.3 to Q. 14 contain Twelve short answer type questions, each carrying Two marks. (Attempt any Eight)
- (3) Section C: Q.15 to Q. 26 contain Twelve short answer type questions, each carrying Three marks. (Attempt any Eight)
- (4) Section D: Q.27 to Q. 34 contain Eight long answer type questions, each carrying Four marks. (Attempt any Five)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- (7) Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected.
- (8) For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet, e.g. (a)....../(b)....../(c)....../(d)....., etc. No marks shall be given, if <u>ONLY</u> the correct answer or the alphabet of correct answer is written. Only the first attempt will be considered for evaluation.
- (9) Start answer to each section on a new page.

SECTION – A

at answer for the following multiple shoirs type of an

Q.1.						[16]				
	(i)		$\sim p \land (\sim q \rightarrow$		→ 1) 15 <u> </u>	(h)	$p \lor (\sim q \lor r)$			
			$\sim p \land (\sim q \rightarrow q)$	· · · ·			$p \rightarrow (q \wedge r)$ $p \rightarrow (q \wedge r)$			(2)
	(ii)	In Λ/	ABC if $c^2 + a$	$a^2 - b^2 =$	= ac, then $\angle B$ =		,			
	()		$\frac{\pi}{4}$			(c)	$\frac{\pi}{2}$	(d)	$\frac{\pi}{6}$	(2)
	(iii)	Equation of line passing through the points $(0, 0, 0)$ and $(2, 1, -3)$ is								
		(a)	$\frac{x}{2} = \frac{y}{1} = \frac{z}{-3}$			(b)	$\frac{x}{2} = \frac{y}{-1} = \frac{z}{-3}$			
		(c)	$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$			(d)	$\frac{x}{3} = \frac{y}{1} = \frac{z}{2}$			(2)
	(iv)	The v	value of $\hat{i} \cdot (\hat{j})$	$(\times \hat{k}) + \hat{j}$	$\hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is					
		(a)	0	(b)	-1	(c)	1	(d)	3	(2)
	(v)	If f(x	$=x^{5}+2x-$	3, then	$(f^{-1})'(-3) =$	·				
		(a)	0	(b)	-3	(c)	$-\frac{1}{3}$	(d)	$\frac{1}{2}$	(2)
	(vi)	The r	naximum va	lue of t	he function $f(x) = \frac{\log x}{x}$	$\frac{3x}{2}$ is _	·			
		(a)	e	(b)	$\frac{1}{e}$	(c)	e ²	(d)	$\frac{1}{e^2}$	(2)
	(vii)	If $\int_{\overline{4}}$	$\frac{\mathrm{d}x}{\mathrm{d}x^2 - 1} = \mathbf{A} \mathrm{loc}$	$\log\left(\frac{2x}{2x}\right)$	$\left(\frac{-1}{+1}\right)$ + c, then A =					
		(a)	1	(b)	$\frac{1}{2}$	(c)	$\frac{1}{3}$	(d)	$\frac{1}{4}$	(2)

[17]

Std. XII: Mathematics and Statistics

Q.2.

	(viii)	If the p.m.f of a r.v.X is			
		$P(x) = \frac{c}{x^3}$, for $x = 1, 2, 3$			
		= 0, otherwise,			
		then $E(X) =$			
		(a) $\frac{216}{251}$ (b) $\frac{294}{251}$	(c) $\frac{297}{294}$	(d) $\frac{294}{297}$	(2)
•	Ansv	ver the following questions:			[4]
	(i)	Find the principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$			(1)
	(ii)	Write the separate equations of lines re	presented by the equation 5	$5x^2 - 9y^2 = 0$	(1)

- (iii) If $f'(x) = x^{-1}$, then find f(x)
- (1)(iv) Write the degree of the differential equation $(y''')^{2} + 3(y'') + 3xy' + 5y = 0$ (1)

SECTION – B

Attempt any EIGHT of the following questions: **Q.3.** Using truth table verify that:

 $(p \land q) \lor \sim q \equiv p \lor \sim q$

[16]

(2)

(2)

[24]

(3)

- **Q.4.** Find the cofactors of the elements of the matrix $\begin{vmatrix} -1 & 2 \\ -3 & 4 \end{vmatrix}$ (2)
- **Q.5.** Find the principal solutions of $\cot \theta = 0$ (2)**Q.6.** Find the value of k, if 2x + y = 0 is one of the lines represented by $3x^2 + kxy + 2y^2 = 0$ (2)**Q.7.** Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose
- normal are 3, 2, 5. (2)
- **Q.8.** Find the cartesian co-ordinates of the point whose polar co-ordinates are $\left(\frac{1}{2}, \frac{\pi}{3}\right)$. (2)
- **Q.9.** Find the equation of tangent to the curve $y = 2x^3 x^2 + 2$ at $\left(\frac{1}{2}, 2\right)$. (2)
- **Q.10.** Evaluate: $\int_{0}^{4} \sec^{4} x \, dx$ (2)
- **Q.11.** Solve the differential equation $y \frac{dy}{dx} + x = 0$ (2)
- **Q.12.** Show that function $f(x) = \tan x$ is increasing in $\left(0, \frac{\pi}{2}\right)$. (2)
- **Q.13**. From the differential equation of all lines which makes intercept 3 on *x*-axis. (2)
- **Q.14.** If $X \sim B(n, p)$ and E(X) = 6 and Var(X) = 4.2, then find n and p.

SECTION – C

Attempt any EIGHT of the following questions:

- **Q.15.** If 2 $\tan^{-1}(\cos x) = \tan^{-1}(2 \operatorname{cosec} x)$, then find the value of x.
- **Q.16.** If angle between the lines represented by $ax^2 + 2hxy + by^2 = 0$ is equal to the angle between the lines represented by $2x^2 - 5xy + 3y^2 = 0$, then show that $100(h^2 - ab) = (a + b)^2$. (3)
- Q.17. Find the distance between the parallel lines $\frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$ and $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z-1}{2}$. (3)

Board Question Paper: March 2022

(3)

[20]

(4)

(4)

- **Q.18.** If A (5, 1, p), B(1, q, p) and C(1, -2, 3) are vertices of a triangle and $G\left(r, \frac{-4}{3}, \frac{1}{3}\right)$ is its centroid, then find the values of p, q, r by vector method.
- **Q.19.** If $A(\bar{a})$ and $B(\bar{b})$ be any two points in the space and $R(\bar{r})$ be a point on the line segment AB dividing it internally in the ratio m : n then prove that $\bar{r} = \frac{m\bar{b} + n\bar{a}}{m+n}$. (3)
- Q.20. Find the vector equation of the plane passing through the point A(-1, 2, -5) and parallel to the vectors 4î-ĵ+3k and î+ĵ-k.

Q.21. If
$$y = e^{m \tan^{-1}x}$$
, then show that $(1+x^2)\frac{d^2y}{dx^2} + (2x-m)\frac{dy}{dx} = 0$ (3)

Q.22. Evaluate:
$$\int \frac{dx}{2 + \cos x - \sin x}$$
(3)

Q.23. Solve
$$x + y \frac{dy}{dx} = \sec(x^2 + y^2)$$
 (3)

Q.24. A wire of length 36 meters is bent to form a rectangle. Find its dimensions if the area of the rectangle is maximum.
Q.25. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
(3)

- **Q.26.** If a fair coin is tossed 10 times. Find the probability of getting at most six heads. (3)
 - SECTION D

Attempt any FIVE of the following questions:

Q.27. Without using truth table prove that	
$(p \land q) \lor (\sim p \land q) \lor (p \land \sim q) \equiv p \lor q$	(4)

Q.28. Solve the following system of equations by the method of inversion x - y + z = 4, 2x + y - 3z = 0, x + y + z = 2

- Q.29. Using vectors prove that the altitudes of a triangle are concurrent.
- Q.30. Solve the L.P.P. by graphical method,

Minimize
$$z = 8x + 10y$$

Subject to $2x + y \ge 7$,
 $2x + 3y \ge 15$,
 $y \ge 2, x \ge 0$
(4)

Q.31. If x = f(t) and y = g(t) are differentiable functions of t so that y is differentiable function of x and $\frac{dx}{dt} \neq 0$, then prove that:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

π

Hence find
$$\frac{dy}{dx}$$
 if $x = \sin t$ and $y = \cos t$. (4)

Q.32. If u and v are differentiable function of *x*, then prove that:

$$\int uv \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \int v \, dx \right] dx$$

Hence evaluate $\int \log x \, dx$ (4)

Q.33. Find the area of region between parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

Q.34. Show that:
$$\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx = \frac{\pi}{8} \log 2$$
(4)

3

(4)